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1.9 The Grassmannian

The complex Grassmannian Grk(Cn) is the set of complex k-dimensional linear subspaces of Cn. It is a com-

pact complex manifold of dimension k(n − k) and it is a homogeneous space of the unitary group, given by

U(n)/(U(k) × U(n − k)). The Grassmannian is a particularly good example of many aspects of Morse theory

(this is true of the unitary group itself as well as its other homogeneous spaces such as the flag varieties) and

we will investigate it a few times.

Complex manifold structure: The usual way to exhibit the manifold structure is as follows. We represent

a k-plane V as an n × k matrix where the columns span the subspace. Two matrices A,A′ represent the same

element of the Grassmannian iff ∃h ∈ GL(k,C) : A′ = Ah. Standard coordinate charts are as follows: Choose

I = {i1, . . . , ik} ⊂ {1, . . . , n} and let VI◦ be the n − k-plane spanned by {ej : j /∈ I}. Then

UI = {Λ ∈ Grk(Cn) : Λ ∩ VI◦ = {0}}.

The coordinates of a point Λ ∈ UI consist of the unique matrix representing Λ such that the Ith k × k minor is

the identity matrix. The remaining k(n − k) entries are free. This gives a chart ϕI : UI −→ Ck(n−k). For two

multiindices I, J we can see quite easily that ϕJ ◦ϕ−1
I is smooth (in fact holomorphic) as follows: If p ∈ UI ∩UJ

then ϕI(p) has nonsingular Jth k × k-minor ΛIJ . This means that the transition function ϕJ ◦ ϕ−1
I is given by

A 7→ A Λ−1
IJ , which is smooth (holomorphic).

It’s an adjoint orbit: Cn has a natural Hermitian inner product 〈x, y〉 = x · y =
∑
xiy i , and any k-plane

V ⊂ Cn has an orthogonal complement V ⊥. The decomposition Cn = V ⊕ V ⊥ may be represented as a

projection operator PV : Cn −→ Cn: If x = xV + xV ⊥ then PV x = xV . The operator PV is in fact characterized

by its being a rank k self-adjoint (P ∗ = P ) operator satisfying P 2
V = PV . It is convenient to multiply it by i , to

get a skew-adjoint operator iPV , which is then a skew-adjoint matrix, i.e. an element of the real Lie algebra

u(n) of the unitary group.

Grk(Cn) ↪→ u(n) = {A ∈ End(Cn) : A∗ + A = 0}
V 7→ iPV

From this embedding, we can see the adjoint action of U(n) on u(n), i.e. g · A = gAg−1, acts transitively on

Grk(Cn) with stabilizer U(k) × U(n − k). In other words, we see that the Grassmannian may be viewed as

an adjoint orbit for U(n); in fact it is the orbit of the element
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
To understand the Lie algebra it is useful to consider a “Cartan subalgebra”, which is a choice of a maximal

abelian subalgebra. For u(n) this is particularly easy as we can take the diagonal matrices h = diag(ia1, . . . , ian),

which all commute. In general, every adjoint orbit intersects h in a nonempty finite set – this is familiar to us

since any skew-adjoint matrix is diagonalizable and so it is conjugate to an element in h – in fact possibly to

many elements in h, since the ordering of the eigenvalues can be changed, yielding different points in h. The

intersection of the orbit with h is always an orbit of the Weyl group W = N(T )/T , which in the case of U(n)

is just Sn, permuting the n coordinate axes.

There are different orbit types, depending on whether some eigenvalues are repeated. Matrices with distinct

eigenvalues are called regular elements, the others are singular. The set of singular elements in h is always a
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union of hyperplanes, in our case given by ai = aj . The diagram12 of h, together with these singular hyperplanes,

is called the diagram of the group, and it is a picture which is invariant under the Weyl group. The particular

adjoint orbit we are interested in, Grk(Cn), is the “deepest” nontrivial orbit type, and it intersects h in
(
n
k

)
points, i.e. all diagonal matrices with k entries equal to i and n − k entries equal to zero.

