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Abstract

These are informal lecture notes for a topics course that was taught
at UC Berkeley in Fall 2002. Floer theory (for which Morse homology
is a prototype) and pseudoholomorphic curves and their applications
to low dimensional and symplectic topology are currently the subject
of a lot of active and exciting research. The basic goal of this course
was to introduce some of the fundamental ideas which should prepare
and inspire one to understand what workers in this field are doing
and why, and perhaps even begin new research in this area. We gave
an introduction to some of the technical machinery which is needed,
while referring to other sources for details of the analysis. We explored
some of the frontiers of (at least the author’s) knowledge.

The first part of the course covered Morse theory as a prototype
for Floer theory. Unfortunately (but not too surprisingly), T only
had time to write detailed notes for this part of the course. The
second part of the course gave an introduction to pseudoholomorphic
curves in symplectic manifolds, and the third part of the course gave a
(sometimes quite sketchy) discussion of Floer theory. The last chapter
of these notes gives a brief outline of these last two parts of the course,
with references to some starting points for further reading on these
topics.

I thank all of the participants of the course for their enthusiasm
and comments and questions.
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Introductory remarks on Morse theory

We begin with a brief overview of Morse theory in order to introduce what
we will be doing and how it fits into the bigger picture. Like many “intro-
ductions” to mathematical works, this is easier to understand if you already

know some of what follows — and we sometimes use terminology which we
will not begin defining until the next section — so you might want to refer
back to it later.

Let X be a finite dimensional compact smooth manifold, and f: X — R

a smooth function. In Morse theory, one often but not always assumes that

the critical points of f are nondegenerate, and relates the topology of X to
the critical points of X.

There are two basic approaches to Morse theory.

1.1 The classical approach: attaching handles

The classical approach [46] is to define

X, = {z € X | f(2) < a},



where a € R is not a critical value of f, and study how the topology of X,
changes as @ increases. One can show that if there are no critical values in
the interval [a,b], then X, is diffeomorphic to X,. If, say, f~'[a,b] contains
a single critical point of index 7, then up to diffeomorphism, X} is obtained
from X, by attaching an i-handle. This has three important applications:

1. This leads to the Morse inequalities, which are lower bounds for the
numbers of critical points of f of each index in terms of the ranks
of the homology groups of X. Namely, if all critical points of f are
nondegenerate, if ¢; is the number of critical points of index 7, and b;

is the rank of H;(X), then
¢ — o1 Cig— o+ (=1)eg > by — by + by — -+ (=1)by (1)

for all . Without the assumption of nondegenerate critical points,
there are techniques such as Lusternik-Shnirelman theory to establish
weaker inequalities for arbitrary f, and there is also Morse-Bott theory
for functions f with “nondegenerate critical submanifolds” which we
will discuss later.

2. One can generalize this to certain functionals on certain infinite dimen-
sional manifolds, particularly the energy functional £ on the free loop

space .ZX := {~: 5" = X7} of a Riemannian manifold X, defined by

Bo) = [ o

whose critical points are the closed geodesics. This leads to existence
theorems for closed geodesics, such as the famous result that for any
metric on S? there exist at least three closed geodesics. One can also
turn this around and determine the topology of the loop space of a
manifold whose geodesics one understands; this approach was used in
the original proof of Bott periodicity [8]. There are also relations be-
tween curvature and Morse theory of geodesics which lead to relations
between curvature and topology.

3. Understanding finite dimensional smooth manifolds in terms of attach-
ing handles is the basis for constructive methods for proving that man-
ifolds are diffeomorphic.



(a) This lies at the heart of the h-cobordism theorem and the proof
of topological Poincare conjecture in dimensions greater than four
[47]. For example one step is the Smale cancellation lemma, which
asserts that if f has critical points p and ¢ of index ¢ and 7 + 1
with f(p) < f(q), if there are no critical values in the interval
(f(p), f(q)), and if the attaching sphere for the handle correspond-
ing to g goes exactly once over the handle corresponding to p, then
one can modify f to cancel the critical points p and ¢. If one can
cancel all critical points except the minimum and maximum of f,
then X must be homeomorphic to a sphere.

(b) There is also the Kirby calculus [37, 38, 26] which is used to ex-
plicitly describe three and four-dimensional smooth manifolds and
show directly that different manifolds are diffeomorphic.

1.2 A newer approach: gradient flow lines

In these lectures we will focus on a second, newer approach to Morse theory.
In this approach one introduces an auxiliary Riemannian metric ¢ on X.
One then considers the negative! gradient vector field of f with respect to
g, which we denote by V. One then looks at flow lines of the vector field
V' which start at one critical point and end at another. If the metric is
generic, then there are finitely many gradient flow lines from a critical point
of index 7 to a critical point of index 2 — 1. One then defines a chain complex
CMerse( £ g) over Z, the Morse complex, whose chain group C; is generated by
the critical points of index 7, and whose differential counts gradient flow lines
between critical points of index difference one. A fundamental result is that
the homology of this chain complex is canonically isomorphic to the singular
homology of X. Roughly speaking, the isomorphism from Morse homology to
singular homology sends a critical point to its descending manifold; this has

appeared in various forms in many papers?. One easily deduces the Morse

!The negative gradient, as opposed to the positive gradient, fits in better with the
classical approach above, but sometimes leads to annoying signs.

?The Morse complex has a confusing history. An essentially equivalent complex was
described in Milnor’s book on the h-cobordism theorem [47], but not in the language of
gradient flow lines; and there were earlier suggestions by Thom [67] and Smale [64]. But
in the form described above, the Morse complex was introduced to a large audience by
Witten [70], who obtained it (over R) from a radical approach inspired by supersymmetry,
as a limit of deformed Hodge theory in which the de Rham differential d is replaced by



inequalities from this: there have to be enough critical points to generate the
homology.

The significance of the language of gradient flow lines is that, as realized
by Floer [16, 18, 17], it extends to important infinite dimensional cases where
the classical approach is useless®. These are cases where the critical points
have infinite index, so that passing through a critical point does not change
the topology of the manifold X,. However sometimes the index difference be-
tween two critical points is still finite, in that one can make sense of “gradient
flow lines” between two critical points, and these form a finite dimensional
moduli space. One can then define an analogue of Morse homology, called
Floer homology.

The relation of the Floer homology to the topology of the infinite dimen-
4. However Floer homology is typi-
cally associated to some finite dimensional manifold, e.g. as its loop space, or

sional manifold X is somewhat unclear

to some more complicated finite dimensional object, and the Floer homology
has topological significance for the finite dimensional object. There are many
interesting examples of Floer theory, but in order not to stray too far from
our current topic of Morse homology, we will save these for later.

In the finite dimensional case, it is possible to describe topological notions
other than just homology, such as Reidemeister torsion and the Leray-Serre
spectral sequence, in terms of gradient flow lines, and these then have Floer
theoretic analogues. There are also new constructions in Floer theory, such
as the “quantum product” in symplectic Floer theory [51], which do not®
have analogues in classical topology.

e~tfde!f and t — co. This is a remarkable way to establish the isomorphism between
Morse homology and singular homology (over R), and was made rigorous by Helffer and
Sjostrand. See [9] for a nice survey.

3The book [56] gives a detailed technical treatment of Morse homology with an eye
towards Floer-theoretic generalizations.

4This matter is discussed in [13]. Also, for some versions of Floer theory, the analogy
with Morse theory of a function on a space begins to break down. For example symplectic
field theory is like the Morse theory of the symplectic action functional on the loop space,
except that there can be several loops which fuse and separate in a “gradient flow line” or
pseudoholomorphic curve.

5Tt is possible to construct the cup product in finite dimensional Morse theory in a way
which relates to the quantum product much like the way that Feynman diagrams relate
to string theory [7]; but this is not a direct translation as in the preceding sentence, where
one type of “gradient flow line” is replaced by another.



1.3 Comparison of the two approaches

To summarize, let us briefly describe how the Floer-theoretic approach com-
pares with the three basic applications of the classical approach from §1.1.

1. Both approaches establish the Morse inequalities, and while the newer
proof of the Morse inequalities seems more elegant, the two proofs have
roughly the same content.

2. Roughly speaking, from an analytic point of view, the classical ap-
proach extends to infinite dimensional settings in which the gradient
flow equation is parabolic, while the Floer-theoretic approach extends
to cases where the gradient flow equation is elliptic.

3. Floer homology is generally used as an invariant to tell spaces apart.
However it is very intereting to ask if it can lead to constructive results.
For example, is there a Smale cancellation lemma in Floer theory? This
question has been considered by Fukaya [22] and in a different form by
Taubes [65].

2 The definition of Morse homology

2.1 Morse functions

Let X be a smooth (finite dimensional) manifold, say closed for now, and
f: X — R asmooth function.

A critical point of f is a point p € X such that df, =0:T,X — R. We
let Crit(f) denote the set of critical points of f.

If p is a critical point, we define the Hessian H(f,p) : T,X — T X as
follows. Let V be any connection on T'X, and if v € T, X, define

H(f,p)(v) = V. (df).

This does not depend on the choice of connection V because df vanishes at p
and the difference between any two connections is a tensor®. If z;,..., z, are

“Here is another way to see why if s is a section of a vector bundle £ — X and s(z) = 0
then the derivative Vs : T, X — FE, is well defined, as this is an important point which
we will need later. Tet us write £ = {(z,e) | e € Ey}, and let 7 : E — X denote the
projection. Let T' = {(x,s(x))} denote the graph of s. Then at any point (z,s(z)) € T,



local coordinates for X near p, then with respect to the bases {9/0z;} and
{dx;} for T,X and T;X, the Hessian is given by the matrix (0*f/0x;0x;).
Since this matrix is symmetric, if we use a Riemannian metric to identify
T,X ~ TrX, the Hessian becomes a symmetric bilinear form on T, X, or a
self-adjoint map T, X — T, X.

The critical point p is nondegenerate if the Hessian does not have zero
as an eigenvalue. In this case we define the Morse index ind(p) to be the
number of negative eigenvalues of the Hessian.

It is easy to see that a nondegenerate critical point is isolated. Moreover,
although we will not really use this, the Morse lemma asserts that if p is
a nondegenerate critical point of index i, then there exist local coordinates
x1,...,2, for X near p such that

f=fp)—al——aital, 4t

The function f is Morse if all of its critical points are nondegenerate.
One can show that a generic smooth function on X is Morse. We will later
do a systematic study of how to precisely formulate and prove such genericity
statements.

2.2 The gradient flow

Let g be a metric on X, and let V' denote the negative gradient of f with
respect to ¢g. The flow of the vector field V' defines a one-parameter group of
diffeomorphisms ¥, : X — X for s € R with Uy =id and d¥,/dt = V.

If p is a critical point, we define the descending manifold

P(p) := {x €exX

nmng):p}

S—r—00

and the ascending manifold

o (p) = {x eX

the map 7. : Tiy s(o))l" = T X is an isomorphism, because 7o s = idx. If s(x) = 0, we
define

nmng):p}.

s—+o00

Vs ToX ™5 T 00 C Tpo) B = ToX & Ey — B

The key point is that there is a canonical identification T(; oyE = T, X & E, because
T X includes into Ti; o) F as the tangent space to the zero section. A connection V is an
extension of this (satisfying some restrictions) to an identification Ty =T, X @ F, for
all (z,e) € E, but such an identification is not canonical except when e = 0.



(These are sometimes also called the “unstable manifold” and “stable mani-
fold”, respectively, of the flow V.)

If p is a nondegenerate critical point, then Z(p) is an embedded open disc
in X with dimension

dim Z(p) = ind(p).
In fact, the tangent space T,2(p) C T,X is just the negative eigenspace
of the Hessian H(f,p). Likewise, &7 (p) is an embedded open disc with the

complementary dimension
dim 7 (p) = dim(X) — ind(p).

We refer to [1] for the proof”.

We assume for the rest of this section that the pair (f,¢) is Morse-
Smale: namely, f is Morse and for every pair of critical points p and ¢, the
descending manifold Z(p) is transverse to the ascending manifold 7 (q). We
will see later (maybe) that this condition holds generically.

If p and ¢ are critical points, a flow line from p to ¢ is a path v : R — X
with 7/(s) = V(y(s)) and lims,_oo ¥(s) = p and lims 4o v(s) = ¢. Note
that R acts on the set of flow lines from p to ¢ by precomposition with
translations of R. We let .# (p, ¢) denote the moduli space of flow lines from
p to g, modulo translation. We can identify

A (p,q) = 2(p) N (q)/R,

where R acts on X by the flow {U,}. In particular, the Morse-Smale condi-
tion implies that .# (p, ¢) is naturally a manifold with

dim.#(p, q) = ind(p) — ind(q) — 1 (2)

(except in the case p = ¢, when the R action is trivial, where dim .Z (p, p) =
0)

8

When p # ¢, we orient .Z(p,q) as follows®. For each critical point p,

choose an orientation of the descending manifold Z(p). At any point in the

“This is more or less obvious if one chooses the metric near the critical points to be
Euclidean in a coordinate chart given by the Morse lemma. This assumption is sometimes
made in the literature in order to simplify various technical arguments. However this
condition is not generic, as the eigenvalues of the Hessian are all distinct for a generic
metric.

