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Chapter 1

The Morse Complex

The goal of this chapter is to introduce the Morse complex and to give a (nearly)
complete account of the analysis required to rigorously define it. Effort will be made
to at least acknowledge those details not covered here.

1.1 The data

Let M™ be a smooth compact orientable manifold. Let f € C°°(M) be a smooth
Morse function and let g be a smooth Riemannian metric on M.

The pair (f,g) determines a unique gradient vector field V,f on M via the
equation
9(Vef,-) = df ().
We will be interested in the flow of the negative gradient vector field =V, f which
we denote by ;. This flow is defined for all s € R and satisfies 15 0 ¥y = 1), .

By the classical Morse Lemma the set of critical points of f, Crit(f), is finite.
We can associate to each p € Crit(f) it’s Hessian. This is traditionally defined to
be the bilinear map

Help): T,M xT,M — R
(V;W) = Ly(Ly f)(p),
where V and W are local extensions of V and W.

Alternatively, given a metric g one can choose an affine connection V on TM
and define the Hessian of f at p € Crit(f) to be the self-adjoint linear map

H(p): T,M — T,M
W = Vw(V,/).

3



4 CHAPTER 1. THE MORSE COMPLEX

The Morse index of p € Crit(f) is defined to be dimension of the negative
eigenspace of the Hessian of f at p. This integer is denoted by u(p).

Exercise 1.1.1. Show that pu(p) does not depend on which definition of the Hessian
we use or on the extra choices made in each definition.

1.2 The moduli spaces

Given a pair of critical points p, ¢ € Crit(f) we consider the set of integral curves of
—V,f which converge to p and ¢ in forward and backward time, respectively.

(L) Mpoq) = {us R M | 5 = =9, (), lim_u(s) =p, lim u(s) = q}.

§—r+00
This set comes with a free R-action which is defined by
(7-u)(s) =1, ou(s) =u(s + 7).

The quotient

——

(1.2) M(p,q) = M(p,q)/R.

is the space of trajectories of —V,f from p to ¢.

Theorem 1.2.1 (The main analytic theorem of Morse homology). For
generic data pairs (f,g), each moduli space M(p,q) has the following properties:

1. it is a smooth orientable manifold of dimension u(p) — p(q) — 1.

2. it has a natural compactification as a smooth manifold with corners M\(p, q)
whose stratum of codimension k is

Mp.a)y= | M) x M) x - x M(ry,q).

Tseens rp €Crit(f)
D1y TE,q distinct

Explanation of terms

A property defined for elements of a topological space X is said to be generic if it
is satisfied by a subset of objects in X which contains a countable intersection of
open dense sets.
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A manifold with corners is a second countable Hausdorff space such that each
point has a neighborhood which is homeomorphic to R*~* x [0, c0)* for some &, and
the transition maps are smooth.

Comments on the proof

It will take a lot of effort for us to prove this result and we will do this in parts
over the next several sections. The first statement of the theorem (modulo issues of
orientation) will be proved as the Transversality theorem. The Compactness theorem
will show that the “broken trajectories” forming the boundary strata are the correct
objects to add in order to compactify M(p, q). The Gluing theorem will prove that
every possible broken trajectory must appear in the compactification and that near
each broken trajectory the compactified space has the structure of a manifold with
corners. These are both important points because we will be counting boundary
elements (see below). Matters of orientation are also nontrivial and will be discussed
last.

Immediate consequences of the theorem

L. if p(p) — u(q) <0, then M\(p, q) =10

2. if u(p) — pu(g) = 1, then M\(p, q) is a compact zero-dimensional manifold.
Hence, we can count the elements of M(p,q). We can also associate signs to

these elements by choosing certain orientations. The total sum of the elements
with sign will be denoted by #M(p, q).

3. if u(p) — p(q) = 2, then M\(p, q) is a compact one-dimensional manifold with
boundary

dMp,g) = |J Milp,r)x M(rq).
WPy=iu(d) 1

Since this is the boundary of a compact one dimensional manifold, if we orient

——

M(p, q) and count the boundary elements with the appropriate signs, then we
should get zero, i.e.,

#OMp.q) = Y. #Mp,r) #M(r,q) = 0.
u(%eiflﬁ(q’i)ﬂ
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1.3 The definition of the complex

Let (f,g) be a generic data pair in the sense of Theorem 1.2.1 and let Crity(f)
denote the set of critical points of f with index equal to k.

The chain group in degree k, Ci(f), is defined to be the Z-vector space gener-
ated by the elements in Critg(f).

The boundary map 9,: Ci(f) = Cr_1(f) counts negative gradient flow lines.
It is defined on the basis elements p € Crit,(f) by the formula

oK)= > #Mp.a) - q

q€Critg_1(f)

Lemma 1.3.1. 9,00, =0

Proof. For every p € Crity(f)

0g00,(p) = 0y Z #M(p,r)-r

reCritg_1(f)

= > #Men | D #Meg) g

reCrity_1 (f) q€Crity,_o(f)

= ) > #Mlpr) - #M(rq) | q
q€Critg,_2(f) \reCritg_1(f)
= 0

O

The homology of the complex for the pair (f, g) is called the Morse homology,

HM.(f,9) = H(C(f),dy) = k; g gff();f c. ((ff))

It is defined for generic pairs (f,g). We will prove that the Morse homology is
independent of the generic pair (f, g) and equal to the singular homology of M with
coefficients in Z.
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1.4 The transversality theorem

The property of being a Morse function is generic in C*(M) for k > 2 ( see, for
example [4], Prop. 5.5). In fact, as described in § 1.4.10, it is a generic property
in C*°(M). Using this fact we will fix a smooth Morse function f and two critical
points p, ¢ € Crit(f).

The following result implies the first part of Theorem 1.2.1.

Theorem 1.4.1. (Transversality) For a generic C*-smooth metric g on M (k > 2),
the moduli space M(p,q) is a smooth manifold of dimension u(p) — pu(q).

One can describe the moduli space M(p,q) as a potential manifold in two
ways.

1.4.1 The geometric (dynamical) picture

For each p € Crit(f) we can define the descending manifold
D(p) ={zre M| lim ¢;(r) = p}
and the ascending manifold
Ap) = { € M | lim () = 9},

Theorem 1.4.2. If p € Crit(f) is nondegenerate, then D(p) and A(p) are smooth
submanifolds of M. More precisely, D(p) is an embedded open disc of dimension
w(p) and A(p) is an embedded open disc of dimension n — j(p)

For a proof of this see [5] §6.3. The smoothness condition is stronger than
one might hope to prove using the classical Hartman-Grobman theorem (which
states that the flow of a vector field near a hyperbolic (nondegenerate) fixed point
is topologically equivalent to the linearized flow.

It is clear from the definitions that
M(p,q) = D(p) N Alp).

In particular, each gradient trajectory u € M(p, q) can be identified with its unique
initial value u(0) which must lie in D(p) N A(p). The following result is equivalent
to Theorem 1.4.1.
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Theorem 1.4.3. (Transversality Version A) For a generic C*-smooth metric g on
M, the submanifolds D(p) and A(p) intersect transversally, i.e.,

D(p) h A(p).