Morse function: The real lie algebra u(n) has a Euclidean inner product 13 〈A,B〉 = Tr(AB∗) = −Tr(AB),

which is clearly invariant under conjugation. The function we choose is a linear function on u(n) given by inner

product with a regular element in h. Let a1 > · · · > an ≥ 0 be real numbers and let Z = diag(ia1, . . . , ian) so

that X ∈ h ⊂ u(n) is regular. Then define

f (V ) = 〈iPV , Z〉.

Example 1.26. For k = 1, Grk(Cn) = CP n−1 and a point V can be represented by its homogeneous coordinates

V = [z ] ∈ CP n−1 Then the projection operator is PV = 1
|z |2 zz

∗, and

f (V ) = −Tr(iPV Z) = 1
|z |2

n∑
i=1

ai |zi |2,

which is the Morse function we used earlier.

Critical points: To find the critical points, it is simpler to find the zeros of the gradient vector field, since

this is just the projection of Z to the tangent space of our orbit. For this it is instructive to think about

projecting a vector in R3 ∼= so(3) to the adjoint orbit given by the unit 2-sphere – recall that the Lie bracket is

just the vector cross product.

Lemma 1.27. Let OX0 = AdU(n)(X0) be the adjoint orbit through X0 = diag(i , . . . , i , 0 . . . , 0). Then we have

that:

• TXOX0 = adu(n)(X) = {[Y,X] : Y ∈ u(n)}.

• J : Y 7→ [Y,X] defines a complex structure on TXOX0 , i.e. J2 = −1.

• The orthogonal projection of A ∈ u(n) to TXOX0 is given by A 7→ −[[A,X], X] = −J[A,X].

Theorem 1.28. The critical points of f on OX0 are exactly those points in the intersection with h, namely they

are the
(
n
k

)
subspaces of Cn spanned by k axes.

Proof. The points X ∈ OX0 on which the orthogonal projection of Z vanishes are precisely those for which

−J[Z,X] = 0, i.e. [Z,X] = 0. Since Z is diagonal with distinct eigenvalues, this forces X to be diagonal, and

hence it lies in h.

Focal point analysis: We now determine the Morse indices of the critical points, using the most important

method for doing this. First we recognize f as the Euclidean distance squared function, then we use a general

method for determining Morse indices of the norm-squared function.

By the polarization identity, and the fact that ||X||2 is constant on an orbit OX0 , we have

f (X) = 〈X,Z〉 = − 1
2 (||X − Z||2 + C) X ∈ OX0

for some constant C. So we see that f has the same critical points as the distance-squared function g(X) =

||X − Z||2, and if p ∈ Crit(f ) = Crit(g), then λg(p) = 2k(n − k)− λf (p), because of the sign change.

Now we need some general facts about Morse theory of the distance-squared function on manifolds M ⊂ RN .

12Note that this is not the diagram where you draw the weights of the adjoint representation: the weights are elements in the

dual of the complexified Cartan subalgebra, here we are dealing with a real Cartan subalgebra, and so we see the real loci of the

kernel of the roots.
13Note that u(n) is not semisimple and this inner product is not the Killing form, which for u(n) is given by κ(A,B) =

Tr(adAadB) = −2nTr(AB) + 2Tr(A)Tr(B) – it is degenerate. The semisimple subalgebra su(n), however, has κ(A,B) =

−2nTr(AB).

17



1.9 The Grassmannian 1341HS Morse Theory

Lemma 1.29. Let Z ∈ RN\M and g(X) = ||Z − X||2. Then p ∈ M is a critical point of g if and only if Zp is

normal to M.

Remark 9. This gives an alternative proof that all critical points lie in h: if X is critical then the line X+t(Z−X)

is perpendicular to the orbit through X, i.e. [Z − X,X] = 0, i.e. [Z,X] = 0. But then [Z − X,Z] = 0 as well,

i.e. the same line is perpendicular to the orbit through Z. But Z is regular, so this means the line must be in h.