8This convention follows [54]. There are other ways to do this which are more abstract
and possibly nicer but also more difficult to work with. We we will see a very slightly
more elegant version when we study Morse-Bott theory.



image of v, we have an isomorphism, canonical at the level of orientations®,

T9(p)=~T(Z(p) N (q)) & (TX/T(q)) )
~ Tyl (p,q) & Ty & T,7(q).

The isomorphism in the first line comes from the Morse-Smale transversality
assumption; the isomorphism (Z(p) N/ (q)) ~ T,.# (p,q) & T~ holds by (2),
and the isomorphism TX/T</(q) ~ T,Z(q) is obtained by translating the
subspace T,2(q) C T, X along v while keeping it complementary to T'.<7(q).
We orient .# (p, q) so that the isomorphism (3) is orientation-preserving.

2.3 Compactification by broken flow lines

When ind(p)—ind(q) = 1, the moduli space .# (p, ¢) has dimension zero, and
we would like to count the points in it. For this purpose we need to know
that .# (p,q) is compact. This follows from the following general fact.

Recall that a smooth manifold with corners is a second countable
Hausdorff space'® such that each point has a neighborhood with a chosen
homeomorphism with R"=* x [0, 00)* for some k, and the transition maps
are smooth.

Theorem 2.1 If X is closed and (f,q) is Morse-Smale, then for any two
critical points p,q, the moduli space .# (p,q) has a natural compactification

to a smooth manifold with corners .# (p,q) whose codimension k stratum is

A (p,q), = U My )X A (r1,79) XXM (11, 71) X A (T, Q).
1y, €Crit( f)
DyT1y .- sTkyq distinct
When k =1, as oriented manifolds'' we have
04pq) = |J ()M (pr) < (r,q).
reCrit(f)

p,q,r distinct

9That is, there are lots of choices involved in defining this isomorphism, but any two
isomorphisms that result will differ by an automorphism of positive determinant.

10The “second countable” and “Hausdorff” conditions are the same conditions one makes
in defining an ordinary manifold in order to rule out the long line and other strange beasts.

1For now we will omit the calculation of signs like this. Generally the fact that the sign
behaves in a uniform way is more important than what the actual sign is. For example
if equation (4) held with a global minus sign then we would still get 92 = 0 below. The
paper [19] describes a general procedure for showing that “coherent orientations” exist,
where the signs behave in a sufficiently uniform way to give 8% = 0 etc.

10



For example, if ind(p) =7 and ind(q) = 7 — 1, then .#(p, q) is compact.

If ind(q) = 1+ — 2, then .#(p,q) has a compactifaction .#(p,q) which is a
compact 1-manifold with boundary

0.4(p,q)= |J  Apr)xa(r,q). (4)

reCrit;—1(f)

Note that by (2), a critical point r can arise here only if its index is ¢ — 1;
because .# (p,r) # () and p # r implies that ind(r) <i—1, while . (r,q) # 0
and r # ¢ implies ind(r) > 17 — 1.

Theorem 2.1 and many variants and infinite dimensional generalizations
thereof comprise the technical cornerstone of Floer theory. The proof has
two main parts. The first part is a compactness result asserting that any
sequence of flow lines in .#(p,q) has a subsequence that converges in an
appropriate sense to a “broken flow line” in .#(p, q), for some k > 0. The
second part is a “gluing theorem” which asserts that any broken flow line
in .#(p,q), can be perturbed to an honest flow line in .#(p, q), and these
perturbations are parametrized by (R, o0)*, such that taking one of these
gluing parameters to infinity corresponds to breaking the flow line at one of
the k intermediate critical points rq,...,7rz. One also has to check that the
orientations work out. We will go into more details of some of this later.

The basic idea to remember is that in favorable cases, one can compactify
moduli spaces of flow lines into compact manifolds with corners by adding
in suitably “broken” flow lines. (In unfavorable cases, there are issues such
as “bubbling” which make compactification more complicated.)

2.4 The chain complex
We define the Morse complex (CMerse( f ), gMor=¢) as follows. Let Crit;(f)

denote the set of index ¢ critical points of f. The chain module C; is the free
Z-module generated by this finite set:

CMe(f,g) == Z Criti( f).

The differential OM°™* . C; — C,_; counts gradient flow lines. That is, if
p € Crit;(f), then

MNe(p) = > #Mpg) g

q€Crit;—1(f)

11



Here #.7 (p,q) € Z denotes the number of points in .# (p, q), counted with
the signs given by the orientation on .Z (p, q).

Lemma 2.2 (gMors¢)? = 0.

Proof. This follows immediately from (4), because the boundary of a compact
oriented 1-manifold has zero points counted with sign. More precisely, if

p € Crit;(f) and g € Crit,_a(f), then

<(al\/[orse)2p7 q> — Z <81\/Iorsep7 T> <al\/[0rser7 q>

reCrit;—1(f)

:# U %(pvr)X%(rvcﬁ

reCrit;—1(f)

= #0.4(p,q)
—0.
O

We define the Morse homology HM™¢(f, ) to be the homology of the
chain complex (Ci\/lorse(ﬁ 9), aMorse)‘

Example 2.3 Let X = T2, let f be the height function for an embedding of
T? into R? in which the torus is “standing on end”, and let g be the metric
induced by the Euclidean metric. The height function f is Morse and there
are four critical points: one minimum of index 0, two saddles of index 1, and
one maximum of index 2. The pair (f,¢) is not Morse-Smale, because there
are two flow lines from the upper saddle to the lower saddle. However these
will disappear if we perturb ¢ slightly. Then 9M°™¢ = 0, because for each
saddle, there are two flow lines from the maximum which have opposite signs
and cancel, and two flow lines to the minimum which also have opposite signs
and cancel. Therefore HMorse ~ 7, [IMerse ~ 7.2 and H)oe ~ 7.

Example 2.4 Suppose f is a Morse function on S? with two maxima z,, 2,
one saddle y, and one minimum z. Then for any metric g, the pair (f,g) is
Morse-Smale, and for suitable orientation choices we have

aMorse(xl) — _aMorse(xz) =y,
aMorse(y) = 0.

Therefore HMerse ~ 7, [IMerse — (0, and H)"°™¢ ~ 7.

12



Exercises for §2.

1. Let {7,} be a sequence of flow lines from p to ¢, and let ¥ = (4o, ..., %) be
a k-times broken flow line from p to ¢; that is, there exist distinct critical
points rg, ..., rk41 With rg = p and rr41 = ¢ such that 4; is a flow line from
r; to ripq for i = 0,... k. Let us say that lim,_..[v,] = [¥] if for each n
there exist real numbers s, 0 < 5,1 < -+ < 85, 1 such that v, (s,; + ) = %
in C'* on compact sets.

Show that any sequence of flow lines {v,} from p to ¢ has a subsequence
which converges to some k-times broken flow line as above for some k& > 0.

3 Morse homology is isomorphic to singular
homology

We will now prove the following theorem, which is one of the most funda-
mental facts about finite-dimensional Morse theory.

Theorem 3.1 If X is a closed smooth manifold and (f,q) is a Morse-Smale
pair on X, then there is a canonical isomorphism

Y™ (f,g) ~ H.(X).

3.1 Outline of the proof

The idea of the proof of Theorem 3.1 is simple. We define a chain map
D . CMerse 5 (0, (X)) by sending a critical point to its descending manifold.
We define a map A : C,.(X) — CMerse by taking a simplex, flowing it via V/,
and taking the sum of the critical points that it “hangs on”. Then Ao D
equals the identity on the chain level. On the other hand, D o A is chain
homotopic to the identity; the chain homotopy sends a singular chain to its
entire forward orbit under the flow V.

To make this rigorous, we will use various compactifications by broken
flow lines. But first, we need to decide what we mean by C.(X), and there
are various approaches to handling the technicalities. Here we define C,(X)
as follows. We say that an i-simplex o : A; — X is generic if ¢ is smooth
and each face of o is transverse to the ascending manifolds of all the critical
points of f. We let C;(X) denote the subspace of the set of all i-dimensional

13



currents'? on X generated by generic i-simplices. Standard arguments show
that the homology of C;(X) so defined is canonically isomorphic to H.(X)
as defined say by the Eilenberg-Steenrod axioms.

3.2 The chain map via compactified descending mani-
folds

To carry out the program outlined above, we start by defining a compacti-
fication of the descending manifold Z(p) of a critical point p. The proof of
the following proposition is similar to the proof of Theorem 2.1.

Proposition 3.2 Z(p) has a natural compactification to a smooth manifold
with corners Z(p), whose codimension k stratum is

.@(p)k: U %(p,ql) X%(q17q2) N X%(Qk—la(ﬁc) % -@(Qk)
ql,...7Qk€CI‘it(f)
Pyqis. .., qr distinct

When k =1, as oriented manifolds we have

07(p)= | (=)™ 7 (p q) x 2(q).

g€Crit(f)
pZq

The maps Z(p), — X given by projecting to Z(q) C X patch together to a
smooth'® map

e: Z(p) — X
extending the inclusion Z(p) — X.

Example 3.3 Define f:[—1,1]" = R by

n

1

flan, ) =5 » (@it 1) (2= 1)

=1

12The approach here is basically taken from [34], except that here we use currents instead
of modding out by “degenerate singular chains”. What we are doing here is different from
the elegant treatment of Morse theory via currents in [29], which uses more general currents
but makes additional assumptions on the gradient flow.

13T think this smoothness claim is OK but I need to check it, hopefully later.

14



and let g be the Euclidean metric. (If you like, include X into a closed
n-manifold and extend f and g arbitrarily.) Then

n

—Vf== (@i Dl — 1).

=1

Thus f has a critical point of index k at the center of each k-face of the cube,
and no other critical points. The descending manifold of a critical point is
the interior of the corresponding face.

The compactified descending manifold of a critical point is diffeomorphic
to a “fully truncated k-cube”. If & = 2, its boundary is an octagon. If
k = 3, its boundary is a polyhedron whose faces consist of 6 octagons, 12
quadrilaterals, and 8 hexagons.

Remark 3.4 One can show in general that Z(p) is homeomorphic to a
closed ball, of course of dimension ind(p). Hence the compactified descending
manifolds %, together with the maps e : % — X, give X the structure
of a CW-complex, with one i-cell for each critical point of index ¢. There are
softer ways to see that a Morse function gives a CW-structure with one cell
for each critical point; however the approach above shows that the metric

gives a CW-structure more canonically.

Now the compact oriented manifold with corners Z(p) has a fundamental

current {@(p) and we define

9

D(p) = e {9(19) -

Note that D(p) € C.(X), because by the Morse-Smale assumption, we can
compatibly triangulate all the descending manifolds using generic simplices
by induction on the dimension.

Lemma 3.5 D is a chain map: 0D = DoMorse,
Proof. Let p € Crit;(f). By Proposition 3.2 we have

07(n) = |J (=) 2 (p,q) x Z(q).

g€Crit(f)
pZq
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Therefore

oD(p) = Y (=) [ Z(pg) x F(q)| € Cia (X).

g€Crit(f)
pZq

Now if ind(q) > ¢ — 1, then .#Z (p, q) is empty by the Morse-Smale condition,
while if ind(¢) < ¢ — 1, then the contribution on the right hand side is zero
in C;_1(X), because e maps . (p,q) x Z(q) to the support of D(q), which
is a current of dimension < ¢ — 2. Therefore

aD(p) = > #M(p.q)-e. {%}

q€Crit;—1(f)

=D ().