Remark 1.4.4. For this description of M(p,q) we require the flow of the negative
gradient vector field to be globally defined. As we will see later, in the infinite
dimensional setting of Floer theory the negative gradient flow is not even locally

defined.

1.4.2 The functional analytic picture

Right idea, wrong setting

First we consider a naive picture. Assume that ¢ is a smooth metric and let
B be the set of smooth maps v: R — M such that

lim v(s) =p and lim v(s)=gq.

S§——0Q §—r—00

Let £ — B be the bundle over B whose fibre over v € B is £, = ['*°*(v*T'M), the
space of smooth sections of v*1'M.

Now consider the section of the bundle Fj: B — £ defined by

Fy(v) = (v, 050 — Vo f(v(s))).
If we let Sg denote the zero-section of £ then

M(p,q) = F;'(Se).

At this point one would like to prove a statement like “for generic metrics g we
have F, h Sg.” Unfortunately, the spaces B and £ are infinite dimensional Fréchet
manifolds. For these manifolds the inverse function theorem is, at best, extremely
complicated. Moreover, there is no version of Sard’s theorem with which to establish
the genericity property. To overcome these difficulties we must make some better
choices.

The right setting

We begin by choosing a background metric § on M which we will use to make
our measurements. Now, we let B be the subset of v € L (R, M) such that
1. limy, o = p, and for any R << 0 which is sufficiently negative for v(—oo, R]
to be contained in a coordinate chart around p, we have v|_u 5 € L2
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2. lim, ,o, = ¢, and for any R >> 0 which is sufficiently positive for v[R, ] to
be contained in a coordinate chart around ¢ , we have v|(g ) € L7.

By the Sobolev embedding theorem L?, (R, M) C C°(R, M), so these conditions

1,loc
make sense. The space B is a smooth Banach manifold modeled on L}(R,R").

Let £ — B be the Banach space bundle whose fibre over v € B is &, =
L*(v*TM), the space of L%-sections of v*(TM). We can then define the section
Fy: B— & by

Fy(v) = (v,0" = Vg f(v(s))),

where 2 is the weak derivative of v.

Lemma 1.4.5. F,*(S¢) = M(p,q).

Proof. Since the integral curves of the negative gradient flow are C* and converge
exponentially to their end points, p and g, it follows that M(p,q) C F, '(Se).

Now suppose that v € F,'(Sg), i.e., v is in B and

v =V, [(v(s)).

As a map from M to TM, V,f is as smooth as g, i.e., C*-smooth. The right-hand
side of the equation above is then continuous since v is continuous. Hence, v’ is
continuous and equal to the usual derivative d,v. This means that v is actually C*
and hence an integral curve of the negative gradient flow running from p to q.

(In fact, one can continue this line of argument to show that v is C*. This is a
simple example of elliptic regularity theory, a.k.a. boot-strapping.) ]

Theorem 1.4.6. (Transversality Version B) For a generic C*-smooth metric g on
M, the section Fy: B — & 1is transversal to the zero-section Sg and the inverse image
F,;1(Se) is smooth submanifold of dimension p(p) — pu(q).

We will prove this version of the transversality theorem and show that it is
equivalent to Version A.

1.4.3 Outline of the proof

Let A* be the Banach manifold of C*-smooth metrics on M. Let £ — A*¥ x B be
the pullback of the bundle &€ to A* x B via projection to B. In particular, the fibre
Elywy 18 Just &, = L>(v*TM).

We extend Fj, to a section F': AF x B — £* as follows

F(g,v) = (g,v,0" = Vo f(0(5))).
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Proposition 1.4.7. F' M Sg-.

By the standard inverse function theorem for Banach spaces this implies that
F~1(Sg+) is a smooth submanifold of A* x B. This is called the universal moduli
space, and it consists of the trajectories from p to ¢ for all the negative gradient
flows of f with respect to the metrics in AF.

Proposition 1.4.8. The map 7: F~1(Sg-) — A* is a Fredholm map of index pu(p) —
1(q)-

Here, 7 is the restriction of the projection 7: A*¥ x B — A*. Since the relevant
Banach manifolds are separable and 7 is Fredholm by the proposition, we may invoke
the Sard-Smale theorem. This implies that a generic g € A" is a regular value for 7.
The proposition also implies that the inverse image, 7 !(g), of each regular metric
g € AF, is a smooth submanifold of dimension u(p) — pu(q). Since 7 (g) = M(p, q),
this yields Theorem 1.4.6.

1.4.4 The vertical differential

Before we embark on our planned path, let us first study the transversality issue for
F, and Sg. In order for Fj h S¢ to hold, we must have

(ng)U(TUB) + T(U,O)Sg = T(U,O)g

for all v € (F}) !(Se). This motivates us to consider the image of (dFy),.
Note that for v € (F,)~'(Se) we have the splitting

T(U,O)g = T(U,O)Sg P E,.

Let my: T(y0& —+ &, be projection. Since Fy is a section, the relevant part of (dF}),
is determined by the map

Dy =m0 (dFy),: T,B — &,

which is called the vertical differential of F,. In particular, if the vertical dif-
ferential of F, is onto &,, then the transversality condition is satisfied. (This is a
completely trivial, but somewhat confusing statement with which you should make
peace.)

Let us now derive an expression for the vertical differential Dy by finding a
formula for F, in a local trivialization of the bundle £. Given v € B we can identify
a neighborhood of v with a neighborhood of 0 € T,,B by using the exponential map
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exp: B x T,B — B for the background metric g. In particular, any path near v can
be written uniquely in the form s — exp(v(s), £(s)) for some & € T,B = T3 (v*TM).
In other words, the £ € T,,B near 0 are local coordinates for a neighborhood of v.

To trivialize the bundle & over this neighborhood we use parallel translation
with respect to the Levi-Civita connection V of §. More precisely, let ¢,(£): v*TM —
exp(v,§)*T'M be the map defined by parallel translating each Ty M t0 Toxp(u(s),e(s)) M
along the geodesic path t — exp(v(s),t£(s)). This allows us to identify the fibre
over &, ' (exp(v,&)*T'M), with the fibre over 0, '} (v*T'M).

In this trivialization the map F, has the following form
Fy: B — &
£ = (6 (00(8)) (exp(v, ) + V flexp(v,6))) = (& Fy(€)).

In these coordinates
Dy(&) = (dFy)o(§)

d v
R (Fg (tf)) =0

d _
= - ((0o(t8)) ™ (exp(v, &) 4 Vo f (exp(v, £€))) li=o0
= V(v + Vo f(v))
= Vy&+ Ve(Vyf(v)).
Note: the second last line follows from the definition of the Levi-Civita connection

(see Do Carmo, chpt 2, exercise 2). The last line follows from the fact that the
Levi-Civita connection is torsion free.

The proof of the Transversality theorem will depend heavily on the following
result which we will prove later.

Theorem 1.4.9. For every v € F, '(S¢) the vertical differential
DZ: T.B — &,

is a Fredholm map with index equal to pu(p) — p(q).

