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2.1 Morse theory of moment maps

Symplectic geometry provides17 a huge source of Morse and Morse-Bott functions, and it is not unusual to find

papers where properties of constructed spaces (such as moduli spaces) are determined by showing the space is

symplectic, has a Hamiltonian S1-action, and has a nice Morse-Bott function adapted to the symplectic form.

Often one is interested in the cohomology ring, but there is a refinement of this technique which may be used

to find the equivariant cohomology, which we will not discuss here18.

A symplectic form on a manifold M is a 2-form ω ∈ Ω2(M,R) which is closed (i.e. dω = 0) and nondegen-

erate, in the sense that the map it determines ω : TM −→ T ∗M via

X 7→ iXω

is an isomorphism. The most typical example is the cotangent bundle T ∗N of any manifold N, equipped with

the natural symplectic form ω =
∑

i dpi ∧ dx i , where x i is a coordinate chart and pi are the induced fiber

coordinates on T ∗N. Other typical examples are orientable surfaces equipped with volume forms, products,

covering spaces, and smooth complex projective varieties, such as CP n, which has a symplectic form known as

the Fubini-Study form, given in homogeneous coordinates [z0, . . . , zn] by

ω = i∂∂ log |z |2, |z |2 =

n∑
0

|zk |2.

A symplectic form provides a convenient setting for dynamics, since we only need to specify a function

f ∈ C∞(M,R) (the “Hamiltonian”) and this determines a vector field (the “Hamiltonian vector field”)

Xf = ω−1(df ),

and this vector field is automatically a symmetry of ω:

LXf ω = diXω + iXdω = d(df ) = 0,

and it automatically “conserves” the Hamiltonian:

Xf (f ) = iXf df = iXf iXf ω = 0.

This is important for physics: If we only know the “energy” function on T ∗N, then this function defines a

flow on T ∗N which conserves energy, determining a trajectory on N for a particle x ∈ N with given initial lift

(x, p) ∈ T ∗N, i.e. initial “position and momentum”.

A particularly convenient set-up which yields many Morse functions is when there is a Lie group G of

symmetries of a symplectic manifold (M,ω), which is such that all the symmetries are generated by functions

in the above way. In other words, there is a correspondence between symmetries and “conserved quantities”,

i.e. Hamiltonian functions.

Definition 15. Let a Lie group G act on the symplectic manifold (M,ω) by symplectomorphisms, so that it

defines an infinitesimal action g −→ Γ (M,TM) (a Lie algebra homomorphism) written as a 7→ Xa. A moment

map for this action is an equivariant19 map µ : M −→ g∗ such that

iXaω = d(a ◦ µ) ∀a ∈ g.

We call the real-valued function Ha = a◦µ the Hamiltonian function generating the vector field Xa. A symplectic

group action G ×M −→ M is called Hamiltonian when there is a moment map as above.

17See Atiyah, Bott, Frankel.
18See Atiyah-Bott and M. Guest’s notes.
19This just means that the map is compatible with the natural G-actions on each side, i.e. µ(g · x) = Ad∗g(µ(x)).
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Example 2.8. The unitary group U(n+1) acts on Cn+1 linearly and hence on CP n via projective automorphisms.

This action preserves the Fubini-Study symplectic form and is described by a moment map

µ : CP n −→ u(n + 1)∗.

Using the inner product on u(n+ 1) we may identify u(n+ 1) ∼= u(n+ 1)∗ (sending the adjoint to the coadjoint

action) and then we see that µ is simply the embedding of CP n = Gr1Cn+1 as a coadjoint orbit.

Inside U(n+ 1) we have the maximal torus T n+1 of diagonal unitary matrices diag(e iθ0 , · · · , e iθn), and inside

this we have a ι : T n ↪→ U(n+ 1) of diagonal matrices with first entry 1. These act on CP n with moment map

µt = ι∗ ◦ µ.

Given any Hamiltonian action of a compact Lie group G on a symplectic manifold (M,ω), we obtain the

following large quantity of Morse-Bott functions:

Theorem 2.9. Let the compact Lie group act on (M,ω) with moment map µ : M −→ g∗. For any a ∈ g,

the function a ◦ µ is a Morse-Bott function. The critical manifolds are symplectic submanifolds and the Morse

indices are even, and furthermore, a ◦ µ is a perfect Morse-Bott function.

Proof. a generates a vector field Xa and this generates a 1-parameter subgroup of G. The closure of this is a

torus H ⊂ G of some dimension. The function f a = a◦µ is critical exactly when Xa vanishes, i.e. we are at a

fixed point for the action of H. So Crit(f a) = MH. Such fixed point sets of symplectic group actions are easily

shown to be symplectic submanifolds, and hence even dimensional. In a neighbourhood of a fixed point m, we

can show that the action is equivalent to a T k action on Cn of the form (e iθj )·(z1, . . . , zn) = (e iβ1z1, . . . , e
iβnzn),

where βj : tk −→ R are “weights” i.e. linear maps with integral coefficients Rk −→ R. Then the moment map

can be written

µ(z1, . . . , zn) = 1
2

∑
j

||zj ||2βj ,

and a ◦ µ = 1
2

∑
j(x

2
j + y2

j )βj(a), clearly having even index.

In addition to providing a rich source of Morse-Bott functions, the torus action actually gives very precise

information about the gradient flow trajectories, and we can pick out the stable and unstable manifolds of each

critical point.

Theorem 2.10 (Atiyah-Guillemin-Sternberg). Let a ∈ g generate the Hamiltonian action of a torus T k with

moment map µ : M −→ t∗. Then the image µ(M) is the convex hull of the finite set {µ(m) : m ∈ Crit(f a)}.
Furthermore, the closure V of an ascending or descending manifold20 has image µ(V ) given by the convex hull

of the images of critical points of f a contained in V .

Example 2.11. Consider CP 2, which has a T 3 ⊂ U(3) action with moment map

µ([z0, z1, z2]) = 1P
|zi |2 (|z1|2, |z2|2, |z3|2),

and µ(CP 2) is the convex hull of the basis vectors e1, e2, e3. We could work with a T 2 action instead. The

closures of the stable/unstable manifolds for the standard Morse function are of the form [∗, · · · , ∗, 0, · · · , 0]

and [0, · · · , 0, ∗, · · · , ∗] and we can see the images under µ. Can make comments about intersection theory.

20For a compatible Riemannian metric, e.g. for a Kähler manifold.
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