3.3 The left inverse chain map

If o is a generic i-simplex and ¢ is a critical point, let .# (o, q) denote the
moduli space of gradient flow lines from o to ¢, i.e. maps vy : [0,00) — X
such that v(0) € o and 7/(s) = V(v(s)) and lims_oo y(8) = ¢. As in (3), we
have an isomorphism

Tyoyo~T,.#(c,q)dT,2(q),

and we orient .# (o, q) so that this isomorphism is orientation-preserving.
As in Theorem 2.1 and Proposition 3.2, .# (o, q) has a compactfication
to a smooth manifold with corners .# (o, p) whose codimension k stratum is

M (0,9), = U A (T pr) XA (1, p2) X - XA (pio1, ) XA (5, q)-

J=0  pi,...,p; ECrit(f)
Plyeene, Py, q distinct

Here o; denotes the codimension j stratum of . When k = 1, as oriented
manifolds we have

0.4 (0,q) = M (do,q)0 | (=) (0,p) x4 (p,q).

p€eCrit( f)
pZq
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Clearly dim.# (o,p) = i —ind(p). By this and the compactness result, it
makes sense to define

Alo):= Y #M(o.p) p.
p€eCrit; (f)

Lemma 3.6 A is a chain map: AJ = OMo™° A,

Proof. This follows from the compactness result, since if ¢ € Crit;_{(f), then
#0.4(0,q) = #.4(00,q)—# | A (o,p) x4 (p,q)

p€eCrit( f)
pZq

=#.M(00,q)—# | A(o,p)x.4(p,q)
p€eCrit; (f)

= (A(00), q) = ("™ A(r), q).

Here the second equality holds because of our transversality assumptions. O

Lemma 3.7 Ao D = id : (Merse _y (Morse,

Proof. If p is an index i critical point, then .Z (D(p),p) contains one point,
the constant gradient flow line, oriented positively by our sign convention;
while .2 (D(p), q) is empty if ¢ is any other index ¢ critical point, because
A (p,q) is empty by the Morse-Smale condition. O

3.4 The chain homotopy via compactified forward or-
bits
If o is a generic i-simplex, we define its forward orbit to be the set
F(0):=[0,00) x &
together with the map e : Z(0) — X defined by
e(s,7) = U (o ().

The forward orbit has a natural compactification to a smooth manifold with
corners .% (o) whose codimension k stratum for & > 2 is

F (o), :ﬂ(ak)UU U MOy 1) XA (11, 72) X XA (71, 7)) X D (7).

J=1 ry,.,ry;€Crit(f)
Plyeee, r; distinct
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When k£ =1, as oriented manifolds we have

07 (0)=—ocU—F(0o)U | ] (o) x2(r).

reCrit(f)

The map e extends over this compactification as a smooth map which projects
to .@(T]‘) C X.
We now define F': C;(X) — Ciy1(X) by
F(o):=e. {35(0)} )

Then the above compactification result implies that I is a chain homotopy
between D o A and the identity:

Lemma 3.8 dF + FO=Do A—id.
Lemmas 3.5, 3.6, 3.7 and 3.8 complete the proof of Theorem 3.1.

3.5 Morse cobordisms and relative homology.

Theorem 3.1 has the following useful generalization. Let X be a compact
smooth manifold with boundary, whose boundary is partitioned into two
unions of connected components Xy and X;. A Morse cobordism is a
smooth function f : X — [0,1] such that f~'(:) = X; for 7 = 0,1, and all

critical points of f are nondegenerate and in the interior of X.

Theorem 3.9 Let f: X — [0,1] be a Morse cobordism and let g be a metric
on X such that (f,q) is Morse-Smale. Then there is a canonical isomorphism

HYere(f,g) ~ H,(X, Xy).

Exercises for §3.

1. Deduce the Morse inequalities (1) from Theorem 3.1.
2. Use Theorem 3.1 to prove the Kiinneth formula for closed manifolds.

3. Use Theorem 3.1 to prove the Poincar’e-Hopf index theorem: if X is a closed
oriented smooth manifold, then [, e(TX), i.e. the signed number of zeroes
of a generic vector field, is equal to the Euler characteristic x(X).

4. Use Theorem 3.1 to prove Poincaré duality for closed oriented manifolds.

5. Prove Theorem 3.9. Deduce Poincaré-Lefschetz duality.
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4 A prior: invariance of Morse homology

Let X be a closed smooth manifold and (f,¢) a Morse-Smale pair. We
will now give an a priori proof that the Morse homology HMe™¢(f g) is a
topological invariant, i.e. it depends only on X and f and g. Of course we
already know this as a corollary of Theorem 3.1. The point of this exercise is
that it provides a model for proofs that various versions of Floer homology
are topological invariants, where an interpretation in terms of a previously
known topological invariant might not be available or possible!?.

A natural and enlightening strategy for the proof is “bifurcation analy-
sis”: one deforms the pair (f,¢), studies explicitly how the chain complex
changes, and checks that the homology stays the same, see [17, 41]. However,
bifurcation analysis is technically difficult in general, and Floer discovered
an elegant alternative approach [16] which uses the same ideas as the proof
that 9% = 0, and which we will now explain.

4.1 Continuation maps

Let (fo,90) and (fi,¢1) be two Morse-Smale pairs. Let (C?,dy) and (C}, )

denote the corresponding Morse complexes. Let

P=A(fi, ) [ €0, 1]}

be a path of functions and metrics from (fo, go) to (f1,¢1). Under a genericity
assumption to be explained below, we define the continuation map

(I)FC,?—>C,}

as follows.

Define a vector field V on [0,1] x X by
V=1 =0)t(1+1)0 + Vi, (5)

where ¢ denotes the [0, 1] coordinate and V; denotes the negative gradient of
fi + X — R with respect to the metric g;. The vector field V' is sufficiently

14Perhaps on some other planet, Morse homology was discovered before any other form
of homology. Then on that planet, this result proved that Morse homology i1s a powerful
tool for distinguishing closed smooth manifolds; and whoever discovered this probably
received that planet’s analogue of the Fields medal.
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well behaved that we can define its critical points, ascending and descending
manifolds, and flow lines just as if it were the negative gradient of a Morse
function, and the same transversality and compactness properties will hold!®.
The function (¢ + 1)2(t — 1)2/4 on R has a critical point of index 1 at ¢ = 0
and a critical point of index 0 at ¢ = 1 with no critical points in between.

Thus
Crit; (V) = {0} x Critiza(fo) [ {1} x Criti(f1). (6)

We say that the family I' is admissible if the ascending and descending
manifolds of the critical points of V intersect transversely. One can show that
if (fo,90) and (f1,¢1) are Morse-Smale, then a generic homotopy I' between
them is admissible. This is a slight modification of the proof that a generic
pair (f, ¢) is Morse-Smale. So assume from now on that I' is admissible. Note
that for an admissible T', there might (and often must) be some “bifurcation
times” ¢ for which the pair (f;, g;) is not Morse-Smale. Genericity of a family
does not imply genericity of all the individual points in the family.

To continue, if P and @) are critical points of V', let .# (P, () denote the
moduli space of flow lines of V' from P to ), modulo the R action as usual.
The orientation of [0, 1] and the orientations of the descending manifolds for
(fosg0) and (f1, g1) induce orientations of the descending manifolds for V and
hence of the moduli spaces . (P, Q). Now if p € Crit;(fo), we define

Or(p):i= Y #4((0,p),(1,9))q.
q€Crit;(f1)
Lemma 4.1 ®r is a chain map: 0,Pr = ®roy.

Proof. 1f p € Crit;(fo) and ¢ € Crit;—1(f1), then the usual argument shows
that .2 ((0,p), (1,q)) has a compactification to a compact oriented 1-manifold

15Tn the first draft of this lecture T defined V to be the negative gradient of the function
F :[0,1] x X — R defined by F(t,2) := %(t + 1)2(t — 1)? + fi(x), with respect to the
metric GG on [0,1] x X defined by G(t,z) = dt? + g;(x). But this doesn’t work in the
discussion below because T want the [0, 1] component of the vector field to be positive on
(0,1) x X. Thanks to Tamas Kalman who pointed out this mistake, and also suggested
fixing it by multiplying the term %(t +1)2(t — 1)? in the definition of F' by a large constant
and assuming that f; is independent of ¢ for ¢ close to 0 or 1. That would work fine here,
and also makes concatenation of paths nicer. However the vector field (5) is the one T
wanted in the first place because of generalizations that T have in mind in [33].
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A ((0,p),(1,q)) with boundary

0.4(00,p), (1)) = |J -#((0.p).(1,0) x.2((1,7).(1.q))

reCrit; (f1)

uo U 20,9, (0.0)) x ((0,7), (1.q)).

reCritiq (fo)

If .y and ., denote the moduli spaces for (fo,g0) and (f1,¢1), then as
oriented manifolds we have

A((0,p), (0,7)) = (= 1)) _775(p, ),
“//((17T)7 (lvq)) = %1(T, Q)'

The lemma follows immediately!®. a
Thus ®r induces a map

(Pr) = HI™(fo, 90) = HY™(fi, g1)- (7)

4.2 Chain homotopies

Now let I' and I be two different generic paths with the same endpoints
(fosg0) and (f1,g1). Let ® and @’ denote the corresponding continuation
maps.

Lemma 4.2 A generic homotopy between the paths I' and I induces a chain
homotopy

K:C)— Cl,,,
MWK +Kdy=0 — .

Proof. We regard the homotopy as a family {(fs,94) | d € D}, where D is
a digon (a closed 2-manifold with corners with two edges and two vertices).
Let g be a metric on D such that the edges have length 1. Let f : D — R be
a function with an index 2 critical point at one vertex and an index 0 critical
point at the other vertex and no other critical points, such that the negative

16 Another way to say this is that the Morse differential d for the vector field V is well-
defined and still satisfies 92 = 0. With respect to the decomposition of Crit(V') given by

— =0 0 2 _ 38 0
(6), we have 9 = <<I>p 31) s0 9° = <—<I>r30 + 0 ®r 07)
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gradient of f with respect to g is tangent to the edges and agrees with the
negative gradient of (t 4 1)*(t — 1)?/4 there. Let V be the negative gradient
of f with respect to g. We then define a vector field V on D x X by

Vi=V4+V

where V; denotes the negative gradient of f; with respect to g4. The map K
then counts flow lines of the vector field V. We omit the verification of the
chain homotopy equation. a

This proves that the map (®r). in (7) depends only on the homotopy
class of T'. In fact, since the space of paths T' here is contractible!”, this
implies that the map (®r). does not depend on anything'®. We now want
to prove that it is an isomorphism. If I'; is an admissible path from ( fo, go)
to (f1,91), and T’y is an admissible path from (f1,¢1) to (f2, g2), let T'y * I’y
denote the concatenation of these two paths, reparametrized to be smooth
and perturbed if necessary to be admissible.

Lemma 4.3 ®r,.r, is chain homotopic to ®r, o Pr,.

Proof. This is similar to the proof of the preceding lemma except that we
use a triangle instead of a digon. O

The preceding lemma, together with Exercise 1 below, imply that for any
two Morse-Smale pairs ( fo, go) and (f1, g1 ), there is a canonical'® isomorphism

Hyorse(f07go) ~ Hyorse(f17gl)‘
Exercises for §4.

1. Show that if I' = {(fi, g¢)} is a constant family with (f;, ;) Morse-Smale,
then T' is admissible and ®r = id.

2. Find counterexamples with X = S to each of the following statements.

(a) Suppose (fi, g:) is Morse-Smale for all t € [0,1], so that there is a
canonical identification Crit(fy) ~ Crit(f;). Then the family I' =

1"Note that the space of metrics on a manifold is contractible, because one can contract
all metrics to a given one by averaging.

181t is important to note that in Floer theory, there are often different homotopy classes
of paths connecting two objects, and sometimes the induced maps on Floer homology can
distinguish them, see [60].

19In Floer theory the analogous isomorphism might not be canonical, see the preceding
footnote.
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{(ft,9:)} is admissible, and ®r is given by the canonical identification
above.

(b) ®r,.r, = Pr, o Pr, at the chain level.
3. Show that the diagram

HMerse(fo go) ——— HMorse(fy gq)

l l

H.(X) ——  H.(X)

commutes, where the top arrow is the continuation isomorphism, and the
vertical arrows are the isomorphisms given by Theorem 3.1.

5 Genericity and transversality

We now explain at least some of how to prove statements such as “a generic
function is Morse”. We begin with a general definition of “generic”.

Definition 5.1 Let X be a topological space and let P(x) be a statement
for each € X (which might be true or false). We say that P(x) is true
for generic * € X if the set {x € X | P(2)} C X contains a countable
intersection of open dense sets.

This is a reasonable definition of “generic”, for example because the Baire
category theorem asserts that if X is a complete metric space then a countable
intersection of open dense sets in X is itself dense.

5.1 The Sard-Smale theorem

The basic strategy for proving genericity statements is encapsulated in Theo-
rem 5.4 below?®. It requires the Sard-Smale theorem, an infinite dimensional
generalization of Sard’s theorem. We first recall the following definition.

Definition 5.2 Let V and W be Banach spaces. A bounded linear operator
F:V — W is Fredholm if:

20This theorem is distilled out of [44], which provides tons of details regarding a lot
of the analysis we will be discussing (and there will be even more details in the second
edition).
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e [ has closed range, i.e. F'(V) is a closed subspace of W.
o dimKer(F) < oc.
e dim Coker(F') < co.