1.4.5 Proof of Proposition 1.4.7

We want to prove that the section F': A* x B — £* is transversal to the zero-section
Se«. Using the local trivialization for £ described in the previous section we can
write F' near AF x {v} as

F(g,8) = (9,¢ F,(£)).
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Let us relabel the fibre component as F"(g, &) to emphasize the fact that it is now
considered to be a function of £ and g.

The vertical differential of F'is the map
(dFU)(g,O): T(g,v) (Ak X B) — 5(*911})
(n.6) = Dg(&) +0,(Vyf(v)),

where 0, refers to the derivative in the metric variable in the n-direction.

To prove the transversality statement of Proposition 1.4.7 it suffices to show
that the vertical differential of F' is onto for every (g,v) € F~'(Sg-). Here is an
outline of how one establishes this.

1. Assume that (dF") () is not onto &, = L*(v*TM).

2. Show that the image of (dF")0 is closed. This follows from the (presently
unproven) fact that Dy is Fredholm.

3. If the image of (dF")y is closed and not onto, then it follows from the
Hahn-Banach theorem (and the Riesz representation theorem) that there is
a nonzero W € L?(v*T'M) which annihilates the image of (dF")(,0 in the
following sense

(1.3) /R (AF") g0y (1, €), Wy ds =0 for all (1,€) € Ty (A* x B)

We will obtain our contradiction by showing that, in fact, any W € L?(v*T M)
which satisfies this equation must be 0 € L?(v*T M).

4. Letting n =0 in (1.3), we get
/((Dg)(g), Wyds=0 forall ¢cT,B.
R

This, by definition, means that W is a weak solution of (Dj)*W = 0 where
(Dy)* is the formal adjoint of the operator (D). We will see later that (Dj)*
is an operator of the same type as (Dj) whose weak solutions are actually
strong solutions. Hence, W is C*-smooth.

5. Letting £ = 0 in (1.3), we get

(1.4) /R@n(vgf(u)), Wyds=0 forall yeT,A".
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Exercise 1.4.10. Fiz sy € R and show that for any vector V' in the fibre of
v*T M over sy, there is an n € T,A* such that 8,(V,f(v))(so) = V.

By our assumption, W is nonzero so we can fix an sy such that W(sy) # 0.

The previous exercise implies that we can choose an 7 such that 9,(V, f(v))(so) =
W (sp). The integrand in (1.4) evaluated at s is then positive.

Choosing a smooth bump function 5: R — R supported near s, set 7(s) =
B(s)n(s). Using the C*-smoothness of W, it is easy to check that

/R@ﬁ(vgf(v)), W)ds > 0.

This contradicts (1.4), so (dF")(4,0) must be onto.
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1.4.6 Proof of Proposition 1.4.8

We need to prove that the maps
A (gt TigmyF (Se<) — T, AF

are Fredholm of index p(p) — u(q) for all (g,v) € F~'(Se-).
We show here that this is a consequence of Theorem 1.4.9.

Claim 1 The kernel of dr(, ) is isomorphic to the kernel of D7, i.e.,
ker(dm(g ) : Tigw)F " (Sex) — Ty A*) ~ ker(D}: T,B — &,)
Proof. We know that
Tigu)F ' (Se+) = (dFgu)) ' (Tig)Se-)-
In our local trivialization, this looks like

TiguyF~(Sex) = {(1,€) € Tigu) (A" x B) | Dy(€) + 0,(Vf(v)) = 0}

Since dm(y4)(1,£) =1, we have

ker(dmy,) = {(0,€) € T,A* x T,B | Di(&) = 0}
{¢ € T,B | Dy(§) =0}
= ker(Dy).

12

Claim 2 The cokernel of dr(, ) is isomorphic to the cokernel of Dy,
coker(dm: Ty F ' (Se-) — T, A") ~ coker(Dy: T,B — &,)
Proof. Consider the following inclusions (and identification)
coker(dr) C T, A C T(y.)(A* x B)

and
coker(Dy) C &, ~ &, ).

Exercise 1.4.11. Show that the vertical differential (dF")(g0): T(gn) (A* X B) —
5(*9’@) induces an isomorphism of the cokernels.

O
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Claim 3

It remains to prove that if the image of Dy is closed, then so is the image of dm(,,,).

Proof.

dr(g)(Tiguy F ' (Se-)) = {n € T,A"| Dy(€) + 0,(V,f(v)) = 0}
= {neT,A"|0,(V,f(v)) €im(D})}.

Since im(Dy) is closed, the result follows from the fact that n — 9,(V,f(v))
is continuous.

O

1.4.7 Proof of Theorem 1.4.9

It just remains to show that the vertical differentials
Dy: M2(*TM) — L*(v*TM)
§ = va + v&(vgf(v))

are Fredholm with index p(p) — pu(q) for every v € F,*(S¢). Here, we follow closely
the discussion in section 5.3 of [4] which, in turn, is based on the paper [6].

To simplify matters we trivialize the bundle v * T'M using parallel translation
with respect to V. For this choice we have

D!: L}(R,R") — L*RR")
f = (as_AS)g

where A,: R" — R” is defined in this trivialization by A,(W) = =V (V,f(v(s))).

The family of linear maps A, depends C*-smoothly on the parameter s and
converges exponentially as s — 00 to limits A*. Note that

A" =—H(p) and A" =—H(q).

It follows that the dimension of the positive eigenspace of A=, dim(ET(A7)), is
equal to u(p). Similarly, dim(E*T(A1)) = u(q).

Theorem 1.4.12 (see [6]). The operator 0s — A is Fredholm and

ind(9, — A,) = —SF{A,}.
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The term SF{A;} is called the spectral flow of the family of operators A;.
Intuitively, it counts the number of eigenvalues of A, which pass from negative to
positive as s goes from —oo to co. Since we know the number of positive eigenvalues
of the limits A we can write

SF{A;} = dim(E"(A")) — dim(E" (A7) = p(q) — u(p)
From this it follows that Dj is Fredholm and has index u(p) — p(q).
Remark 1.4.13. In the Floer setting the analogues of the Morse indices are infinite,

but the spectral flow (the “difference” between the indices) is finite. This is why the
spectral flow is often referred to as a relative index.

1.4.8 Proof of Theorem 1.4.12

First let us acknowledge the actual details involved in proving this result and then
discuss the more easily accessible aspects of the proof. The fact that the operator
0s — A has a closed range and a a finite dimensional kernel can be established using
the following result:

Lemma 1.4.14 (Abstract closed range lemma). Suppose that X,Y and Z are
Banach spaces, D: X — Y s a bounded linear operator, and K: X — 7 is a
compact linear operator. If

[zllx < e(lDzlly + [[Kzl|2),

then D has a closed range and a a finite dimensional kernel.

One applies this lemma to the Banach spaces X = L}(R,R"), Y = L*(R R"),
Z = L*([-T,T),R"), and the maps D = d;— A; and K = inclusion. The verification
of the required estimate is described in §2 of [6].