Such a critical point may be degenerate; this is measured by the extent to which nearby segments (p+δp)Z

are normal to M:

Definition 11. Let E : NM −→ RN be the natural map (p, v) 7→ p + v , which is a diffeomorphism in a

neighbourhood of the zero section. Let (p, v) ∈ NM such that E(p, v) = e ∈ RN . Then e is called a focus of

M when E∗|(p,v) is degenerate. The focus e is said to have multiplicity µ = dim kerE∗|(p,v).

Lemma 1.30. E(p, v) = e is a focus if and only if p is a degenerate critical point of p 7→ ||p − e||2, and the

kernel of the Hessian at p has dimension given by the multiplicity of the focus.

Lemma 1.31. If Z ∈ hreg, then the critical points of f are all nondegenerate, and f is Morse; If Z is not regular,

then f has degenerate critical points (and is Morse-Bott). If Z lies on a single hyperplane in the singular set,

then the critical points of f are degenerate, with multiplicity 2.

Proof. The tangent space to p ∈ OX0 is spanned by [Y, p], and similarly the tangent space to (p, v) ∈ NOX0 is

spanned by {HY = ([Y, p], [Y, v ]),W = (0,W ) : [W, p] = 0}, where ([Y, p], [Y, v ]) are the “horizontal vectors”

and (0,W ) are the “vertical vectors”.

The tangent mapping of E sends

E∗ :

{
HY 7→ [Y, p] + [Y, v ] = [Y, p + v ]

W 7→ W

Therefore we see that the kernel of E∗ is spanned by HY such that [Y, Z = p + v ] = 0. If Z is regular, then

[Y, Z] = 0 implies [Y, p] = 0 as well, i.e. E∗ has no kernel. If Z lies on exactly one singular hyperplane not

containing p, then there is a real 2-dimensional space of matrices in TpO which commute with Z. The key

calculation is as follows: Take

Y =

(
0 B

C 0

)
, p =

(
i1k×k 0

0 0

)
so that [Y, p] spans TpO. Then there is a 2-d space of matrices of the form Y which commutes with Z when

Z has a repeated eigenvalue not lying in the top left k × k block.

Lemma 1.32. For Z ∈ hreg, the index of a critical point p ∈ OX0 is the number, counted with multiplicity,

of foci along the line segment from p to Z. That is, the index is twice the humber of singular hyperplanes

encountered along the path from p to Z.

Remark 10. Why do we count only those foci between Z and p, rather than all foci in the half ray {t(Z− p) :

t > 0}? Think about the ellipsoid; foci which are “beneath” Z should not be counted because they represent

directions where the curvature is less than the sphere of radius ||Z − p||, and hence represent ascending, not

descending directions.

Corollary 1.33. Consider the adjoint orbits of U(3) in u(3) ∼= R9: we can draw the diagram of the group in

3-space or just take the su(3) slice; show that Poincaré polynomials for the orbits are

1 + t2 + t4 for CP 2,

and

1 + 2t2 + 2t4 + t6 for FL(1, 2).
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The same method determines the homology of Gr2C4: There are 6 critical points given by all diagonal matrices

with two is and two 0s; Starting from (i , i , 0, 0) and going down to (0, 0, i , i) using consecutive transpositions

i.e. (m,m + 1) in S4 (this represents traveling from one connected component of hreg to another crossing

a hyperplane), we see that after one transposition we get to (i , 0, i , 0) (therefore it has index 2); another

transposition gives us (i , 0, 0, i) and (0, i , i , 0) (both of index 4); another transposition gives only (0, i , 0, i)

(index 6) and finally one last transposition for (0, 0, i , i). Hence

Pt(Gr2(C4)) = 1 + t2 + 2t4 + t6 + t8.