If F'is Fredholm we define the index
ind(F') := dim Ker(F) — dim Coker(F").

The index is a locally constant function on the space of Fredholm opera-
tors with the norm topology.

Theorem 5.3 (Sard-Smale) Let X and Y be separable?’ Banach mani-
folds**. Let f: X =Y be a C* map®® such that df, : T,X — Tr)Y is
Fredholm of index | for all x € X. Assume k> 1 and k> 1+ 1.

Then a generic y € Y is a regular value of f, i.e. df, is onto for all
e [~ y), so [~ (y) is naturally a manifold®** of dimension [.

The idea of the proof is to use the Fredholm assumption to locally reduce
to Sard’s theorem in finite dimensions, and to use the separability assumption
to get a countable intersection of open dense sets.

We use the Sard-Smale theorem as follows. Suppose we have an equation
of the form ¥ (y, z) = 0, and we want to show that for generic y € Y, the set
of z such that ¢ (y,z) = 0 is “cut out transversely”.

21 A topological space is separable if it contains a countable dense set.

22A Banach manifold is defined just like a smooth manifold except that it is locally
modelled on a Banach space rather than R”.

BIf V and W are Banach spaces then a function f : V — W is differentiable at p € V
if there exists a bounded linear map df, : V' — W such that

) = F(p) — dfy (0)]

u—0 o]l

=0.

If such a df, exists then it is necessarily unique. If f is differentiable everywhere then df
is a map V' — Hom(V, W) and one can similarly talk about the derivative of df, etc.

24The implicit function implies that if f : X — Y is a C* map between Banach manifolds
and if y is a regular value of f, then f~!(y) is a C* submanifold of X, with T, f~*(y) =
Ker(df,). The proof is a nice application of the contraction mapping theorem, and if you
haven’t seen this before you should learn it because it’s cool. This kind of analysis is
needed for gluing theorems in Floer theory.
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Theorem 5.4 (useful) LetY, 7 be separable Banach manifolds, B — Y x 7
a Banach space bundle, and 1Y x Z — E a smooth section. Suppose that
Jor all (y,z) € =1(0), the following hold:

(a) The differential Napy .y - Ty (Y X Z) = By, .y is surjective.
(b) The restricted differential N'¢p, .y - T.7Z — Fy, .y is Fredholm of index .

Then for generic y € Y, the set {z € Z|(y,z) = 0} is an [-dimensional
submanifold of 7 (and moreover at each point in this set, Vi is surjective
on the tangent space to 7).

Proof. Hypothesis (a) and the implicit function theorem imply that ¢»=*(0)
is a Banach manifold. Now let 7 : ¢/='(0) — Y be the projection.

Claim: For each (y,z) € ¢¥7'(0), the projection dr : Ty~ "(0) — T,V
is Fredholm.

Proof of claim: The finite dimensional kernel, finite dimensional cokernel,
and closed range properties follow from the corresponding properties for the
restricted differential in (b). First, we have a tautological equality

Ker <d7r : Ty~ (0) — TyY> = Ker (V;/) T 7 — E(y%)) . (8)

Furthermore Vi : T,Y — F, .y induces an injection on cokernels which by
(a) is in fact an isomorphism,

Vi) : Coker <d7r Ty (0) — TyY> — Coker (V;/) T 7 — E(y%)) . (9)
Finally, dr : T(, .ytp~'(0) = T,)Y" has closed range because

dr (T (0)) = {y € T,Y | Vib(y,0) € Vi(T.Z)},

Vi(T,7) is closed, and the inverse image of a closed set under a continuous
map is closed.

The claim and the Sard-Smale theorem imply that a generic y € YV is a
regular value of 7 : ¢p=1(0) — Y. For such a y, the set {z € Z | ¥(y,2) = 0}
is then a submanifold of 7 by the implicit function theorem; by (8) this sub-
manifold has dimension [, and by (9), for for each (y, z) in this submanifold,
the restricted differential Vb, .y : T.7Z — FE, .y is surjective. O
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5.2 Generic functions are Morse

Here is a simple example of the application of Theorem 5.4.

Proposition 5.5 Let 7 be a closed smooth manifold and let k > 2 be an
integer. Then a generic C* function f: 7 — R is Morse.

Proof. Let Y = C*(Z,R),and let E — Y x Z be the pullback of the cotangent
bundle T'Z — 7 via the projection Y x Z — 7, so that .y = T.7. Define
a section 1 of E by ¢(f,z) = df(z). Suppose (f,z) € »=1(0). If f; is another
C* function on Z and v € T.Z then

V(s f1,0) = dfi(v) + Vo (df).

Theorem 5.4 is applicable because: (a) clearly Vs : T(Y X Z) = T*2Z

is surjective, since dfi(v) can be arbitrary; (b) the restricted differential
v¢(f,z) : TZZ —T*z7 (10)

is automatically Fredholm since it maps between finite dimensional vector
spaces.

So for generic f, for each z € 7 such that (f,z) = 0, i.e. for each
critical point z of f, the restricted differential (10) is surjective. But now
we recognize that the operator (10) is just the Hessian, and if it is surjective
then the critical point is nondegenerate. O

This argument does not work for C'* functions because C*(Z,R) is not
a Banach space. However there is a general technique for passing from C*-
genericity to C'*-genericity. We refer the reader to [44] for the details.

5.3 Spectral flow

Our next goal is to show that if f is a Morse function, then for a generic metric
g, the pair (f,g) is Morse-Smale. Before doing so, we need to introduce an
important principle. The discussion here is based on the paper [53], which
does much more stuff in much more detail.

Let %7 be a Hilbert space and let {A; | s € R} be a continuous family
of operators on .7Z. The operators A; may be unbounded. We assume that
A, converges in the norm topology to invertible self-adjoint operators A* as
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s — +oo. If the family {A,} is reasonable®®, then one can make sense of the
spectral flow

SF{A;} € Z,

which intuitively is the number of eigenvalues of A; which cross from negative
to positive as s goes from —oo to +oo. If 7 is finite dimensional then no
additional assumptions are needed for the family to be “reasonable” and the
spectral flow is simply the dimension of the positive eigenspace of A1t minus
the dimension of the positive eigenspace of A™.

We now consider the operator?®

Dy — Ay L3R, ) — L*(R, 7). (11)
A precise statement and proof of the following principle is given in [53].

Principle 5.6 If {A,} is a reasonable family of operators as above, then
0s — As is Fredholm, and

ind(d, — A,) = — SF{A,}.

Example 5.7 Here is a sketch of some of the proof when 7 is finite dimen-
sional.

Let us first try to understand the kernel of 0, — A. For each h € 57,
by the fundamental theorem of ODE’s, there exists?” a unique differentiable
function f; : R — 57 solving the equation

(8, — A)Juls) = 0. f(0) = h.

Now this function may or may not be in L. To analyze this, we define
subspaces

s—+o00

T = {he%ﬂ lim fh(s):()},

T = {h € I | Sglinoofh(s) :0}.

25One set of sufficient technical assumptions is given in [53].

?SRecall that if p > 1 and k is a nonnegative integer then the Sobolev space L} is the
completion of the space of smooth functions f, such that f and its first k derivatives are
in LP, with respect to the sum of the LP norms of f and its first k derivatives.

27 Actually, since .57 is not compact, the basic existence theorem for ODE’s only gives us
a short-time solution defined for s € (—4,d) for some § > 0. But in the present situation
the short-time solution can be continued for all time because we have a uniform upper
bound on the eigenvalues of A so that the solution cannot escape to infinity in finite time.
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Then there is an isomorphism

Y07 =5 Ker(0, — Ay),
h —> fh-

Namely, one can show that if h € 2% N 277, then f;, and hence its first
derivative decay exponentially as s — Zoo, so f, € L}. Conversely, if
f € Ker(0s — Ay) then f = f, for some h, and we must have h € 7+ N7,
or else one can show that f blows up exponentially as f approaches one end
of R or the other so that f ¢ L2.

Furthermore, if E~(A™) denotes the negative eigenspace of AT, then (it
takes some thought to justify this) we have an isomorphism

HT =5 BT (AT,

b || Tim 22 (12)
s=+ea [ fu(s)|
Similarly, 27~ is isomorphic to E*(A™), the positive eigenspace of A~.
It is shown in [53] that 0; — A has closed range.
If we believe this, then the cokernel of d; — Ay is just the kernel of its
formal adjoint, i.e. the kernel of d; + A%. More specifically, we claim that
there is an isomorphism

Ker(d, + A%) =5 () 0 (7)*,
f— (0).

To see that this map is well-defined, suppose f € Ker(ds; + A%) and let
h € 2#*. Then

(13)

as<fN7 fh> <65f7 fh> + <f7 anh>
(—A"T
0.

i 7fh> + <f7Afh>

On the other hand since lim,_,4 f(s) =0 we have

im (f(s), fu(s)) = 0.

Hence <f(5), h) = 0. Now the map (13) is injective by the uniqueness of solu-
tions to ODE’s, and it is surjective by an argument similar to the (omitted)

proof of (12).
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Therefore

ind(d; — A ) = dim ,%”"'ﬂ,%” )—dim((,%”"')Lﬁ(,%”_)L)

TN A7)+ dimspan (T, 7)) — dim(7)
) + dim(s77) — dim(27)

AN)) +dim(ET(A7)) — dim(#)

(
= — dlm(E"'(A"')) + dlm(E"'(A ))

5.4 Morse-Smale transversality for generic metrics

Proposition 5.8 Let X be a closed smooth manifold, let k be a positive
integer, and let f : X — R be a C*' Morse function on X. Then for a
generic C* metric on X, the pair (f,g) is Morse-Smale.

Proof. We proceed in three steps.
Step 1 (setup): Fix distinct critical points p,q of f. Let Y be the space

of C* metrics on X; this is a €™ Banach manifold. Let Z be the space of
locally Li (in particular continuous®®) maps v : R — X such that:

o lims_ v(s) = p, and for R << 0, so that y(—o0o, R] is contained in a
coordinate chart centered at p, the restriction of v to (—oo, R], viewed
as a map to R” via the coordinate chart, is L7.

e lim, .. v(s) = q, and 7 is analogously L? on [R,00) for R >> 0.

Note that Z is a €' Banach manifold®® with T.,7 = L3(y*T X)), where L} is
defined with respect to the metric on v*T'X obtained by pulling back a fixed
metric on X. We define a Banach space bundle £ — Y x Z by

By = L*(v*TX).

28The Sobolev embedding theorem asserts that for functions defined on an n-dimensional
manifold, there is an embedding LY — LZI, whenever k > k' and k—n/p > k' —n/p’, which
moreover is a compact embedding when the domain is compact. (The number k —n/p is
the “conformal weight” which measures how the L? norm on R" behaves under scaling of
R™) So on a I-manifold, L? C L§® = C°, because 1 —1/2 > 0.

290ne can define a coordinate chart for Z around each smooth 7 using the exponential
map associated to some fixed smooth metric on X.
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We define a section ¢ of £ by

(g, 7)(s) = 7(s) = V(7(s))

where V' denotes the negative gradient of f with respect to ¢ as usual®.
Thus ¥(g,v) = 0 if and only if v is a C**! negative gradient flow line of f
from p to ¢ with respect to g.

Step 2 (applying Theorem 5.4): We claim now that the hypotheses of
Theorem 5.4 are satisfied. If ¢(g,v) = 0 then

V(6 4) = Vo = ViV =V

where on the right side, V is the Levi-Civita connection®' on TX — X
associated to some fixed smooth metric on X, and V' denotes the derivative
of V with respect to g.

(a) We claim that Vi is surjective. To see this suppose that w €
L*(y*T X) is orthogonal to the image of Vi). Then for any ¢ we have

/<V,w>ds = 0.

Now at any given point in the image of v, it is an exercise in linear algebra
to check that there exists ¢ such that V = . Since ~ is a flow line between
distinet critical points, 7 is injective, so if we choose ¢ supported near that
point then we conclude that w is zero there. Hence w = 0.

30Note that the second term in ¢(g, ) is really in L?, because for instance the restriction
of ¥ to (—oo, R], viewed as a map to R” where the critical point p corresponds to zero, is
L2, and near the critical point we have an estimate |V (z)] < c|z|.

31To clarify this calculation: we can extend ¥ : R — X toamap 7 : R x [-1,1] = X
with 4(s,0) = 4(s) and

97(s, 1)
8t |s:0 =7
Then
. lel}
V1/)(0a7) =V (3_:: - V)
o4
= VSE - VvV

where in the second line we have used the torsion-free condition. (Of course Vi) is in-
dependent of the connection we choose on X, but the torsion-free condition allows us to
write it in this nice way.)
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(b) We claim that the restricted differential
G Vo - ViV (14)

is Fredholm. To see this, we can choose a trivialization of 4v*T'X which is
parallel with respect to our chosen connection on T'X. Then in this trivi-
alization, the operator (14) has the form (11), where 5 = R" and Aj is
the covariant derivative VV(v(s)) : Ty X — Ty X in this trivialization®2.
Now we observe that lims_ As = —H(f,p) and limy10o = —H(f,q).
Since these are self-adjoint and invertible, Principle 5.6 applies to prove the
Fredholm property.