In fact, it is easy to identify the kernel of d; — A, and hence to determine its

dimension. Assuming that the range of s — A, is closed, it is also easy to do the
same for the cokernel of 0y — A;.

e The kernel of 0, — A,
Assume that u € C°(R,R") satisfies

(05 — Ag)u = 0.

Then u is a solution of the ODE, d,u = A u, which is linear and has C*-smooth
coefficients. It follows that u is C*-smooth and is uniquely determined by its
value at s = 0. Let u;, be the unique solution with initial value u,(0) = h. It
is defined for all s € R. More generally, there is a fundamental solution matrix
O, € R™" such that up(s) = ®4(h) for all h € R* and for all s € R.
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Exercise 1.4.15. Show that if As = A then the fundamental solution matriz
O, can be written in the form exp(Qs), where Q) is a diagonal matriz whose
entries are the eigenvalues of A. Describe the possible asymptotic behaviors of
the trajectories.

In order to determine the kernel of 0, — A, we must specify which of the
solutions uy, is in L?(R, R™). At the very least, we require lim, ., up(s) = 0.
Accordingly, we define

HY ={heR"| EI—P up(s) =0}

and
H ={heR"| lim uy(s) =0}.
§—>—00

Lemma 1.4.16. The map

H NHY — ker(9s — Ay)
h +— Up,

18 an isomorphism.

Proof. The map is clearly injective.

It is onto, since u € ker(J, — A,) C L? implies that u goes to zero as s — +o0.
Hence, u = uy, for h = u(0).

To see that the map is into, we note that when |s| is large, uy(s) behaves like a
solution of the linear flow determined by the self adjoint operators A*. Hence,
if |uy| tends to zero it must do so exponentially (together with its derivatives),
see Exercise 1.4.15. Consequently, u;, belongs to L? (R, R"). O

Lemma 1.4.17.
dim(H') = dim(E~(A")) and dim(H~) = dim(ET(A7)).
Proof. The map

WY E(4Y)
lim (5] -2%)
h

o0 un ()]

h —

is an isomorphism.
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e The cokernel of 0, — A,

Given the fact that the image of 0, — A, is closed, we have the following
isomorphism:

coker(d; — Ay) ~ im(9, — A,)*.
If the formal adjoint of 0; — Ay exists, then the we would have
im (0, — A,)" = ker(9, — A,)")
Exercise 1.4.18. Show that (05 — As)* exists and is equal to —05 — As.

By the exercise, it suffices to calculate the dimension of ker(d; + Ay).

Lemma 1.4.19. The map

ker(d, + A,) — (HO)'n(H)*
o= f(0)

18 an isomorphism.

Proof. First we show that the map is well-defined. For every h € H* we have

85 <’L~L, uh> = <asaa fu> - <ﬂ, 8suh>
<—Asﬂ, Uh> — <Z~L, Asuh>
= 0.

Since @ is in ker(9; + A,) we know that lim,_,+ . @(s) = 0. Also, since h € H*
we have limg_, 1. up(s) = 0. It follows that

(w,up) =0 for all s € R.
Setting s = 0, we get
(@(0),h) =0.
Thus, @(0) € (HT)* N (H)* .

Note that d; + A} is an operator of the same general form as 0, — A;. In
particular, its kernel consists of certain solutions of an ODE which can be
specified by their initial values. Hence, the map @ — @(0) is injective.

The fact that the map is surjective can be proven in the same way as Lemma
1.4.17.

O
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e By the previous discussion it follows that 0 — A, is Fredholm and
ind(0, — A,) = dim(H"NH) —dim((HN)n(H)H)

(
dim(HTNH) — (n —dim(HT UHT))
dim(H") +dim(H ) —n
(
(

dim(E~(A")) + dim(ET (A7) —n
= dim(E*(A7)) —dim(ET(A")).

1.4.9 Aside 1: Transversality Version B = Transversality
Version A

Let 2 be any point in D(p) N.A(g). Then there exists a unique gradient trajectory
v € M(p,q) such that v(0) = .

For the trivialization of v*T'M above, one can check that

HT =T,D(p) and H™ =T, Alp).

Transversality theorem 1.4.6 implies that for generic g € A" the vertical dif-
ferential Dy = 05 — Ay is onto.

Hence,
coker(Dy) = coker(d; — A,) = 0.
This implies, by the isomorphism of Lemma 1.4.19, that
(K n(H) =0
= H"+H =R"
= T,D(p) + T Alp) = T, M
= D(p) h Alq).

1.4.10 Aside 2: genericity in the smooth category

1.5 Compactness

By the Transversality theorem we know that for a generic g € A* the moduli space
M(p,q) is a smooth manifold of dimension p(p) — u(g). In fact, we know that
M(p, q) is a smooth submanifold of the Banach manifold B C L#(R, M) from which
it inherits its topology.



20 CHAPTER 1. THE MORSE COMPLEX

Each moduli space M(p, ¢q) is inherently noncompact due to the natural free
R-action it admits. For example, given u € M(p,q) the sequence (uy) where
ur(s) = u(s + k) has no convergent subsequence. Accordingly, in this section we

——

consider the quotient moduli spaces M(p,q) = M(p,q)/R and construct natural
compactifications for them.

Definition 1.5.1. A sequence (i,) C M\(p, q) converges to i € M\(p, q) if for any
lifts u, of the u, and u of u, there are shifts 7,, such that

T Uy — u(S)

in M(p,q). (Recall that T - u(s) = u(s+7).)

The process of compactification

To compactify a topological space X one must first characterize (classify) the
ways in which sequences in X can fail to converge. Then one adds these missing
limits, 0X, to the original space and defines a new notion of convergence for X =
X [J]0X which extends the notion of convergence in X.

The standard example of this is the case X = R where sequences can diverge
to either +00 and one defines convergence in the compactification R = R][{#o00}
by defining open the neighborhoods of +oc.

1.5.1 Basic properties of negative gradient trajectories

Let u: R — M be a solution of
(1.5) Osu = =V, f(u).

We describe here some useful properties of negative gradient trajectories which will
help us build the compactification.

Lemma 1.5.2 (f decreases along u). If u is nonconstant and s; > sy, then

f(u(s1)) > f(u(s2)).

Proof.

flus) - fulss)) = — | "2 fu(s)) ds

51

= —/ dfu(s)(asu) ds

S1

_ —/S2g(vgf(u),85u) ds

S1

52
= / |0sul|? ds.
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O

Lemma 1.5.3 (Convergence to critical points). If lim, . u(s) = p, then p €

Crit(f).

Proof. By the proof of the previous lemma we have

tim [ ol ds = F(u(0) = fulp) < .

It follows that
lim ||0su(s)]| = 0.

§—00

Hence,
1IN0/ ()]l = lim [V, f (u(s))]| = lim 3,u(s)]| = o.

O

Lemma 1.5.4 (Exponential convergence to critical points). There is ane > 0
such that if lims_ o u(s) = p, then there are constants C > 0 and S € R (depending
on u) such that

d(u(s),p) < Ce  for all s > S.