Morse-Smale dynamics: We will now employ a (not very general?) trick to figure out the morse indices

of f by explicitly determining the global structure of the negative gradient flow. We will explain how to do it

without this trick later.

Lemma 1.34. The gradient flow of the Morse function, i.e. the equation d
dt γ(t) = −grad(f )(γ(t)) has solution

curve through V given by

γ(t) = e−itZV = diag(e−a1t , . . . , e−ant)V.

Definition 12 (Morse-Smale dynamics). We will show that the ±∞ limits of the gradient flow of a Morse

function on a compact manifold are critical points. The stable manifold W+(p) of p ∈ Crit(f ) consists of all

points flowing to p as t →∞. The unstable manifold W−(p) of p ∈ Crit(f ) consists of all points limiting to p

as t → −∞. We will show that these are manifolds diffeomorphic to Rn−λ(p), Rλ(p), respectively.

In the case of the height function on the Grassmannian, we can determine the (un)stable manifolds globally,

instead of doing a local analysis near the critical points.

Observe for Gr1(Cn) that

lim
t→∞

diag(e−a1t , . . . , e−ant)



z1

...

zk−1

1

0
...

0


∼ lim

t→∞



e−a1−ak z1

...

e−ak−1−ak zk−1

1

0
...

0


=



0
...

0

1

0
...

0


= Vk

This shows that the stable manifold for the k th critical point is a copy of Ck−1, and the associated unstable

manifold is a Cn−k . Hence the index of Vk is 2(n − k), as we calculated before. This yields a perfect Morse

function on CP n−1.

For general Grassmannian, we have a similar observation. Any n × k matrix of rank k can be brought into

echelon form and we have similarly

lim
t→∞

e−tD



∗ · · · ∗
...

...

∗
...

1
...

. . . ∗
1


∼



· · ·
...

...

...

1
...

. . .

1


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The echelon form is not a good coordinate on the stable manifold since we can reduce each row with a leading

1 to zeros. Therefore after this reduction we get

dimCW
+(VI) = (i1 − 1) + (i2 − 2) + · · ·+ (ik − k) =

k∑
j=1

ij − 1
2k(k + 1)

This tells us the index of VI , i.e. λ(VI) = 2(k(n− k)−
∑k

j=1 ij −
1
2k(k + 1)). A direct result of this calculation

is that the Morse polynomial equals the Poincaré polynomial and is given by

Πni=1(1− t2i)

Πki=1(1− t2i)Πn−ki=1 (1− t2i)

Furthermore because the Morse function has only even indices we can conclude that the integral homology has

no torsion.

Remark 11. The stable or “ascending manifolds” we described above are called “Schubert cells” and their

closure in Grk(Cn) are singular algebraic varieties called “Schubert varieties”.
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2 Bott-Morse theory

It often happens that a manifold of interest comes equipped with a function which is not Morse. In many cases,

for example if we want to maintain a symmetry, we don’t want to perturb the function. Bott developed a

version of Morse theory to deal with such situations.

Definition 13. A compact, connected submanifold S ⊂ M is called a nondegenerate critical submanifold of

f ∈ C∞(M,R) if S ⊂ Crit(f ) and ker Hessp(f ) = TpS for each point p ∈ S. In other words, f is nondegenerate

in the normal directions to S. If Crit(f ) consists of nondegenerate critical submanifolds, then f is called a

Morse-Bott function.

Consider the exact sequence describing the tangent bundle of S:

0 // TS // TM|S // NS // 0 . (5)

The Hessian of f is in Sym2T ∗pM and vanishes upon restriction to TpS. Hence it lies in Sym2N∗pS and hence

defines a nondegenerate bilinear form on the normal bundle of S

Qf = d2
Sf ∈ Γ (S,Sym2N∗S).

We may therefore view S as a family of usual Morse critical points.