In conclusion, Theorem 5.4 implies that for generic g, the operator (14)
is surjective for every flow line ~.

Step 3 (recovering the Morse-Smale condition): To complete the proof, we
need to show that surjectivity of (14) implies the Morse-Smale transversality
condition. This basically follows from the discussion in Example 5.7. We
observe that if v is a flow line from p to ¢, then

HT=T\02(p), H# =Ty (q)

Since the operator (11) is surjective, its cokernel ()t N (#7)* is zero,
so Z(p) and &/ (q) intersect transversely at v(0). O

Note that Example 5.7 shows that the index of (11) here is ind(p)—ind(q),
which agrees with our earlier calculation that the moduli space of flow lines
(before modding out by the R-action) has dimension dim(Z(p) N &/ (q)) =
ind(p) — ind(q).

Exercises for §5.

1. Verify the isomorphism (9). (This really is tautological if you work through
all the notation.)

2. (a) Give a complete proof of Principle 5.6 when dim () = 1.

(b) Suppose dim(5#) = 1 and A; = 0 for s > so. Explain why the operator
(11) fails to be Fredholm.

32Note that the metric compatibility of the connection insures that the metric on v*T'X
induces a well defined metric on % so that the spaces L? and L? in (11) agree with
L2(y*TX) and L?(y*TX).
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3. Let V be a vector field on an n-dimensional smooth manifold X. Let us
define a closed orbit of V to be an embedding®® ~ : ST — X such that
v'(s) = AV (v(s)) for some constant A > 0. Let us say that v is “nondegen-
erate” if the linearized return map3* does not have 1 as an eigenvalue. Show
that if k is a positive integer, then for a generic C'* vector field, all closed
orbits are nondegenerate.

4. Tt was asserted in §4 that if (fo, go) and (f1,¢1) are Morse-Smale, then a
generic homotopy I' between them is admissible. Prove this.

5. Prove some genericity statement which you have always wanted to rigorously
justify.

6 Morse-Bott theory

The definition of Morse homology that we have given requires that the pair
(f,g) be generic, so that the moduli spaces of gradient flow lines are cut
out transversely. However for purposes of computation it is often easier
to explicitly understand the gradient flow lines of a particular example in
a nongeneric case, e.g. when there is symmetry. Morse-Bott theory is an
extension of Morse theory to certain cases where the critical points of f are
not isolated.

6.1 Morse-Bott functions

Definition 6.1 Let X be a closed smooth (finite dimensional) manifold. A
function f: X — R is Morse-Bott if:

(a) The set Crit(f) of critical points of f is a union of submanifolds of X.

(b) If S is a critical submanifold then for any p € S, the kernel of the
Hessian Vdf(p) : T,X — T;X consists only of 1,5, so that for any

33Warning: in the literature “closed orbits” are sometimes not required to be embedded.

34Let p be a point in the image of 4 and let D C X be a small (n — 1)-disc transverse
to . The return map ¢ : D — D takes a point in D and follows its trajectory under
V until it hits D again. This is a well-defined diffeomorphism from a small neighborhood
of p in D to another small neighborhood of p in D. The eigenvalues of the linearized
return map d¢, : T, D — T, D do not depend on the choice of p or D.

35The previous chapter had way too many footnotes. So we won’t have any footnotes
in this chapter (except of course for this one).

32



metric on X, the Hessian restricts to an invertible self-adjoint map on
the normal bundle,

H(f,p): N,S — N,S. (15)

If S is a critical submanifold, its index is most naturally regarded as an in-
terval [i-(S),14+(5)], where i_(5) is the dimension of the negative eigenspace
of the restricted Hessian (15), and i4(S) = i_(S) + dim(S).

A simple example of a Morse-Bott function is the height function on a
torus lying on its side. There are two critical submanifolds: a circle of minima
of index [0, 1], and a circle of maxima of index [1, 2].

6.2 The chain complex: first version

Fix a Morse-Bott function f on X. Let ¢ be a generic metric on X and let
V' be the negative gradient of f with respect to g. We now want to define
a chain complex counting flow lines of the vector field V. The treatment
here is based on [21], which explains more details, although we are treating
orientations and chains differently.

6.2.1 Moduli spaces of flow lines

If Sy, 55 are two critical submanifolds, a flow line from Sy to S5 is a path ~ :
R — X such that v/(s) = V(7(9)) and lim,__. ¥(s) € Sy and lims_, 1o () €
Sy. Let . (51, 5,) denote the moduli space of flow lines from Sy to Sz, mod-
ulo the R-action by reparametrization as usual. For a generic metric g, the
descending manifold of 57 and the ascending manifold of Sy will intersect
transversely so that

dim .Sy, Sy) = i4(S1) —i_(Ss) — 1. (16)

(On the other hand, for generic p; € S;, the moduli space of flow lines from
p1 to py has dimension i_(S1) — i4(53) — 1.) There are natural endpoint
maps

€t 3%(51,52) —>Sl, e_ 3%(51,52) —>52

sending a flow line v to lims__o. y(s) and lims_ 4o ¥(8) respectively.
Before continuing, recall that if A, B, ' are sets with given maps 1 : A —
C' and j: B — (), then the fiber product is defined by

Axe B:={(a,b) | i(a)=4(b)} C Ax B.
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If A, B,C are manifolds and the maps ¢ and j are transverse to each other,
then A X B is a manifold with

dim (A x¢ B) = dim(A) + dim(B) — dim(C).

For a generic metric, the moduli space .# (S, .S2) has a compactification
to a manifold with corners .# (S, S2), whose boundary (codimension one
stratum) is the fiber product

0.4(51,5) =) #(51,5") xs M (5, 5).
S/

Here the union is over all critical submanifolds S’ distinct from S; and Sj.
(The property of the metric required here is that e_ : .#Z(51,5") — 5 is
transverse to ey : .#(S',5;) — ', together with an inductively defined
generalization of this which ensures that all iterated fiber products of moduli
spaces of flow lines between critical submanifolds are cut out transversely.
This holds for a generic metric. Some papers make stronger assumptions,
such as that e_ : .#(Sy,5;) — 51 is a submersion; while this holds for some
important examples and makes certain technicalities nicer, there are many
Morse-Bott functions, even on surfaces, for which no metric exists satisfying
this assumption.)

6.2.2 Slightly incorrect definition of the chain complex

The rough idea of the chain complex is to define the chain group
Ck = @Ck—i_(s)(s)
S

and the differential

Do := 0o + Ze_ {0‘ Xg (5,5,

S8

where 0 is the ordinary differential on singular chains. However this isn’t
quite right; in order to get the signs to work out one has to modify this a
little. We will now be a little more careful and give a correct definition.
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6.2.3 Orientations

The signs in Morse-Bott theory are a bit subtle, because the moduli space
A (S1,59) might not be orientable, even when S, S;, and X are all ori-
entable. (It is not hard to cook up an example where S; and S are circles
and .# (S, S2) is a Klein bottle.) However we can still orient it locally given
some choices. More generally, let o be a generic simplex in 57 and define

M (0,53) =0 xg, (51, 52). (17)

On the open stratum, if v € .#(0,S2) represents a flow line from p; to
p2, then we have a natural isomorphism (up to automorphisms of positive
determinant)

Tpla@Tm@(pl) = TW%(@ 52) @T’Y@Tm@(m)- (18)

Hence orientations of o, Z(p1), and Z(p2) determine a local orientation of
A (0,5,).

It is then natural to introduce chains on the critical submanifolds with
twisted coefficients, so that they have local orientations of the descending
manifolds built into them. Namely, there is a locally constant sheaf & on
S, whose stalk at a point p € S is isomorphic to Z, where an orientation of
Z(p) determines such an isomorphism with Z, and the opposite orientation
determines the opposite isomorphism. If i_(.S) > 1, then one can equivalently
describe the stalk at p as

Op = Hi_(5)-1(Z(p) \ p) ~ Z.

We let C5"8( S, &) denote the space of singular chains with coefficients in &.
More concretely, C$"8(S, &) is the Z-module generated by pairs (o, 0), where
o is a simplex in S and o is a continuously varying orientation of T'Z(p) for
each p in the image of o, modulo the relation

(o,—0) = —(0,0). (19)

For technical reasons as in §3, we actually want to consider only a sub-
space of currents (with coefficients in @) spanned by pairs (o,0) where o is
suitably generic. We let C.(S, &) denote the resulting chain complex. (A
simplex ¢ is suitably generic if it is smooth and if each face of ¢ is transverse
to eg of all moduli spaces of flow lines between critical submanifolds and all
iterated fiber products thereof.)
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6.2.4 The chain complex

We now define a chain complex as follows. The k* chain group is

C}?Ott = @ Ck_i_(s)(s, ﬁ)
S

We define D : OBt — OB as follows. If o € C.(S, &) is a generic simplex
with locally oriented descending manifolds, and if S” # S, then we have a
well-defined current

e {m} € C.(S",0).

Thanks to (18) and (19), we have just enough orientation data for this to be
well-defined. Furthermore if dim(o) =k —i_(.S) then

dim(. (0,5") = (k—i-(5)) + (i4(5) —i-(5") = 1) — dim(5)
=k—1—1_(5).
So it makes sense to define

Do := 0o + Z e_ {m} .
S'#8

Lemma 6.2 D? = 0.

Proof. We omit the signs. For the proof we use the fiber product interpreta-
tion (17). We note that

B <a xs (S, 5/)) — 0o x5 (5, 5| Jo x5 0-4(S, 5.
We then have
Do=0%0+0Y e {a xs (S, Sf)} +3 e {aa ws (85, Sf)}
S'#S S'#S

+ Y e Ka s M5, 5/)) s (S, SH)} .

S"£SI£S

The first term is zero, the sum of the second and third terms is
S e {a w5 OS5, Sf)}
SI#8

(up to sign), and this equals the fourth term. O
We define the Morse-Bott homology HE(f, g) to be the homology
of the chain complex (CBtt D).
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Example 6.3 Consider again our example of a Morse-Bott function on the
torus with two critical submanifolds, one a circle Sy of minima and the other
a circle 57 of maxima. Then

OBt = O (So, 0) & C(Sy, O)[1].

Here the notation [1] indicates that the grading is shifted upward by 1. In
this example all simplices in the critical submanifolds are generic.

(a) If we choose a symmetric metric, then for each point in S; there are two
flow lines to the same point in Sy. Then the differential is given simply
by

D((00,0),(01,0)) = ((009,0), (d01,0)).
Note that D(0, (o1,0)) has no component in C.(Sp), because .Z (o1, So)
consists of two copies of o1 which contribute with opposite signs. Hence

HP" = H.(So, 0) @ H.(Sy, 0)[1]. (20)
Since the orientation sheaf &' is trivial here, H,(S;, &) ~ H.(S").

(b) If the metric on the torus is not symmetric then the two flow lines from
a given point in 57 may have different lower endpoints in Sy. But with
a bit more work one can see that (20) still holds.

Example 6.4 Starting with the previous example, do surgery on a horizon-
tal circle of the torus to obtain a Morse-Bott function on S? with a circle Sy
of minima, a circle 57 of maxima, an isolated minimum mg, and an isolated
maximum my. In this example again, all simplices in the critical submani-
folds are generic, and all orientation sheaves are trivial. Up to orientations,
if p is any point in S; then we have

Dp = £mo £ ¢(p)
where ¢ : 57 — Sp 1s a diffeomorphism. We also have
Dm1 = :t[So]

These are the only components of D that relate different critical submani-
folds. Tt follows fairly readily that

HEOtt ~ Ho(So, ﬁ) &, Hl(Sl, ﬁ)[l]
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6.2.5 The homology

Theorem 6.5 If fy and f, are two Morse-Botl functions with generic met-
rics go and gy, then there is a canonical isomorphism

HEOtt(fOLQO)) ~ HPOtt(flvgl)-

Proof. This is an extension of the arguments in §4, defining Morse-Bott
versions of the continuation maps and chain homotopies by analogy with the
definition of the Morse-Bott differential. O

Corollary 6.6 For any Morse-Bott function fy and generic metric go, there
is a canonical isomorphism

HZ( fo, go) = H.(X).

