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1.3 Genericity theorem

We shall explain the terms in, and then prove, the following statement to the effect that Morse functions are

plentiful and stable under small perturbations.

Theorem 1.6. Let M be a compact smooth manifold. Then the set of Morse functions is C∞ dense in C∞(M,R)

and it is open with respect to the C2(M,R) topology.

The vector space of continuous sections of a vector bundle E may be equipped with a norm, called the “sup

norm”, also called its “uniform norm”, “C0 norm”, or “L∞ norm”:

||s||C0 = sup
x∈M
|s(x)|,

where |s(x)| = h(s(x), s(x))1/2 is the pointwise norm induced from a non-degenerate positive-definite bilinear

form h chosen on E.

Convergence in this norm is precisely what is called “uniform convergence” and since the uniform limit of

continuous functions is continuous (why?) we know that the space of continuous sections with finite C0 norm

actually forms a Banach2 (but not a Hilbert space).

The vector space of k-times differentiable sections may similarly be equipped with a norm which takes the

sum of the sup norms of the first k derivatives. For this to make sense, we need to be able to differentiate

sections of vector bundles:

Definition 5. A connection ∇ on a vector bundle E is a linear map ∇ : C∞(TM) −→ End(C∞(E)) such that

∇X(f s) = f∇Xs + X(f )s. This makes it a first-order differential operator on sections of E which depends

linearly on a vector field; in essence it is a general way of differentiating sections of E.

Once we have a way of differentiating sections, we can define the uniform Ck norm:

||s||2Ck = ||s||2∞ + ||∇s||2∞ + · · ·+ ||∇ks||2∞.

The Ck sections with finite Ck norm then also form a Banach space, called Ck(M,E). It is not difficult to

prove3 that the resulting norm changes to an equivalent norm if we choose a different connection ∇.4

The Ck norms can be used to define a topology on the vector space C∞(M,E) = ∩∞0 Ck(M,E). On a

compact manifold, we say that (si) converges to s ∈ C∞(M,E) if and only if ||si − s||Ck (K) → 0 for all k . 5

This topology does not come from a norm, but does endow C∞(M,E) with the structure of a Fréchet space.

To prove the theorem, we need some tranversality results, the most important of which are as follows:

Theorem 1.7 (Sard’s theorem). Let f : M −→ N be a smooth map of manifolds of dimension m, n, respectively.

Let C be the set of critical points, i.e. points x ∈ U with

rank Df (x) < n.

Then f (C) has measure zero.

Theorem 1.8 (Parametric transversality). Let F : X×S −→ Y and g : Z −→ Y be smooth maps of manifolds.

Suppose that F is transverse to g. Then for almost every s ∈ S, fs = F (·, s) is transverse to g. (Note that F

should be thought of as a family of maps X −→ Y parametrized by S.

2Recall that a Banach space is a normed vector space which is complete (i.e. every Cauchy sequence converges)
3Optional exercise
4We can even take the equivalent norm ||s||Ck =

Pk
0 ||∇i s||∞.

5For a non-compact manifold we require Ck convergence on all compact sets, i.e. “compact convergence” or more pompously

“uniform convergence on compacta” for the first k derivatives.
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Proof of Theorem 1.6. Let {(Uα ⊃ Vα, ϕα)} be a finite regular6 covering, which exists by compactness of M.

Consider the coordinates x1, . . . , xn as functions hiα on Vα extended to smooth functions on all of M. Suppose

the number of charts in the covering is N.

Then we can define a large family of sections of T ∗M via the map Φ : RNn ×M −→ T ∗M given by

Φ : (λα,i , x) 7→ df (x) +
∑

α,i=0,...,n

λα,idh
i
α(x).

First we claim that Φ is transverse to the zero section of T ∗M. This is because any point p ∈ M is contained

in some Vα, and if we set λβ,i = 0 for all β 6= α and all i , then we obtain

df +
∑

i=1,...,n

λα,idx
i .

By varying the constants λα,i above, we can span all of T ∗xM, showing Φ is a submersion.

By Sard’s theorem, the set of parameters λα,i such that Φλ is transversal to the zero-section is dense.

Hence we can find λ arbitrarily small such that

f +
∑

λα,ih
i
α

is a Morse function. Since λ can be arbitrarily small, this means that we can approach f arbitrarily in each of

the Ck norms, which is what the C∞ topology requires.