Proof. The idea of the proof is very simple. For sufficiently large s the points
u(s) lie in a coordinate neighborhood of p where the vector field V, f is close to its
linearization at p. The linearized vector field is a representation of minus the Hessian
of f at p. Hence, any trajectory of the linearized vector field which converges to p
as s — oo must do so along the positive eigenspace of the Hessian at an exponential
rate which is bounded from below by the smallest positive eigenvalue of the Hessian.
It remains to show that similar estimates of convergence hold for the nearby vector
field. See [7] Lemma 2.10, for the details.

O

Lemma 1.5.5 (Convergence on compact subsets). Let (u,) be a sequence of
maps from R — M satisfying (1.5). For every R > 0 there is a subsequence (up,)
such that
Ck'
Un, |(~r.r) = Vli-.r)

where v also satisfies (1.5).
Proof. By the compactness of M it follows that the sequence of maps u, are uni-

formly bounded as are their kth-order derivatives. The lemma now follows directly
from the Arzela-Ascoli theorem. O
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Letting R — oo we can rephrase this last lemma by saying that any sequence
(uy,) of solutions of (1.5) has a subsequence which converges to a solution v of (1.5)
in the C¥ -topology, i.e.,
Clc
Up; 23,
It is important to note that the limit v is defined on all of R and hence belongs to
some M(p,q) by Lemma 1.5.3.

Lemma 1.5.6 (Cf -convergence in M(p,q) implies convergence). If a se-
quence (u,) C M(p,q) converges to v C M(p,q) in the Cf -sense, then u, — v
with respect to the usual topology of M(p, q)

Proof. e First we prove that u, converge uniformly to the points p and ¢q. That
is, for any neighborhoods U, and U, of p and ¢, respectively, there is an S > 0
such that for all n € N we have

un(s) e U, for s<—S

and
u,(s) € U, for s> 5.

It suffices to show that there is an S for which the second statement holds.
Assume that no such S exists, i.e., there is a sequence s, — oo such that
Un(sn) ¢ U, This implies that there is an € > 0 such that

(1.6) Vg f (un(sn))ll = €
Now, for any 6 > 0 we have

f(un(sn)) = f(q) = fun(sn)) — f(tn(sn +6)).

We will prove later that for sufficiently small § > 0

2

(1.7) F(un(s)) = F(un(sa +0)) 2 67

Since v € M(p, q) there is an sy such that

62

F(o(s0)) = Flo) = 6.

For sufficiently large n we have s, > sy and

62

f(un(s0)) = £(g) = f(un(sn)) = fla) = 6
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But this means that w,(so) cannot converge to v(s¢) which is contrary to our

assumption that (u,) converges to v in the CF -topology.

It remains to prove (1.7). First we note that the vector field V,f is globally
Lipschitz continuous. That is, there is a constant M > 0 such that

IV f (@) = IV W] < M - d(z,y).

Also we have for any u € M(p, q)

dulsuts) < " |0l ds

IN

52 1/2

(59 — 51)%/? (/ | 05ul]? ds) (by Hélder’s inequality)
51

= (53— 5)2(f(u(s1)) = f(u(s2)))? (see proof of Lemma 1.5.2)

< (52— 5)"2(f(0) — f(a))-
Putting these together, there is a constant ¢ > 0 such that for all n we have
(1.8) IV f (un(DI = IV f (un(su)) 1] < €+ |s = ]2
Now

Sn+0
f(un(sn)) = f(un(sn +6)) = / IV.f (un(s)II” ds.

By (1.6) and (1.8), for s € [s,, s, + 6] we have
IVyf (un(s)| > € = 612 > ¢/2

for sufficiently small ¢.

Hence,
2

f(un(sn)) = f(un(sn +90)) > 5%

as required.

The previous result allows us to obtain bounds for exponential convergence of
the u,, to their endpoints which are independent of n. In particular, there are
constants €, C, S > 0 such that for all n € N

d(u(s),p) < Ce® for all s < —S.

and
d(u(s),q) < Ce ™ for all s > S.
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e At this point, we can consider the convergence of u, to v on the intervals
(—o0, —S], [=S, S], and [S, 00). On the intervals (—oo, —S] and [S, 00) we have
exponential convergence to v which implies L?-convergence. On the compact
interval [—S, S] we have C*-convergence which also implies L?-convergence.

O

1.5.2 Failure to converge

Now let’s see what can happen to a sequence (1,) in M\(p, q). Consider a lifting of
this sequence (u,) C M(p,q). By Lemma 1.5.5, we can pass to a subsequence such
that

Ck
Uy -3 v
where v: R — M belongs to M(p',q') for some p',¢" € Crit(f). Since v(s) =
lim,, o0 up,(5) for every s € R we have

f@) < f(d) < f') < flp).

If p = p and ¢’ = ¢, then u, converges to v € M(p,q) by Lemma 1.5.6. In
this case, we would say that @, — 0. For example, this happens automatically if
there are no critical points r € Crit(f) with f(r) € [f(q), f(p)]-

On the other hand, it may very well happen that p’ # p and/or ¢ # q.
In this case, the sequence () C M (p,q) is divergent and its “asymptotic limit”
seems, at first glance, to be the element ¢ in the different moduli space M\(p’, q).
However, we will show that a different choice of lifting of the 4, leads to a limit
in a different moduli space. In fact, we will show that there are only finitely many
possible limits for lifts of the sequence (#,). Moreover, these limits can be assembled
to form a unique broken gradient trajectory which will be the right choice for
the “asymptotic limit” of the divergent sequence ().

To show that different lifts can have different limits let’s consider the case
p' # p. Without loss of generality, we may assume that this implies f(p’) < f(p). '
We can then choose f(p') < a < f(p) and a sequence of shifts 7, such that

f(un(m)) = a.

The sequence (7, - u,) is also a lifting of (4,). Again by Lemma 1.5.3, it
converges in the CF  topology to some w € M(p",q") for critical points p”,q" €
Crit(f) such that

fla) < f(@") < fO") < f(p)

!'We assume that the critical points of f have distinct critical values. This is a generic property.
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In fact, we will show that the f-values of w lie inside the gap between f(p)
and [(p').

Lemma 1.5.7. The choice of the shifts T, implies that
F') < flg") < ") < Fp).

Proof. Tt suffices to prove that f(¢") > f(p'). We first show that the sequence of
shifts 7,, goes to —oo as n — oo. If this is not true then there is an K € R such
T, > K for all n € N. By Lemma 1.5.2, this would imply that

f(7n - un(0)) = f(un(ma)) < f(un(K)).

But f(uy (7)) = a, and lim,_, f(u,(K)) = f(v(K)) < f(p'). This contradicts the
fact that @ > f(p'), hence the 7, are not bounded from below.

Now we prove that f(¢”) > f(p') by contradiction. If f(p') > f(¢") then there
exists an € > 0 and an s; € R such that

fw(so)) = f(p) — 4e.

We can also choose an s; € R such that
fo(s1) = f(p') — e

Since f(1, - un(so)) = f(w(so)) and f(u,(s1)) = f(v(s1)), there isan N € N
such that for all n > N

f (7o - un(s0)) < f(p') — 3¢
and

f(un(s1)) > f(p') — 2e.