Proof. Let fi = 0 and let g; be any metric. Then by definition, HP°"(f;, g1) =
H.(X). 0

Remark 6.7 In particular any Morse function is Morse-Bott, and the Morse-
Bott complex then agrees with the Morse complex, so this gives another proof
of Theorem 3.1. This may make §3 appear retrospectively superfluous, but
in fact the work needed to flesh out the details of the proof of Theorem 6.5 is
similar to the work done in §3; and for natural choices of homotopies one can
see that the two proofs of Theorem 3.1 have essentially the same content.

6.3 An example from symplectic geometry

We now present, following [6], a quick application of Corollary 6.6. This
example requires some basic symplectic geometry as in [45].

Let (M,w) be a closed symplectic manifold, and suppose there is Hamil-
tonian S' action on M with moment map f : M — R. Then the critical
points of f are the fixed points of the action. It is known from symplectic ge-
ometry that f is a Morse-Bott function; the S' representation on the normal
bundle to a critical submanifold has no trivial components and thus splits
as a sum of 2-dimensional components. In particular, a critical submanifold
is even dimensional, and its index is also even, namely twice the number of
components on which the S' action has positive weights. The orientation
sheaf & over a critical submanifold is naturally trivialized by the symplectic
form.
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We claim now that f is a perfect Morse-Bott function, i.e.

H.(M) = @D H.(S, 0)[i_(S)]
~ P H.(S)li-(S)].

Equivalently D = 0, i.e. the Morse-Bott differential D sends a current in a
critical submanifold to another current in the same critical submanifold.

The idea of the proof is simple. We need to choose a generic metric ¢
which is also S'-invariant, and this can be done (I think). Then if Sy, S, are
two distinct critical submanifolds, S* acts nontrivially on .#(Sy, S3), while
fixing 57 and S,. This means that the endpoint map

€y X e_ :%(51,52)%51 XSQ

factors through .2 (51, S2)/S", and so its image has dimension one less than
expected. Hence if ¢ € Cj_i_(5,)(51) is a generic simplex, then e_(o xg,
M (S1,57)) is supported in a current of dimension k —i_(S3) — 2, and hence
is zero when regarded as a current of dimension k —i_(S3) — 1.

In fact, general results of [4, 39] imply that f is equivariantly perfect, i.e.
the S'-equivariant cohomology of M is the sum of the equivariant cohomolo-
gies of the fixed point sets. For a treatment of equivariant cohomology via
Morse-Bott theory, see [6].

6.4 The Morse-Bott spectral sequence(s)

We claimed that Morse-Bott theory would simplify computations, but it may
appear that we have taken a step backward by replacing the finite dimen-
sional Morse complex with the the infinite dimensional Morse-Bott complex.
However it is possible to compute the homology of the Morse-Bott complex
by first passing to the homology of the critical submanifolds, and then defin-
ing differentials on the homology of the critical submanifolds. To do this we
need to use the spectral sequence associated to a filtered complex, see e.g.

[10, 27].

6.4.1 The weakly self-indexing case

Let f be a Morse-Bott function and let g be a generic metric. The pair (f, g)
is weakly self-indexing if .#(5,S") = () whenever i_(5) < i_(5"). In this
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case 1_ defines a filtration on the complex (CB°* D), namely

F.CP = P C.(S. 0)i-(9)).

i (S)<i

We then obtain a spectral sequence which converges to the Morse-Bott ho-
mology, with
El,= @ Hy(S.0).
i—(S)=p
The first differential

81 : E;,q — E;_Lq
is defined as follows. Given oo € H, (S, 0), we choose a cycle C' representing it.
For each S” with i_(S") = p— 1, the weakly self-indexing assumption implies
that .#(S,S") is a compact manifold with no boundary. Thus e;'(C) =
C xg.4(5,5") is a cycle in . (S,5"), and its pushforward by e_ is a cycle

in S”. Then up to orientations,

(o)=Y E[e_(C xs.#(8,5)].

i—(8")=p-1

The higher differentials in the spectral sequence are more subtle. However
they are given by a formula similar to the formula for 9; in the simple case
when there are no broken flow lines involved. If we are lucky the other
differentials will vanish due to the bigrading on the spectral sequence so that
we can compute the Morse-Bott homology by computing the homology of 0.

6.4.2 The general case

Although the weakly self-indexing case is nice, there is always (at least when
f is real-valued!) an obvious filtration given by f itself. Namely one can
order the critical submanifolds as Sy, Sz, --- with f(S;) < f(S;) for ¢ < j.
Then we have the filtration

Fi O = @B OS5, 0)]i-())]

i<i

with an associated spectral sequence, whose E!' term is the sum of the
(twisted, grading-shifted) homologies of the critical submanifolds. For an
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application of this spectral sequence where the weakly self-indexing condi-
tion does not hold, see [66].

This spectral sequence is essentially what we used (without explicitly
saying so) to work out Examples 6.3 and 6.4, which might now be worth
revisiting.

6.5 Another Morse-Bott complex

We now sketch another approach to Morse-Bott theory which we learned
about from [11]. The idea is as follows.

First, we can always perturb a Morse-Bott function f to obtain a Morse
function. Explicitly, for each critical submanifold S;, choose a Morse function
fi +S; — R. We extend this to some smooth function f; : X — R. For ¢ € R,
define

fe::f—l—GZE:X—HR.

If ¢ > 0 is small, then f, is a Morse function and we have a one-to-one
correspondence

Crit(f.) = U Crit(f;).

Moreover, if p € Crit(f;), then the index of the corresponding critical point
of f. is ind(p) + i-(5;). In particular, the indices of the critical points of f,
on S; lie in the interval [i_(.S;), 14+(.5;)]-

If ¢ is a generic metric on X, then (f.,¢) will be Morse-Smale. Now the
key point is that we can read off the Morse differential 9™°™¢ for (f., g) from
the Morse-Bott setup (f,¢), without actually carrying out the perturbation.
In this way we obtain a finite-dimensional complex from the Morse-Bott data.

Here is how it works. If p, ¢ are critical points of f; on the same 5;, then
(9Morsep ) is determined by our choice of f; in a way which we already in
principle understand. And more interestingly, if p € Crit(f;) and ¢ € Crit(f;)
with ¢ # j, then for ¢ sufficiently small, up to sign we have

(OM™p, q) = #.4(Z(p), & (q)). (21)

Here Z(p) is the descending manifold of f; in S;, &/(q) is the ascending
manifold of f; in S;, and .Z(Z(p), </ (q)) is the set of flow lines v for (f,g)
with lim,_,_o. v(s) € Z(p) and lim,_, 1 ¥(s) € & (q).

We leave it to the reader to ponder why (21) might be true.
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Exercises for §6.
1. Justify equation (16).
2. Justify equation (18).
3. Work out Example 6.3 explicitly (without using a spectral sequence).

4. Find an example of a Morse-Bott function such that for at least one of the
critical submanifolds, the orientation sheaf & is nontrivial. Compute the
Morse-Bott homology for your example.

5. Let # : Z — B be a fiber bundle of closed smooth manifolds. Let f: B -+ R
be a Morse function.

(a) Show that 7*f : Z — R is a Morse-Bott function. Show that for each
critical submanifold the orientation sheaf & is trivial. Show that for
any generic metric on 7, the pair (f, g) is weakly self-indexing.

(b) Now that you are warmed up, see if you can show that the Morse-Bott
spectral sequence for 7* f using the i_ filtration agrees, from the E?
term on, with the Leray-Serre spectral sequence for the fiber bundle
7 — B. (I have seen this last point asserted many times, but I have
never seen the proof.)

6. If you haven’t seen spectral sequences before, do some examples until you
get the hang of it.

7 Morse theory for circle-valued functions and
closed 1-forms

Many functionals that arise in Floer theory are not R-valued but rather R /Z-
valued. Thus it is important to understand Morse theory for such functions.
In fact, if f is a real-valued or circle-valued function on X, then after a metric
is chosen, the gradient flow depends only on the closed 1-form df. When
f is a real-valued or circle-valued function, the cohomology class of df in
H'(X;R)is zero or the image of an integral cohomology class, respectively™;

36Recall that there is a natural bijection [X,S'] = H'(X;Z), which sends a homotopy
class of map f : X — S! to the pullback by f of the fundamental class in H'(S*;Z). If
[ is smooth then the cohomology class [df] € H'(X;R) is the image of the corresponding
element of H'(X;7Z) under the map H'(X;Z) — H'Y(X;R).
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but in fact one can set up Morse theory for an arbitrary closed one-form and
this is important as well. Morse theory for circle-valued functions and more
generally for closed 1-forms was first considered by Novikov [48], and there
have been many subsequent papers on the subject. The style of this chapter
is closest to [31].

7.1 Compactness

In some respects, the Morse theory of closed 1-forms is not much different
from the Morse theory of real-valued functions. Let X be a closed smooth
manifold and let o be a closed 1-form on X. Locally any closed 1-form
is d of a real-valued function so it makes sense to define “Morse closed 1-
forms”. Namely, a “critical point” of « is a zero of «; the critical point p
is “nondegenerate” if Va : T,X — T>X is invertible; and o is “Morse” if
all critical points are nondegenerate. The index of a critical point is defined
as before. We choose a metric ¢ on X and let V denote the vector field
dual to —a via ¢g. It then makes sense to speak of flow lines of V' between
critical points. We say the pair (o, ¢g) is “Morse-Smale” if the ascending
and descending manifolds of all critical points intersect transversely; if « is
Morse, then this condition holds for a generic metric. We let .#(p, ¢) denote
the moduli space of flow lines from p to ¢ as before.

We want to define a chain complex counting gradient flow lines between
critical points of index difference one. An important difference with the
real-valued case is that compactness does not always hold as before. When
ind(p) —ind(q) = 1 and (o, ¢) is Morse-Smale, the moduli space .# (p, q),
although zero-dimensional, might not be finite. The idea is that there can
be a sequence of flow lines which wrap around the manifold more and more
times, so that the sequence has no convergent subsequence.

Fortunately, we can still get compactness and finite counts if we classify
flow lines according to their some information about their (relative) homology
classes. To prepare for this and to clarify the issues with compactness, we will
now prove a compactness result. The argument here is pretty standard, cf.
[52], and is written in such a way that it generalizes to infinite dimensional
settings (although a number of additional issues have to be dealt with to
prove compactness in Floer theory).

In the following we regard a flow line as a map v : R — X; we do not
mod out by the R action. Let p and ¢ be critical points of «
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Definition 7.1 A (k-times) broken flow line from p to ¢ is a set of flow

lines ¥ = (o, . ..,7%) where k is a nonnegative integer and there exist critical
points rg,...,rry1 with 7o = p and r441 = ¢ such that 5; is a flow line from
r; 1O rigq.

Definition 7.2 A sequence of flow lines v, : R — X from p to ¢ converges
to a broken flow line ¥ = (7o, ..., %) from p to ¢ if:

e There exist real numbers
Sp0 < Sp1 < v < Spk

such that
Yo(sni+ ) — 7
in ("> on compact sets.

e For n sufficiently large, 7, — Ef:o ~: is homologous to zero® .
Definition 7.3 If v : R — X is a map with 7'(s) = V(v(s)), define the
energy

Boyi= [ WGP = [ efosl  (22)
S§=—00 ¥
Lemma 7.4 (a) F(vy) > 0, with equality if and only if v is a constant map
to a critical point.

(b) If E(v) < oo then v is a flow line between two critical points.

(¢) There exists 6 > 0 such that any nonconstant flow line v between two
eritical points satisfies F(v) > 6.

(Parts (b) and (c) require our assumption that X is compact and « is Morse.)
Proof. (a) is obvious, as the local contribution to the integral (22) is non-
negative, and zero only at critical points.

(b) We need to show that v(s) converges to a critical point as s — +o0.
We can find € > 0 such that the e-balls around the critical points are disjoint.

37This already follows from the first condition if the Morse-Smale condition holds. With-
out the Morse-Smale condition, or in certain infinite dimensional settings, the limiting
broken flow line could include a flow line from a critical point to itself, and we want to
keep track of this.
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It is then enough to show that there exists sq such that dist(y(s), Crit(a)) < €
for all s > sg. If no such sq exists, then we can find a sequence s, — oo with

dist(y(sn), Crit(a)) > € (23)

for all n. We can pass to a subsequence so that the points v(s,) converge in
X. Then, because the solution to an ODE depends smoothly on the initial
condition, the reparametrized maps v(s,+-) converge in C'* on compact sets
toa map 7 : X — R with 4'(s) = V(5(s)). Since s, = oo and F(v) < oo,
it follows that F(5) = 0, so 5 is a constant map to a critical point, but this
contradicts (23) since (0) = lim, 00 ¥(85). Likewise, v(s) also converges to
a critical point as s = —o0.