Now we show that Morse functions are open in C2 norm. We use the following general fact: If g : Y −→ Z

is a smooth proper map and X is compact, then the set of smooth maps f : X −→ Z transverse to g is C1

open. This comes from the fact that transversality amounts to a local submersion condition, and that this

depends on subdeterminants of the derivative being nonzero. So if we are close in the C1 norm, these nonzero

values will remain nonzero.

Since f is Morse only when df is transverse to the zero section, we see that the C2 bound on f implies a

C1 bound on f , implying the result.

Exercise 5. Let M ⊂ RN be an embedded submanifold of Euclidean space. Outline the proof that for almost

all p ∈ M, the function f (x) = |x − p|2 is a Morse function. If M ⊂ RN is a closed subset, show that f is

exhaustive in the sense that its sublevel sets {x | f (x) ≤ c} are compact. Show that such exhaustive Morse

functions satisfy the Palais-Smale condition: any sequence xn ∈ M such that f (xn) is bounded from above and

|df |xn |g −→ 0 contains a subsequence convergent to a critical point of f (here g is a Riemannian metric chosen

on M).

The Palais-Smale condition was invented as a replacement for the compactness of sublevel sets in the

infinite-dimensional setting.

Exercise 6. A Morse function is called resonant when there are two critical points with the same critical value.

Show that a resonant Morse function can be arbitrarily well approximated in the C2 topology by non-resonant

ones.

Remark 4. Both Sard’s theorem and the transversality theorem have extremely important generalizations to

Banach manifolds.

A smooth map f : X −→ Y of Banach manifolds is called a Fredholm mapping if the derivative Tx f : TxX −→
Tf (x)Y is a Fredholm operator (A continuous linear operator with finite dimensional kernel and cokernel, with

closed range (recall the index of such an operator is dim ker− dim coker, which is locally constant on the open

set of Fredholm operators.))

6A regular covering is a covering by coordinate charts (Uα, ϕα) where ϕα(Uα) is an open ball in Rn, ϕα(Vα) is a smaller open

ball, and (Vα, ϕα) is still a covering.

6



1.4 Theorem A: Gradient vector fields 1341HS Morse Theory

The Sard-Smale theorem states that if f : X −→ Y is a smooth Fredholm map of Banach manifolds, then

the set of regular values of f is residual in Y . Residual means that it is a countable intersection of open dense

sets, and the Baire category theorem says this is dense.

The parametric transversality result also extends to Banach manifolds in the following form. If S,M,N are

Banach manifolds and F : S×M −→ N is a submersion such that each Fs : M −→ N is Fredholm, then for any

finite dimensional submanifold Z ⊂ N, there is a residual set of parameters s ∈ S for which Fs is transversal to

Z.

Nevertheless, I don’t know a proof of genericity for Morse functions on Banach manifolds.

1.4 Theorem A: Gradient vector fields

Theorem A of Morse theory is the simple statement that if f −1([a, b]) is compact and contains no critical

points, then the sublevel sets at a and b are diffeomorphic. It is a simple and intuitive result, however the proof

involves an idea whose importance is impossible to exaggerate: this idea is to investigate the dynamics of f .

In mathematics, dynamics usually means flowing along a vector field – in our case this is the gradient vector

field of f .

Definition 6. Let f be a smooth function on a Riemannian manifold (M, g). The gradient vector field of f ,

grad(f ), is the unique vector field such that dfp(v) = gp(v , grad(f )) for all v ∈ TpM.

Equivalently, viewing g ∈ Γ (M,Sym2T ∗M) as a bundle isomorphism g : TM −→ T ∗M, we can write

grad(f ) = g−1(df ). Also, in local coordinates x i for which g = gi jdx
idx j and g−1 = gi j ∂

∂x i
∂
∂x j

with gikgkj = δi j ,

we have grad(f ) = gi j∂j f
∂
∂x i

.

Exercise 7. Draw the gradient vector field for the Morse function on RP 2 defined earlier.