In particular, this implies that
f(un(so — 1)) < flup(s1)) for all n > N.
By Lemma 1.5.2, we then have

So —Tp > S1

= Tn > S1— So

for all n > N. This contradicts the fact that the 7,, are not bounded from below. O
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Note that if there are no r € Crit(f) with f(r) € (f(p'), f(p)), then w €
M(p,p’). Otherwise, we can repeat this process to obtain lifts which converge to
gradient trajectories that fit in the remaining gaps. Since there are only a finite
number of critical points this is a finite process. Eventually we obtain a sequence of
limits {v;};=1, . where v; € M(rj,r;41) and the critical points

P=To, "1y Tpr1 = (¢

are all distinct. We then define the “asymptotic limit” of () to be the broken
trajectory:

(Do, D1, -+ ., 0x) € M\(p, r) X M\(ﬁﬂb) Koo X M\(rkaQ)‘

There is one remaining question to consider: Is the “asymptotic limit” of the
divergent sequence (1u,) unique? The following exercise implies that the answers to
this question is “Yes.”

——~

Exercise 1.5.8. Let (u,) and (ul,) be two lifts of a sequence (u,) € M(p,q). We
know that

Ck
U, ¥ veM@,q)
and
! ClkC ! 1! "
u, = v e M(@",q").

Suppose there exist numbers s,s" € R such that f(v(s)) = f(v'(s")). Prove that this
implies v = v'.

1.5.3 The compactification

At this point we can compactify M (p,q) by adding to it the broken trajectories

IMp,a)=  |J  Mp,r) x M(ri,ra) x - x M(ry, q)-

TLaeens rkECrit(f)
P,T1,..,T,q distinct

Then on the compactification

—~

M(p,q) = M(p.q) [JoM(p. 0)

we extend the notion of convergence (for sequences in M (p,q)) as follows.
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Definition 1.5.9. A sequence (4,) C M\(p, q) converges to
(@17 s 7{)]6) S M(p7 7"1) X M(TDTQ) X X M(rk,Q),

if for any lifts u, of U, and vj of v; , there are shift sequences (7, ;) such that
Ck'
Tn,j * Unp gc Uj
forj=1,... k.
This definition can be easily extended to sequences with elements in 8M\(p, q).

Our previous discussion implies that M (p, q) is indeed compact with this def-
inition, and Lemma 1.5.6 proves that this extends the usual notion of convergence

on M(p, q).

1.6 Gluing

The gluing theorem is, in essence, a converse to the compactness theorem. For
simplicity (and safety), we will state the gluing theorem for broken trajectories with
only one break. This suffices for the construction of the Morse complex.

Theorem 1.6.1 (Gluing). Let p,r, q be critical points of f such that f(p) > f(r) >
f(q) and u(p) > p(r) > p(q). There is a lower bound Ry > 0 and a smooth map

#: M(p,r) x M(r,q) x (Ry,0) = M(p,q)

such that

1. # induces a diffeomorphism

A~ e~ —~

#: M(p,r) x M(r,q) x (Ro,00) = M(p,q)
which is onto an open set in /T/l\(p, q)-

2. As R — oo, the sequence 7/9\&(171, U9, R) converges to the broken trajectory (v, 0s)
in the sense of Definition 1.5.9.

3. If the sequence (i) C M\(p, q) converges to (01,73), then the u, are in the
range of # for all sufficiently large n.

Exercise 1.6.2. Suppose pu(p) = 11(q)+2. Show that the Gluing theorem implies that

our compactification /T/l\(p, q) is a compact one-dimensional manifold with (possibly
empty) boundary.
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1.6.1 A brief outline of the proof

We will just describe briefly how the map # is constructed. The general idea is
to first use the broken trajectories to construct an approximate solution of the
negative gradient flow from p to ¢, and then show that there is a unique actual
solution corresponding to the approximate one.

We will not provide many details or verify the various properties of the gluing
map. A complete proof can be found in [7].

Step 1 : Pregluing

Given v; € M(p,r), va € M(r,q) and a large constant R > 0, we will construct
an approximate solution v;# v of the negative gradient flow from p to gq.

By Lemma 1.5.4, there is an R > 0 such that for each s > R we can write

vi(s) = exp, n(s)

for a unique 7(s) € T, M. Moreover, 7(s) depends C*-smoothly on s.
Similarly, we may write vo(s) = exp, &(s) for all s < —R.

Let 5: R — R, be smooth cutoff function, i.e. 5(s) =0 for s < 0 and §(s) =1
for s > 1. We then set

v1(s + R), s<—-R/2-1
i exp, (B(=5 — R/2(s + R), ~R/2—1<s < —R/2
vi#RrU2(s) =< T, —R/2<s<R/2
exp,(B(s — R/2)é(s+ R), R/2<s<R/2+1
vo(s — R), s> R/2+1.

Exercise 1.6.3. Show that UI#RUQ € B and that UI%LRUQ converges to the broken
trajectory (vy,ve) in the CF _-topology.

loc

Step 2

We now show that the approximate solutions Ul%éRUQ € B correspond to actual
solutions up € M(p, q) for sufficiently large R > 0.

Here is the basic analytic machinery. Let F': V' — W be a map of Banach
spaces whose Taylor expansion around 0 € V' is

F(z) = F(0) + DF(0)x + N(z).
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Lemma 1.6.4. Suppose that DF(0) has a finite dimensional kernel and a right
wnverse () such that

(1.9) QN (z) — @N )| < C(ll=[| + Iyl ]l= -yl

for some constant C' and all x,y in some ball B.(0) with radius ¢ < 1/5C. If
IQF(0)]| < €/2, then there is a unique xy € B(0) satisfying F(xy) = 0.

Intuitively, this result states that if DF'(0) is sufficiently large and F(0) is
sufficiently small, then there is a unique solution of F'(x) = 0 close to 0.

Proof. To prove this lemma we consider the map

vV o=V
r — —Q(F(0)+ N(x)).

Note that the fixed points of 1) correspond to zeroes of F'. That is,

w(x)zx = —Q(F(0)+ N(z)) ==
—(F(0) + N(x)) = DF(0)x
F(0) + DF(0)x + N(z) = 0.

It then suffices to show that ¢ is a contraction mapping on some open ball B.(0).

Claim 1. ¢: B.(0) — B.(0) for all ¢ < 1/5C.

14 (2)]]

|Q(F(0) + N(z))|
< QEO) + IN(2)]
< €/2+C¢
<

€.

Claim 2. 1 is contraction mapping on B.(0) for all € < 1/5C.