(c) If not, then we can find a sequence v, of nonconstant flow lines between
two fixed critical points with F(v,) — 0. For each n there exists a real
number s, satisfying (23) (or else 7, would be supported in a neighborhood of
a critical point, in which case for homological reasons F(v,) = 0 so v, would
be constant). We can pass to a subsequence so that v,(s, 4 -) converges, in
('™ on compact sets, to a flow line v, which must have energy zero and thus
must be a constant map to a critical point; but (23) implies that v(0) has
distance at least € from all critical points, a contradiction. a

Proposition 7.5 Let a be a Morse closed 1-form and g a metric on a closed
smooth manifold X. Let p and q be critical points of o, and let 7, : R — X
be a sequence of flow lines from p to q. Assume (this is crucial) that

o There exists a constant C such that E(vy,) < C for all n.
Then after passing to a subsequence, 7, converges to a broken flow line 7.

Proof. Before starting, we pass to a subsequence so that F(v,) — Cy. As
before there exists € > 0 such that the e-balls around the critical points are
disjoint.

We can assume that the flow lines +,, are nonconstant for sufficiently large
n, as otherwise the proposition is trivially true. It then makes sense to define

Sno = inf{s € R | dist(v,(s),p) > €}.

We can pass to a subsequence so that v,(s,0+-) converges in C on compact
sets to a map o with 33(s) = V(Fo(s)). By the C* convergence on compact
sets, (7o) < 0, and in particular 4y is a flow line from p to some critical
point ry by Lemma 7.4.
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If E(30) = Co, then v, =7 = (7p) and we are done.

Suppose F(7p) < Co. Since lims_yoo Yo(8) = r1, there exists ¢y € R such
that dist(30(s),r1) < €/2 whenever s > tq. For large n, the flow line v,
cannot be in the same relative homology class as 3o, $0 Y, ((Sn,0 + 0, 0)) &

B(ry,€). We then define

Sp1 = Inf{s > s, 0+ o | dist(y.(s),71) > €}.

We can pass to a subsequence so that v,(s,14-) converges in C° on compact
sets to a flow line 4y, from ry to some critical point rq, with F(70) + E(31) <
Co.

If E(Ro) + E(71) = Co, then v, — 5 = (J0,71) and we are done. If not,
we continue this process, inductively defining

Spj = Inf{s > s, ;-1 + ;1 | dist(ya(s),7;) > €}.

By Lemma 7.4, this process must terminate in at most |Cy/d| steps. O

7.2 Novikov rings

We now need to introduce the Novikov ring, cf. [30], which is basically an
algebraic bookkeeping device. It is a simple generalization of the group ring
of a group and the ring of Laurent series.

Definition 7.6 Let GG be an abelian group and let N : G — R be a homo-

morphism. Define the Novikov ring Nov((G; N) as follows. An element of

Nov(G; N) is a formal (possibly infinite) linear combination™®.

a:Zagg

geG

where the a,’s are integers, such that

38More precisely, a Novikov ring element is a function a : G — 7Z satisfying the finiteness
condition (*). Writing these as formal linear combinations can be confusing because the
expression ¢ + ¢g» has two possible meanings: it could be the function sending g1, g2 — 1,
which is ususally what we mean, or the function sending g1 +g¢2 — 1 (and all other elements
to zero in both cases). To avoid this ambiguity, some people write elements of the Novikov
ring as deG age?, with e? regarded as a formal symbol. Then also the multiplication

. 7 1
rule has the nice form e9ed = €919 .
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(*) For all R € R, there are only finitely many ¢ € G with a, # 0 and
N(g) < R.

Ifb= ZgEG bgg we define a + b := EgeG(ag + bg)g and

ab:= )" (Z ag,bg_g,> g.

gEG \g'eG

It is an exercise in logic to check that the finiteness condition (*) implies
that the coefficient of ¢ in ab is a sum of only finitely many nonzero terms,
and that ab again satisfies the finiteness condition (*).

Note that there is an inclusion of the group ring into the Novikov ring,

Z[G] — Nov(G; N), which is an isomorphism if and only if N = 0.

Example 7.7 The simplest example is when ¢ = Z and N : Z — R is
the inclusion. Then we can identify Nov(G; N) with the ring Z((¢)) of formal
integer Laurent series )~ a,,t™ where mg and the a,,’s are integers. (The
identification sends an integer m € Z to the symbol t7.)

7.3 The Novikov complex

Now let o be a Morse closed 1-form on a closed connected smooth manifold
X and let g be a metric such that the pair («, g) is Morse-Smale.

Choose a connected abelian covering m : X — X such that 7*a is exact.
We can always do this; for example, we can take X to be the universal
abelian covering of X, which has H, ()N() = 0. For a general abelian covering,
the group H of covering transformations is the quotient of H;(X) by the
subgroup consisting of homology classes of loops that lift to X. That is, we

have a short exact sequence

Since m*a is assumed exact, the pairing with [a] from H;(X) — R descends
to amap H — R.
We now define the Novikov complex (CTNV, 9N°V) as follows. (This

depends on a, g, and the choice of covering 7.) Choose f: X — R with

df =7"a.
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Let CN° be the set of formal linear combinations

Z app

ECrit: ()
where the a;’s are integers, such that
(**) for all R € R, there are only finitely many p with f(ﬁ) > R and a; # 0.

It is another exercise in logic to check that CN°V is a module over the
Novikov ring

A := Nov(H,[—a]),

where the module structure is induced by the action of H on X by covering
transformations. Moreover, this module is free: one can obtain a basis by
choosing a lift of each index 7 critical point in X to X.

We now define the differential 9NV : CN°v — CNo¥ by counting flow lines

as usual: if p € Crit;(f) then

=Y #MP.G)q

gelrit;_1 ()

Here .# denotes the moduli space of flow lines of f with respect to the
pullback to X of our chosen metric ¢ on X. The signs are determined as in
the Morse complex; one chooses orientations of the descending manifolds of
the critical points in X, and pulls these back to orientations of the descending
manifolds in X. It is a third exercise in logic to check that the finiteness
condition (**) and the compactness proposition 7.5 imply that 0 is well
defined.

Note that if p and ¢ are critical points in X and p and § are lifts to X
then a flow line from p to ¢ projects to a flow line from p to ¢, although a
flow line from p to ¢ might not lift to a flow line from p to ¢; the obstruction
to finding such a lift is an element of H. Although there may be infinitely
many flow lines from p to ¢, the point is that by working in a covering such
that m*a is exact, we classify flow lines by enough homotopy information to
ensure that the coefficients in the differential are finite.

The usual argument shows that (9N°")? = 0. We denote the homology of
the complex (CNov, gNov) by FINev,
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7.4 The Novikov homology

Lemma 7.8 The Novikov homology HY depends only on the cohomology
class [a] € H'(X;R) and the choice of connected abelian cover m: X — X.

The proof of this lemma follows the usual continuation argument. The
only subtlety is that one has to restrict to families {(ay, ¢:)} in which all
of the forms a; are in the same cohomology class (or at least in the same
ray emanating from the origin in H'(X;R)). This is necessary so that one
can apply a version of the compactness proposition 7.5 to insure that the
continuation maps involve finite counting and so are well-defined.

Note that if [ag] and [ay] are in different rays in H'(X;R), then in general
it is difficult to compare the Novikov homologies for ag and «y, since they
are modules over different Novikov rings. (We will see one situation where
this can be done in the proof of Theorem 7.11 below.)

Remark 7.9 One might guess that HYN°Y ~ H,(X)® A. But in fact that
is hardly ever true except in some trivial cases. For example, if [a] # 0 and
dim(X) = n, then HY°¥ always vanishes, see eg. example 7.10(b) below.

Example 7.10 We now consider three examples with X = S*.

(a) Let o = df where f : S' — S' is the identity. We use the covering
m: R — S' with covering group Z so that A ~ Z((t)). Since f has no
critical points the Novikov homology is trivial.

(b) Now perturb f above so that it has a local maximum p and a local
minimum ¢. By the above lemma, the Novikov homology is still trivial;
let us try to understand this explicitly. There are two flow lines from
p to ¢ but they are not in the same relative homology class. We can
choose lifts p and ¢ of p and ¢ such that

ONp = +(1 —1)d. (24)
Now (1 — ¢) is invertible in Z((t)):
(1=t =14+t +t7 4

Hence HY°Y = 0 because



Also, HYY = 0 because there are no cycles since dp # 0. (The ring

Z((t)) has no zero divisors, although Novikov rings of abelian groups

with torsion do.) It is tempting to try to define a 1-cycle as -, 1"p,

but this expression is not in CN°" because it does not satisfy the finite-

ness condition (**).

(c) Let a = df where f:S' — R is a real-valued function with two critical
points. We could choose the covering X = X, but that would be boring
because then the Novikov ring A = Z and we would be reduced to the
usual Morse complex. So let us choose the covering X = R so that the
Novikov ring is the group ring

A = Z[H(X)] ~ Z[t,t7"].
Then (24) still holds so that HN°Y = 0 as before, but now H}°v # 0

because (1 — t) is not invertible in the group ring. All we can say is
that HY°" is a Z[t,17!] module with one generator which is annihilated
by 1 —t.

The Novikov complex does have a topological counterpart. Choose a cell
decomposition of X. We can lift the cells to obtain a cell decomposition of

X. The cell-chain complex C(X) is then a module over Z[H], where H

acts by covering transformations. We then have

Theorem 7.11 We have an isomorphism
Y 0 L (€2 (X) @z A)

By standard arguments, the homology of the complex on the right hand
side is isomorphic to the homology of the complex of “half-infinite singular
chains”, namely locally finite singular chains in X such that for each real
number R, only finitely many simplices hit f_l((R, o0)). Example 7.10(b)
now makes sense: H)° = 0 because a point is the boundary of half the line,
and HY°Y = 0 because there are no 1-cycles because a 1-chain can only be
infinite in the downward direction.

One can prove Theorem 7.11 along the lines of the proof of Theorem 3.1,
and in fact such a proof shows that the isomorphism is canonical. The
isomorphism sends a critical point in X to its descending manifold in X,
viewed as a half-infinite chain. However, in order to introduce some useful
ideas in finite-dimensional Morse theory, we will give a different proof here.
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Proof of Theorem 7.11. We consider two cases.
Case A: suppose [a] = 0 so that o = df where f : X — R. Then
A = Z[H], and we need to show that

HYY ~ H,(X)

as Z[H]-modules. This can be proved almost the same way as Theorem 3.1,
where one just does everything in X. Since f is the pullback of a real- Valued
function on X, there are no compactness difficulties, even though X need
not be compact.

Just for fun, here is a sketch of another proof of Case A. By Lemma 7.8 it
is sufficient to prove the theorem for a single Morse-Smale pair (f,¢g) of our
choice. Choose a smooth triangulation of X. One can apparently® find a
Morse-Smale pair (f, g) such that f has a critical point of index ¢ at the center
of each i-simplex and one gradient flow line from the center of a simplex to
the center of each face, so that there is an isomorphism of chain complexes
(and differentials omitted from the notation) over Z[H],

C}K\Tov — C:ell()?)‘

Case B: Now suppose « is an arbitrary Morse closed 1-form. We use a
neat trick due by Latour and Sikorav to approximate a by an exact 1-form
(1) and reduce to case A. We can find a Morse function f : X — R such that
the pair (f, g) is Morse-Smale for our given metric g. Now let ¢ > 0 be small
and consider the closed 1-form

B = a4+ e 'df.
Since [ is cohomologous to a, Lemma 7.8 gives
HY (@) ~ HY ().

(Here we are fixing the covering X — X throughout the discussion.) Now
scaling a 1-form does not change the Novikov complex since the flow lines are
the same up to reparametrization. Thus we have an isomorphism of chain
complexes inducing an isomorphism on homology

HY(8) = HN™(df + ca).

39T don’t know if there is a rigorous proof of this in the literature, but it is widely accepted
folklore and T think it is doable. One would like the gradient in an ¢-simplex to be tangent
to the é-simplex, but to do this one will generally have to modify the triangulation a bit
first due to smoothness issues.
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If € is sufficiently small, then the flow lines for df + e are just perturbations
of the flow lines for df (exercise), so that we have an isomorphism of chain
complexes

O (df + ea) = OX(df) @zm A (25)

By homological algebra, tensoring a chain complex by a ring changes the
homology in a manner which depends only on the homology of the original
chain complex. So Case A and the above equation imply that

HY(df + ea) ~ H, <C§e“(f() @] A> .

Applying the previous two isomorphisms on homology completes the proof.
O

7.5 Reidemeister torsion

When y(X) = 0, the Novikov homology often vanishes, at least after tensor-
ing with a field. This is true, for example, if X is a 3-manifold obtained by
zero-surgery on a knot in 5%, and o = df where f : X — S1is in a nontrivial
homotopy class. In this case we can still extract some interesting topological
information out of the Morse theoretic data, such as the Alexander polyno-
mial of the knot K in the above example.