By the positivity of g, we see that grad(f )f = g(df , df ) ≥ 0, so that grad(f ) always points in the increasing

direction of f , but vanishes on critical points. We normalize the gradient vector field in the following way:

Define the smooth function with compact support

ρ =

{
1/g(df , df ) in f −1([a, b])

0 away from a compact neighbourhood of f −1([a, b])

Then X := ρgrad(f ) is a smooth vector field on M with compact support such that X(f ) = 1 in the set

f −1([a, b]). This means that the flow φXt , defined for all time, satisfies f (φXt (p)) = f (p) + t, for all p ∈
f −1([a, b]) and t ≤ b − f (p). In particular, we obtain the following result:

Theorem 1.9. Let f be a smooth function such that f −1([a, b]) is compact and contains no critical points, and

let X be as above. The flow φXb−a is a diffeomorphism from the manifold with boundary Ma = f −1((−∞, a])

to the manifold with boundary Mb = f −1((−∞, b]). Furthermore, Ma is a deformation retract of Mb, so that

the inclusion Ma ↪→ Mb is a homotopy equivalence.

Proof. We have already argued that the flow gives a diffeomorphism. To see the deformation7 retract, define

rt(q) =

{
q if f (q) ≤ a
φXt(a−f (q))(q) if a ≤ f (q) ≤ b

Then r0 = Id and r1 is a retraction from Mb to Ma.

Remark 5. The condition that f −1([a, b]) be compact is certainly required, as can be seen by removing a point

p ∈ f −1([a, b]) from a compact preimage.

7A deformation retract is a map F : X × [0, 1] −→ X such that F0 = Id, F1(X) ⊂ A, and Ft |A = IdA.
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1.5 Theorem B: surgery theory

To analyze the change in topology of a (sub)-level set going through a critical value of a Morse function, we

need to introduce two types of modifications of manifolds: Surgery and handle attachment. This will give us

enough vocabulary to state Theorem B and its corollaries.

1.5.1 Surgery

Let Dk be the closed unit k-dimensional disk. It is also known as the standard k-cell. A basic operation you

can do with such a cell is to attach it to a topological space.

Definition 7. Given a map ϕ : ∂Dk −→ X for some topological space X, we say that the space

X ∪ϕ Dk :=
X t Dk

x ∼ ϕ(x)
,

equipped with the quotient topology, is obtained from X by attaching a k-cell.

Recall that a CW complex is a space obtained by starting with a discrete set of points and attaching 1-cells,

then attaching 2-cells to the result, and so on increasing the dimension of the cells. For example, the k-sphere

for k > 0 is obtained by attaching a k-cell to a 0-cell. The 2-torus can be constructed by attaching a pair of

1-cells to a 0-cell and then attaching a 2-cell.

Cell attachment is an operation in the topological category; we will extend it to a smooth operation, called

surgery.

Let S ↪→ M be en embedding of the k-sphere in the n-manifold M, k < n, with trivial normal bundle

NS = TM|S/TS. Suppose we also choose a framing of the normal bundle, i.e. an isomorphism

ϕ : NS −→ Sk × Rn−k .

Using the tubular neighbourhood theorem to identify a neighbourhood of the zero section in NS with a neigh-

bourhood U ⊂ M containing S, we may view ϕ as a diffeomorphism8

ϕ : U −→ Sk × D̊n−k ,

where D̊k is the open k-disk.

Consider the two spaces Sp × Dq+1 and Dp+1 × Sq, for p + q + 1 = n. These are both n-manifolds with

boundary, and they have the same boundary Sp × Sq. The basic idea of surgery is that since these spaces

have the same boundary, if either of these spaces are found in an n-manifold, we can carve it out and

replace it by the other one.

The proper way to do this is to observe that if we remove the central sphere we have a natural diffeomorphism

Sp × (D̊q+1 − {0}) s−→ (D̊p+1 − {0})× Sq (3)

(x, (y , t)) 7→ ((x, t), y), (4)

where we use polar coordinates D̊k+1 − {0} = Sk × (0, 1).

Definition 8. Given an embedding S ↪→ M of the k-sphere, with framing ϕ as above, we say that the manifold

M(S,ϕ) =
(M − S) t (D̊k+1 × Sn−k−1)

x ∼ s(ϕ(x))

is obtained from M by a surgery9 of type (S,ϕ). Here s is the universal map (3) defined above.

8The diffeomorphism is defined up to isotopy by the framing.
9The diffeomorphism type of M(S,ϕ) may depend on the isotopy class (i.e. a homotopy through embeddings) of the embedding

of S and on the regular homotopy class of ϕ, i.e. a homotopy through immersions.
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