The fact that NS has a nondegenerate bilinear form allows us to associate an invariant to S analogous to the

Morse index λ. As before, we may assign to S an integer λ(f , S) counting the number of negative ‘eigenvalues’ of

Qf . But there is the additional fact that NS may be decomposed14 as a direct sum of subbundles NS = ν−⊕ν+

where Qf is ±-definite on ν± and Qf (ν−, ν+) = 0. In particular, the rank of ν− is λ(f , S).

Using exactly the same proof (using the Moser-Palais trick) as for the original Morse lemma, we obtain

the following Morse-Bott lemma, which says that f is diffeomorphic to its quadratic approximation in a tubular

neighbourhood of S:

Theorem 2.1. Let S be a nondegenerate critical submanifold of the Morse-Bott function f . Then there is a

neighbourhood U of the zero section S ⊂ NS and an open embedding Φ : U −→ M such that Φ|S = IdS and

Φ∗f = f (S) +Qf .

In particular, if we choose NS = ν− ⊕ ν+ then Φ∗f = f (S)− u− + u+, where u± = ±Qf |ν± .

There is now the natural question of how to describe the change in topology of a sublevel set Mc−ε when

passing a critical level corresponding to S. The answer is that we must do a family of λ(f , S)-handle attachments

parametrized by S. In other words we attach a thickening of the disk bundle Dν− −→ S to Mc−ε, along a

framed embedding of the total space of the boundary sphere bundle Sν− into ∂Mc−ε.

To be more precise: a Morse-Bott handle is modeled15 on Dν−⊕Dν+, a bundle over S with fiber isomorphic

to Dλ ×Dn−λ. We attach this handle to Mc−ε by giving an embedding

ι : Sν− −→ ∂Mc−ε,

giving a bundle of attaching spheres. We also need a framing, which in this case is an identification of the

normal bundle of the attaching bundle Sν− in ∂Mc−ε with its normal bundle in the standard model ν− ⊕ ν+,

that is, with π∗ν+, where π : Sν− −→ S is the bundle projection.

Framing data: N(ι(Sν−))
∼=−→ π∗ν+.

14One way of doing this is to choose a positive-definite metric on NS; then Qf may be viewed as a symmetric automorphism

Qf : NS −→ NS. Then ν± are the ±-eigenbundles of this operator.
15Here we want to “smooth the corners” as we did for the usual handle attachment.
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Example 2.2. If S = S1, show a handle attachment on a 3-manifold with boundary, in which there is a framed

embedded S0-bundle over S1. There are two interesting cases: when ν− is trivial and when it is nontrivial.

Explain the example of a Morse-Bott handle attachment yielding RP 2 as the union of a disc and a Möbius disc

bundle.

The change in topology is described as in the old case; we have the isomorphism

H•(M
c+ε,Mc−ε;K) = H•(Dν−, ∂Dν−;K)

We are used to the idea that Hn(Dk , ∂Dk ;K) is K for n = k , since Dk/∂Dk is homeomorphic to the k-

dimensional sphere. This is not always true for bundles of spheres when they are nontrivial. We say that a rank

r bundle E −→ S is K-orientable when there is a class

τ ∈ Hr (DE, ∂DE;K)

called the Thom class, which restricts to each fiber to give a generator of Hr (DEx , ∂DEx ;K). Note that every

vector bundle is Z2-orientable but not R-orientable.

If our bundle ν− −→ S is K-orientable, then we have a Thom class τ ∈ Hλ(Dν−, ∂Dν−;K), but there will

be a lot more homology in the sphere bundle, coming from the topology of S. Indeed, we have the Thom

isomorphism theorem:

Theorem 2.3 (Thom isomorphism theorem). Let π : E −→ S be K-orientable, and τE be a Thom class for E.

Then for all k the map

Hk+r (DE, ∂D(E);K) −→ Hk(S,K) (6)

c 7→ π∗(c ∩ τE) (7)

is an isomorphism.