We begin with an algebraic digression on how to define the “determinant
of a chain complex”, otherwise known as “Reidemeister torsion”. (A good
reference on this topic is [68].) Let (C.,d) be a bounded*® complex over a
field F', and let H, denote its homology. Also let Z, and B, denote the spaces
of cycles and boundaries respectively. The short exact sequence

0 — 72, —C; — By — 0
induces an isomorphism on top exterior powers,

det(C;) — det(Z;) @ det(Bi_y).
The short exact sequence

0—B, —7,— H, — 0

40“Bounded” means that Y. dim(C;) < oo.
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induces an isomorphism
det(Zi) i} det(BZ) & det(HZ)

Putting this isomorphism into the previous one and taking the alternating
product over 7, we obtain an isomorphism

&) det(Co) " =5 Q) det(H;) ' (26)

Now suppose that (C., d) is acyclic, i.e. H, =0, and suppose further that
we have a chosen (unordered) basis for each C;. Then the right hand side of
(26) is canonically isomorphic to F', and the chosen bases give an element of
the left hand side of (26) up to sign, and hence an element of F'/ £+ 1. This
element is called the Reidemeister torsion

T(C,) € F/+1.

If C. is not acyclic, we define T'(C,) := 0.
For example, the torsion of a 2-term acyclic complex with chosen bases
is given by
T (o GG A o) = + det(d)"V)',
In general the torsion is an alternating product of determinants of square
submatrices of 9. Namely:

Proposition 7.12 Let (C.,0) be a bounded acyclic complex over F with
chosen bases b; of C;. Then we can find a decomposition of the chains C, =

D, d E, such that:
(a) D; and E; are spanned by subbases of b;.

(b) The map d; = mg,_, 00

p, : Di — F;_1 is an isomorphism.

For any such decomposition we have
~ (=1)°
T(C.) = + [ det (aZ)

where the determinants are computed with respect to the subbases of b,.
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Now consider a Morse closed 1-form « and a metric ¢ such that the pair
(ar,g) is Morse-Smale. For simplicity, let us assume that the automorphism
group H of our covering X — X has no torsion. Then the Novikov ring
A has no zero divisors, so its quotient ring Q(A) is a field. We define the
Morse-theoretic torsion

TMorse .= T (CNY @4 Q(A)) € Q(A)/ + H.

To explain this, the complex CN°" has a preferred set of bases obtained by
lifting each critical point in X to X. Choosing different lifts will multiply
the torsion of the chain complex by some element of H, which is why 7™Merse
is well-defined*! only in Q(A)/ + H.

The Morse-theoretic torsion has a topological counterpart which we can
try to compare it to. Namely, let C*Cen(j() be the chain complex over Z[H]
obtained by lifting the simplices of a triangulation of X. This has a preferred
set of bases consisting of a lift of each simplex from X to X, and so we can
define the topological Reidemeister torsion

Tiw = T (CNX) o QUZIH))) € QUAIH))/ + 1.

This is known to be a topological invariant depending only on X and the
choice of covering. For example, if X = S' and X = R then TP = (1 —1¢)7!,
as we can easily see by choosing a triangulation of S! with one 0-simplex and
one l-simplex. If X' is the three-manifold obtained by zero-surgery on a knot
K C S?, so that H;(X) ~ Z, and if X is the infinite cyclic cover of X with
H ~ 7, then it is a result of Milnor that
A]{(t)
(1—1)*
where Ag(t) € Z[t] is the Alexander polynomial of K.

The inclusion Z[H] — A induces a map 1+ : Q(Z[H]) — Q(A), and we

could ask: is

Ttop _

2 <Ttop> — TMorse?
The answer is no; TM™¢ is not even a topological invariant, as we can see by
X = S'in Examples 7.10(a) and (b). In the first example, TM°™¢ = 1 because

there are no critical points, and in the second example TMerse = (1 — ¢)~1,
It is then natural to ask: what is the error TMerse/Ttor?

41One can get a well-defined element of Q(A)/=1 by choosing an “Euler structure” on X,
and one can apparently remove the sign ambiguity by choosing a “homology orientation”

of X.
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7.6 Periodic orbits and the zeta function

In the Morse theory of circle-valued functions and closed 1-forms, there is a
new dynamical feature which does not exist in the real-valued case. Namely,
we can consider periodic orbits of the flow V.

A periodic orbit of V is a nonconstant map v : ST — X such that
v'(s) = A(V(s)) for some constant A > 0. Here we are not requiring v to be
an embedding. Any periodic orbit factors through an embedding via a p-fold
covering map S!' — S'; the positive integer p is called the period of v. We
declare two periodic orbits to be equivalent if they differ by reparametriza-
tion.

For counting purposes, we attach a sign to a generic periodic orbit as
follows. For x € 4(S"), let U be a hypersurface intersecting v transversely
at x, and let ¢ : U — U be the return map (defined near x) which follows
the flow p times around +(S'). The linearized return map induces a map

A+ ToX ) Tory(S) — T X/ Tory(SV)

which does not depend on U, and whose eigenvalues do not depend on z. We
say that v is nondegenerate if d¢, does not have 1 as an eigenvalue, and if
so we define the Lefschetz sign

(=1 := signdet(1 — d¢,) € {£1}.
It is not hard to see that if a periodic orbit is nondegenerate then it is isolated.

Definition 7.13 The pair (o, ¢) is admissible if it is Morse-Smale and if
all periodic orbits are nondegenerate.

One can show that for a fixed cohomology class [a], a generic pair («, g)
is admissible. If («, g) is admissible, we count the periodic orbits using the
zeta function®?

—1))
(= expz%[’y] € A.

Here & denotes the set of periodic orbits modulo reparametrization, and if ~
is a periodic orbit then [y] denotes the image of its homology class under the
projection Hy(X) — H. Also exp denotes the formal power series operation
exp(t) := > > 1" /nl.

42 As we are defining it, the zeta function is not a function, just an element of A. When
say A ~ 7Z((t)), if one is lucky the power series might converge when one substitutes some
complex numbers for ¢, thus giving an actual function.
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Lemma 7.14 ( is a well-defined element of the Novikov ring A.
Proof. We first show that

S ersa

= ()

It is enough to show that for any constant C' there are only finitely many
periodic orbits v with energy F(v) < C. If there are infinitely many, then a
compactness argument as in Proposition 7.5 shows that there is a subsequence
converging to either (i) a non-isolated periodic orbit, or (ii) a flow line from
a critical point to itself. Both cases violate admissibility: in the former case,
the limiting periodic orbit is not isolated and hence degenerate, and in the
latter case the broken flow line must include a flow line in a moduli space of
negative expected dimension, violating the Morse-Smale condition.

It is easy to see that exp sends the Novikov ring to itself so we have
(eAnQ.

To see that ( is actually in A, we note that there is a product formula

c=J[0- (_1)1,_@)[7])(_1)—@'0(7) : (27)

veE

Here & denotes the set of embedded periodic orbits; i_(v) is the number of
real eigenvalues of the linearized return map in the interval (—oo,—1), and
io(7y) is the number of eigenvalues in (—1,1). One can verify the product
formula (27) by taking the formal logarithm of both sides. Clearly the right
side of equation (27) has integer coefficients. O

Example 7.15 Let X = S'. In Example 7.10(a),

—expz (1—1)"

In Example 7.10(b), there are no periodic orbits so ( = 1.

Now define

A
J = TMorse it
(€ +H

We then have:
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Theorem 7.16 If (o, g) is admissible then:

(a) I is a topological invariant depending only on X, the cohomology class
[a], and the choice of cover.

(b) Moreover [ = o(T*P).

For a proof, see [31]; for an earlier version and a connection with Seiberg-
Witten invariants of 3-manifolds see [34]; for more on the connection with
Seiberg-Witten theory see [43]. Of course part (a) implies part (b), but one
can prove (a) first which leads to an easy proof of (b) similar to our proof of
Theorem 7.11 above. There are many other papers on Reidemeister torsion
in circle-valued Morse theory; for example, an algebraic refinement of (b)
above is given in [50]. Part (a) can be generalized to define a notion of
Reidemeister torsion in Floer theory, see [42], where one does not necessarily
have an interpretation of the invariant in terms of classical topology.

Exercises for §7.

1. Do the three “exercises in logic” in §7.2 and §7.3.
2. Verify equation (25).

3. Prove Proposition 7.12.

=

Fill in the details in the proof of Lemma 7.14.

ot

Let f: X" — S! be a circle-valued function with no critical points. Assume
that the fiber is a connected manifold 3. Choose a generic metric on X and
let ¢ : 3 — 3 be the diffeomorphism defined by following the flow V from
¥ back to itself. There is a natural covering X ~ R x ¥ with H ~ Z and
A ~ Z((t)). Formally, X is the fiber product of X and R over S'.

(a) Check that
= Fix (%) —.
e # (e
(This is analogous to the zeta function introduced in number theory

by Weil [69], which is an ancestor of dynamical zeta functions such as
the one considered here.)

(b) Use the Lefschetz fixed point theorem to deduce that

n—1

¢ =[] det(1 - tHi(¢)) "

=0

i1
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8 What we did in the rest of the course, with
references

8.1 Pseudoholomorphic curves in symplectic manifolds

(A reference for much of the following is Gromov’s seminal paper [28], to-
gether with the expository articles in [5] and the second edition of the essen-
tial text [44].)

w-tame and w-compatible almost complex structures, and contractibility
of the space of these. Pseudoholomorphic curves.

Energy and symplectic area; calibration argument for w-compatible al-
most complex structures.

Trivial examples of pseudoholomorphic curves: nullhomologous curves
and curves in products.

Transversality of somewhere injective curves for a generic almost complex
structure. Special cases where transversality is automatic. Dimension of the
moduli space.

Introduction to Gromov compactness.

Gromov’s nonsqueezing theorem; Gromov-Witten invariants in a special
case, monotonicity lemma for minimal surfaces.

Adjunction formula and intersection positivity for pseudoholomorphic
curves in symplectic 4-manifolds.

Foliation of S% x S? by pseudoholomorphic spheres. Gromov’s theorem on
the recognition of R*. Gromov’s theorem on the symplectomorphism group
of S? x S? and introduction to Abreu’s generalization of this [2].

8.2 Floer homology

Introduction to the Arnold conjecture. Introduction to Floer theory of Hamil-
tonian symplectomorphisms, regarded as homology of the symplectic action
functional. Rough description of Floer homology of more general symplec-
tomorphisms (see e.g. some of Seidel’s papers) and definition of the flux
homomorphism (see [45]).

Index of Cauchy-Riemann operators on punctured Riemann surfaces:
Conley-Zehnder index and index formula for Cauchy-Riemann operators on
the cylinder via spectral flow (see various papers by Salamon and coauthors
such as [55]), relative first Chern class [32], additivity of the index under
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gluing, axiomatic determination of the index formula for Cauchy-Riemann
operators on a punctured Riemann surface (see Schwarz’s thesis [57] and the
second edition of [44]).

Proof of the Arnold conjecture for monotone symplectic manifolds: defini-
tion of Floer homology of Hamiltonian symplectomorphisms (gluing analysis
omitted), isomorphism of this Floer homology with Morse homology. (For
an excellent introduction to this and much more than we did in the course,
see [54]. For transversality details see [20].)

Floer homology with Novikov rings and the Piunikhin-Salamon-Schwarz
isomorphism [51]. Introduction to quantum cohomology and its relation to
the more general quantum product on Floer theory of symplectomorphisms
[14].

Remarks on the classification of surface diffeomorphisms [12]. Floer ho-
mology and the mapping class group [63]. Floer homology of finite order
symplectomorphisms (not just on surfaces). Computation of the Floer ho-
mology of a Dehn twist on a surface [59, 24, 35]. Introduction to Seidel’s
work on generalized Dehn twists (see Seidel’s thesis [61] and more recent
papers such as [62]).

Introduction to Floer theory for Lagrangian intersections [17] and the
Fukaya category. Floer theory for (noncontractible, nonisotopic) Lagrangians
in a surface; combinatorial formula for the differental, proof that the number
of generators of the Floer homology equals the geometric intersection number
(see [25]). Remarks on Massey products and A, category structure, see e.g.
[23].

Introduction to TQFT [3, 58]. Introduction to Seiberg-Witten Floer ho-
mology; see [40] and the recent series of papers by Ozsvath and Szahé [49].

Introduction to “introduction to symplectic field theory” [15].

8.3 What we would have also liked to do in the course

Coherent orientations [19].
Gluing analysis.
Khovanov’s categorification of the Jones polynomial [36].

The literature on this subject is very large. The following list i1s nowhere near com-
prehensive but is merely intended to provide some useful starting points.
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