[9(z) =)l = QN(x) — QN(Y)]
< C2ef|lz -y
< 2/5]jz —yl|
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Let us now apply this result to construct the gluing map. Recall that ele-
ments of M(p, q) correspond to the inverse image F,'(Sg). Near our approximate

solution v1# zvs € B we have local coordinates ¢ in which F,(&) = (&, FJI#R” (€)).
The elements of M(p, q) close to vl%ész then correspond to zeroes of the vertical
component F) g”l%&RW. After much hard work, one can establish the estimates for the
right inverse of the vertical differential necessary to apply Lemma 1.6.4. We then

obtain a unique element up € M(p, q) close to v1# rve. This defines the gluing map
as follows

#(1’1702,3) = UR-

1.7 Orientations

The definition of the Morse boundary operator d, requires us to count the elements
of the zero-dimension moduli spaces M (p, q) with sign. These signs are determined
by comparing two orientations on these spaces. In particular, if these orientations
on 4 € M(p,q) agree, then @ is counted with a +1, otherwise it is counted with
a —1. One of the orientations is canonically determined by the flow. The other
orientation must then be chosen in such a way that opposite signs are given to the
broken trajectories which constitute the boundary of the same component of a one-
dimensional moduli space. This leads one to the notion of a coherent orientation for
the moduli spaces.

1.7.1 Fredholm operators and determinant line bundles

Let X and Y be finite dimensional real vector spaces. Here we adopt the following
notational convenience
Amax Y — AdimXX.

We then define the determinant of the (ordered) pair of vector spaces (X,Y’) to be
Det(X,Y) = (A" X) @ (A™*Y)".

Now, consider Banach spaces V' and W and the space F(V, W) of linear Fredholm
maps from V to W. For F' € F(V, W) we set

Det(F') = Det(ker F| coker F).

Suppose that B is a topological space and we are given a continuous map
[: B — F(V,W), i.e., a continuous family of Fredholm maps indexed by B. We
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can then form

Det(f) = [ J{b} x Det(f(b)).

beB

Proposition 1.7.1. Det(f) is a real line bundle over B.

This is somewhat surprising since the dimensions of vector spaces ker f(b) and
coker f(B) can vary wildly with b even though the index of f(b) is locally constant.
For a proof of this fact see the appendix in [3].

Definition 1.7.2. An orientation for the family of Fredholm operators given by
f: B— F(V,W), is a nonvanishing section of Det(f).

1.7.2 The relevant class of Fredholm operators

Let A~ and A" be nondegenerate self-adjoint operators on R™, and consider the set
operators

O(A~,AY) ={0, — A, | A, € End(R"), lim A, = A*}.

s —+oo

By Theorem 1.4.12, we know that each F' € O(A~, A™) is a Fredholm operator
from L3(R,R") to L*(R,R") with

ind(F) = —SF{A;} =dim(E"(A")) — dim(E*(A")).
In particular, ©(A~, A1) is a continuous family of operators in F(L}(R,R"), L*(R, R"))
indexed by the space of smooth curves in End(R") which converge to A% at +oo.

Lemma 1.7.3. ©(A~, A") is contractible.

Proof. Fix Fy € ©(A,A") and let F' be any element of ©(A~, AT). Then the
straight-line path F, = (1—7)Fy+7F connects Fy to F' within ©(A~, A™). Consider
the map

k:[0,1] xO(A,A%) — (4,4
(r,F) — F,.

Since k(0,-) = id and k(1,-) = Fp, it remains to show that  is continuous. This is
proved in [7] (Lemma 2.15). O

It follows from Lemma 1.7.3 that Det(©(A~, A™)) is trivial and so ©(A~, AT)
is orientable. To determine an orientation we just need to orient Det(F') for some
F € O(A~,A"). A choice of orientation for Det(O(A~, AT)) will be denoted by

B(A~, AT), in general, and by S(F) if it is induced by a choice of orientation for a
given F'€ O(A~, A™).
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Lemma 1.7.4. If A¥ = B~ then a choice of orientations f(A~, A") and 5(B~, BY),
determines a canonical glued orientation 3(A~, AT)#3(B~,B") on O(A~, B*).
Moreover, if AT = B~ and B* = C~, then this canonical orientation is associative
in the following sense

(B(A™, AN)#B(B~, BY)) #8(C~,C") = B(A™, AT)# (B(B~, BH#B(C~,CT)) .
Proof. Choose F = 0;— A, € O(A™, A") and G €= 0; — B, € ©(B~, B") such that

A — A~ fors < -1
S AT, for s > 1.

and
B — B, fors< -1
* | BT, fors>1.

For R > 1 we can glue these operators to form
F#rG =0,—C, € ©(A~,B")
where
o= Agig, for s <0
s B,_r, fors>0.
It then suffices to prove that there is a canonical isomorphism

(1.10) Det(F) ® Det(G) ~ Det(F#rG).

More precisely, the given orientations 3(A~, A*) and §(B~, B*) induce orientations
B(F) and B(G) of Det(F') and Det(G), respectively. By (1.10), this would give a
canonical orientation on Det(F# pG) which determines the desired glued orientation

B(A~, AV)V#B(B~, B*) on O(A -, BY).

We omit the full proof of (1.10), and only briefly discuss the case when F' and
G are surjective. Under the surjectivity assumption, (1.10) becomes

A" ker(F#rG) ~ A" ker(F) ® A" ker(G).
Using the canonical isomorphism
(APRF) @ (AMXR!) o AMAXREH
it suffices to show that

ker(F') x ker(G) ~ ker(F#rG).
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One can easily define a monomorphism
dr: ker(F) x ker(G) — ker(F#rG).

by gluing together elements in ker(F') x ker(G) in the obvious way.
Since ind(F#xG) = ind(F) + ind(G), when F' and G are surjective we have

dim(ker(F#rG)) > dim(ker(F)) + dim(ker(G)).
One can then prove that ¢ is onto by showing that when R is sufficiently large
dim(ker(F#rG)) < dim(ker(F)) + dim(ker(G)).

The proof of this fact can be found in [7], Proposition 2.50. The central observation
is that as R — oo the restriction of u € ker(F#rG) to (—o0,0) converges (after
translation) to an element of ker(F'). O

1.7.3 Coherent orientations for our moduli spaces

——~

We first will describe how to orient each of the moduli spaces M(p,q). Then we
describe the notion of a coherent orientation for the collection of moduli spaces

——

Up g€Crit(f) M(p, q). Finally we prove that a coherent orientation exists.

Orienting a fixed moduli space M\(p, q)

Recall that
M(p,q) = M(p,q) x R.
Hence, it suffices to orient the moduli spaces M(p, q).

Each M(p,q) corresponds to the inverse image F,'(Sg). Near each v €
M(p,q) we have local coordinates £ in which Fy(§) = (&, F;/(£)). The elements
of M(p,q) close to v then correspond to zeroes of the vertical component F; and
we have

T, M(p,q) = ker(Dy).

Since Dy is surjective for our choice of generic g, we also have
A" ker(Dy) ~ Det(Dy),

and so an orientation of Det(Dy) determines an orientation of T, M(p, q).
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Given v € M(p,q) we have a trivialization ¢,: v*TM — R x R" so that in
this trivialization D) has the form 05 — Ay where

lim A, =A, and lim A; = A,.

§—>—00 §—00

In other words, we can consider Dy as an element in ©(A,, A4;). Let us then fix
an orientation J(A,, A,) for O(A4,, A;). Together with the trivialization ¢,, this
determines an orientation for 7, M(p, q).