By this result we see that if ν− is K-orientable, then the relative cohomology group is given by H•(S,K),

but with a degree shift by the Morse index. In other words, the polynomial describing the potential contribution

to the Betti numbers is

tλ(f ,S)Pt(S,K).

Definition 14. The K-Morse-Bott polynomial of a Morse-Bott function f : M −→ R on a compact manifold

M is

Mt(f ;K) =
∑
S

tλ(f ,S)Pt(S;K)

As a result of the above reasoning, we have the following Morse-Bott inequalities:

Theorem 2.4 (Morse-Bott inequalities).

Mt(f ;K)− Pt(M,K) = (1 + t)Qt(f ),

where Qt(f ) has positive coefficients.

Remark 12. Just as in the old case, the discrepancy between Mt and Pt occurs when the embedding of the

attaching sphere (now a sphere bundle) induces a nonzero map on homology. If these maps are all zero maps,

then we are in the K-completable case and (assuming all critical submanifolds have ν− K-orientable) we get

equality of the Morse and Betti polynomials over K.

Remark 13. The lacunary principle of Morse also has an extension to the Morse-Bott case: here we need not

only the λ(f , S) to be even for all S, but also that S has only even Betti numbers being nonzero.
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Example 2.5. Recall that on CP n we took the Morse function

f ([z0, . . . , zn]) =

∑
ci |zi |2∑
|zi |2

,

for c0 < · · · < cn. What if we take an extreme case c0 = 0 and c1 = · · · = cn = 1. Then this is a function with

an isolated global minimum (index 0) at [1, 0, . . . , 0] and a critical submanifold of maxima S = {[0, ∗, . . . , ∗]} ∼=
CP n−1. S has index 2 = dimCP n − dimCP n−1. Therefore we have

Mt(f ) = 1 + t2(1 + t2 + · · ·+ t2n−2).

Example 2.6. If a torus lies down flat, the height function z has two nondegenerate critical submanifolds

diffeomorphic to S1. The indices are 0,1 and we get immediately

Mt(z) = (1 + t) + t(1 + t) = 1 + 2t + t2,

showing that the height function is a perfect Morse function in this case.

Remark 14. Another nice feature of Morse-Bott functions is that they behave well under submersions: if

π : M −→ N is a submersion, and f ∈ C∞(N,R) is Morse-Bott, then π∗f is also Morse-Bott, with preserved

indices in the sense λ(f , S) = λ(π∗f , π−1(S)). A special case of this is the pullback of a function by the map

M −→ {pt}. Even the zero function is Morse-Bott, and it is a perfect Morse-Bott function!

Example 2.7. just as for the projective space, we may relax the usual requirement a1 > a2 > · · · > an > 0 in

the usual Morse function on GrkCn, if we allow Morse-Bott functions. If we allow a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

f (X) = 〈X, idiag(a1, . . . , an)〉 is a perfect Morse-Bott function. One can show16 that V ∈ GrkCn is a critical

point if and only if V is spanned by eigenvectors of diag(a1, . . . , an). If we write Cn = ⊕kEk as the eigenspace

decomposition, then the critical submanifold containing V is then given by a product of Grassmannians

ΠkGrakEk ,

where ak = dimC(V ∩ Ek). In the crudest case, we may choose diag(1, 0, . . . , 0). Write Cn = Ce1 ⊕ Cn−1.

then there are two critical submanifolds, according as whether V ∩ Ce1 6= {0} (the max), in which case

Smax ∼= Grk−1Cn−1, or V ⊂ Cn (the min), in which case Smin ∼= GrkCn−1. The index of the max is just the

total dimension minus the dimension of Smax , i.e. 2(k(n − k)− (k − 1)(n − k)) = 2(n − k), and so we get

Pk,n(t) = Pk,n−1(t) + t2(n−k)Pk−1,n−1(t),

a recurrence which is solved by

Pk,n =
Πni=1(1− t2i)

Πki=1(1− t2i)Πn−ki=1 (1− t2i)

16See Martin Guest’s notes, for example
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