Proposition 1.7.5 ([7], §3.2.1). Given any u € M(p,q) there is a trivialization
Gu: wTM — R x R such that ¢,(—00) = ¢,(—00), ¢u(00) = £6,(c0) and the
operator Dy transforms to an element of ©(A,, A,).

Remark 1.7.6. If the manifold M is orientable, then these trivializations can be
obtained in a canonical way and will always satisfy ¢, (00) = ¢, (00). More precisely,
we only have ¢ (0) = —¢,(c0) if the bundle (u - v=')*TM is an n-dimensional
Moébius band, i.e. wy((u-v™")*TM) # 0.

The trivializations described by Proposition 1.7.5, determine orientations for
each tangent space T, M(p, q). The following result implies that these fit together
to form an orientation of M(p, q).

Lemma 1.7.7 ([7], Lemma 3.8). Let ¢, and ¢!, be trivializations as in Proposition
1.7.5. Then they determine equivalent orientations for T, M(p, q).

To summarize, if we fix a trivialization ¢, for some v € M(p,q), we can
associate to this moduli space the model space of Fredholm operators ©(A,, A,).
Moreover, an orientation [(A,, A,) of this model space yields an orientation for
M(p, q). For each u € M(p, q) we will denote this induced orientation of T, M(p, q)

by B(u).

Coherent orientations for the M(p, q)

To the collection of moduli spaces

U Mmoo

p,qeCrit(f)

we can associate a collection of model spaces

U o4,

p,q€Crit(f)
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Definition 1.7.8. A collection of orientations B(A,, A,) for the ©(A,, A,) is said
to be coherent if the glued orientation B(A,, A, )#5(A,, A,) agrees with 5(A,, A,)
for every r € Crit(f).

Theorem 1.7.9. Coherent orientations always exist.

Proof. To show that a coherent orientation of the ©(4,, A,) exists we construct one.
First we fix a p, € Crit(f) and choose an orientation [(A,,, Ay,) for ©(A4,,, A,,).
Then we choose orientations §(A,,, 4,) for the spaces of the form ©(4,,, A,).

We claim that the coherence condition then determines the remaining choices of
orientations. In particular, the orientations of the spaces ©(A4,, A,,) are determined
by the condition

ﬁ(Apoa Aq)#ﬁ(Aq’ Apo) = ﬁ(Apoa Apo)-
Finally, the the orientations of the spaces O(A,, A,) are determined by the condition

5(Ap0, Ap)#ﬁ(Apa Aq)#ﬁ(Aqa Apo) = B(Apoa Apo)'

1.7.4 Canonical orientations

For u(p) — p(q) = 1, the moduli space M(p, q¢) comes with a canonical orientation.
To see this note that for v € M(p, q) we have

T, M(p,q) = ker(Dy).
Since, Dy is surjective and one-dimensional, we also have

Det(Dy) ~ ker(Dj).

But B B B B
D;(U) = V0 + VU(ng(U)) =V,v — Vv =0.

Hence, © spans ker(Dy) and determines a canonical orientation a(v) for T, M(p, q).

1.7.5 Geometric orientations

When the manifold M is itself orientable, one can define coherent orientations in
the geometric version of the Morse complex as follows.
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Choose an orientation for M and all the descending manifolds D(p). By the
transversality condition D(p) M A(q) these choices determine orientations on all the
ascending manifolds. This, in turn, yields noncanonical (geometric) orientations for
the intersections

M(p,q) = D(p) N Alq).
These noncanonical orientations satisfy the following coherence condition.

Proposition 1.7.10. The gluing map #: M\(p, r) X M\(r, q) X (R,00) — M\(p, q)
1S orientation preserving.

This implies that the ends of one dimensional moduli spaces M\(p, q) appear
with opposite signs. For a proof of this see [1] (Proposition 2.7).

In Appendix B of [7], Schwarz shows that these geometric orientations can be
extended to a coherent orientation in the sense of Definition 1.7.8.

1.8 The invariance of Morse homology

Given generic data (f, g) we have constructed the Morse complex (C.(f), d,). In this
section we prove that the corresponding Morse homology H M., (f, g) is independent
of the data. More precisely, we prove

Theorem 1.8.1. For two generic data pairs (fi,g1) and (fa, g2), the Morse homol-
ogy HM.(f1,91) is canonically isomorphic to HM,(fs,g2).

In other words, the Morse homology is an invariant of the manifold which we denote
by HM,(M).

To prove Theorem 1.8.1, we will use a homotopy from (f;, g5) from (fi, g1) to
(f2, g2) which satisfies

_ (fl)gl)7 Sg_l
(for 90) = { (f2,92), s> 1.

One approach would be to try and keep track of the Morse complexes (C,(f5), 9y,)
as s goes from —oo to co. In particular, it follows from standard singularity theory
that there is a homotopy f; such that the number of elements in Crit(fs) changes
at only finitely many values of s at which standard “birth” or “death” bifurcations
take place. Moreover, one can choose the homotopy (fs, gs) such that the geometric
transversality condition also fails at only finitely many values of s and in a standard
way. Between these critical values of s, the homology HM,(fs), gs) can easily be
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shown to be constant. One can then use the normal forms for the changes in the
complex (C,(fs), 0y,) which occur as one passes through a critical value of s to show
that the homology again remains constant. Floer’s original work on Floer homology
for Lagrangian intersections, [2], follows this strategy which is commonly referred
to as “bifurcation analysis”. For more recent applications of this approach see, [8],
for example.

We will use the more popular (and elegant) “Floer-Conley continuation” ar-
gument to prove Theorem 1.8.1.Here as an outline of this method.

Step 1.

First one uses the homotopy (fs, gs) to construct a map
oo Cu(f1) = Cu(fa),
and proves that o, is a chain map, i.e.,
(1.11) 0g, © 021 = 091 0 O, .
From this, it follows that 09; induces a homotopy homomorphism

0921 HM*(flagl) — HM*(f2,92)-

In the case when (f1,91) = (f2, 92) and (fs, gs) is constant it will follow easily
that o11: Ci(f1) — C.(f1) is the identity map.

Step 2.

Next, one considers two homotopies (fs, gs) and (ﬁ,ﬁs), and shows that the
corresponding chain maps o, and o, are chain homotopic. That is, there is a map

K: C(fi) = Cu(fo),
such that
(112) 0'21—621 :8920K—{—K0891.

This implies that o9; and 03; induce the same homomorphism at the homology level.
We denote this homomorphism by oy;.

Step 3.

We then prove the following composition rule for homotopy homomorphisms

031 = 032 0091.
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The maps 09; and K from Steps 1 and 2, are constructed using different moduli
spaces. The required algebraic relations (1.11) and (1.12) are equivalent to the fact
that the signed sum of the boundary components of the one-dimensional moduli
spaces is zero. Step 3, follows from a gluing theorem.

With this machinery we can now prove Theorem 1.8.1. From the composition
rule we have
011 = 012 0021

Since oy; is the identity homomorphism (see last comment in Step 1), we see that
091 must be injective. Similarly, the fact that

O92 = 021 © 012,

implies that g is surjective.
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