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THE TERM ‘MORSE THEORY' is usually understood to apply to two analagous but quite distinct
bodies of mathematical theorems. On the one hand one considers a smooth, real valued
function f on a compact manifold M, defines M, = f~'[— w0, a], and givena closed interval
[a, b]describes the homology, homotopy, homeomorphism or diffeomorphism type of the pair
(M,, M) in terms of the critical point structure of fin f~'[a, #]. On the other hand one
takes a compact Riemannian manifold V, defines A to be the ‘loop space’ of piecewise
smooth curves joining two points (with a natural topology) and f: M — R the length
function and again describes the homology and homotopy type of (M,, M,) in terms of the
critical point structure of finf " ![a, b] (i.e. in terms of the geodesics joining the two points
whose lengths lie between a and 5). The classical approach to this second Morse theory is
to reduce it to the first Morze theory by approximating M, (up to homotopy type) by
certain compact submanifolds of piecewise broken geodesics. A particularly elegant and
lucid exposition of this classical approach can be found in John Milnor’s recent Annals
Study [5].

Our goal in the present paper is to present a Morse theory for differentiable real
valued functions on Hilbert manifolds. This encompasses both forms of Morse theory
mentioned above in a unified way. In addition the generalization of the Morse thesty of
geodesics to higher loop spaces (i.e. maps of an n-disk into a manifold with fixed boundary
conditions) and even more general situations works smoothly in this framework, whereas
previous attempts at such generalizations were thwarted by the lack of a good analogue of
the approximating compact manifolds of piecewise broken geodesics.

We have endeavored to make the exposition relatively self contained. Thus the first
two sections give a brief resumé of the classical theory of Fréchet on the differential calculus
of maps between Banach spaces (details and proofs will be found in [1]) and in sections
3 to 9 we give a brief treatment of the theory of Banach manifolds with particular emphasis
on Hilbert manifolds (details and proofs will be found in [4]).

In sections 10 through 12 we prove the

MAIN THEOREM OF MORSE THEORY

Let M be a complete Riemannian manifold of class C**% (k > 1) and f: M - R
a C**2-function. Assume that all the critical points of f are non-degenerate and in addition
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(C) If S is any subset of M on which f is bounded but on which | v /| is not bounded
away from zero then there is a critical point of f adherent to S. Then

(a) The critical values of f are isolated and there are only a finite number of critical
points of f/ on any critical level;

(b) If there are no critical values of fin [a, b] then M, is diffeomorphic to M,;

(©) Ifa < ¢ < band c is the only critical value of fin [, 5] and p,, ..., p, are the critical
points of f on the level ¢, then M, is diffeomorphic to M, with r handles of type (k,, [,),
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It should be noted that if fis proper, i.e. if f ~[a, ] is compact for every closed interval
[a, b], then condition (C) is automatically satisfied, hence the Morse theory for compact
manifolds is included in the above theorem. On the other hand if Af is infinite dimensional,
hence not locally compact, then it is impossible for a real-valued function f: M — R to
be proper whereas we shall see condition (C) is still satisfied in cases of significant interest.

A theorem similar to the above was obtained independently and essentially simul-
taneously by S. Smale.

In §13 we show how to interpret the loop space of a complete finite dimensional
Riemannian manifold ¥ as a complete infinite dimensional Riemannian manifold M.
This is due to Eells [2], however we have followed an approach suggested by Smale. In
§14 we show that if we take f: M — R to be the ‘action integral’ then the hypotheses of
the Main Theorem are satisfied, thereby deriving the Morse theory of geodesics. In §15
we return to the abstract Morse theory of functions satisfying condition (C) on a Riemannian
manifold and in particular derive the Morse inequalities. Finally in §16 we comment
briefly on generalizing the Morse Theory of geodesics to higher loop spaces, a subject we
hope to treat in detail in a later paper.

§1. DIFFERENTIABILITY
Let V and W be Banach spaces, @ an open set in V and f: 0 - W a function. If
p € 0 we say that f is differentiable at p if there exists a bounded linear transformation
T:V — Wsuch that | f(p + x) — f(p) — Tx ||/||x| - 0 as x — 0. It is easily seen that
T is uniquely determined and it is called the differential of f at p, denoted by df,. The
following facts are elementary [1, Ch. VIII]:

Iffis differentiable at p then f'is continuous at p;

If fis differentiable at p and U < 0 is a neighborhood of p then g = f|U is differentiable
at p and dg, = df,;

If fis constant then it is differentiable at p and df, = 0;

If S: ¥ — Wis a bounded linear transformation and f = S|0 then f is differentiable
at pand df, = S;

If f is differentiable at p, g: @ — W is differentiable at p and «, § are real numbers
then (af + Bg) is differentiable at p and d (of + fg), = adf, + Pdg,:
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If U is a neighborhood of f{p) and g : U — Z is differentiable at f{p) then if fis differ-
entiable at p, g - fis differentiable at p and d(g - f), = dgy,) - df}.

Now suppose / is differentiable at each point of ¢. Then df: p — df, is a function
from € into the Banach space L{¥, W) of bounded linear transformations of V into W
(sup. norm). If dfis continuous then we say that fis of class C' in 0. If df is differentiable
at a point pe @ then d(df), = d*f, e L(V, L(V, W)). We make the usual canonical
identification of L(V, L{¥, W)) with L*(¥, W), the space of continuous bilinear maps of
V x Vinto W. Thus d?f, is interpreted as a bilinear map of ¥ x ¥ into W and it can
easily be shown to be symmetric [1, p. 175]. In case d’f, exists at each p € 0 and the map
d*f:p — d%, is continuous we say that f is of class C? in 0. Inductively suppose
d*f: @ — LV, W) exists and is differentiable at p. Then (d**!f), = d(d*/), e
L(V, LNV, W)) = L**}(V, W) and d**'f,, the (k + 1)st differential of f'at p, is a bounded,
symmetric [1, p. 176] (k + 1)-linear map of ¥ x ... x Vinto W. If d**1f, exists at each
point pe @ and d**'f: 0 — L**}(V, W) is continuous then we say that £ is of class C**!
in @. If fis of class C* in @ for every positive integer k we say that fis of class C® in 0.

A linear map of R into a Banach space W is completely determined by its value on the
basis element 1. We use this fact to define the derivative of a differentiable function
f1 0 - W where ¢ © R; namely the derivative of f at p, denoted by f7(p), is defined by
F(p) = df(1), so dfy(a) = af (p). If f is differentiable at each point of ¢ we have
f':0 - W, and if £ is of class C? in @ we can define /" = (')’ and in general if fis of
class C* we can define f®: 0 — W. Clearly the relation of f® and d* is d%,(x,, ... x,)
=xX; . X fW(p). If g:W—2Z is differentiable then (gof),, = d(go/)(1) =
dg’f{p)(éf;(l)} = ég{fp)(f;{p))y ie{g-f)y = d§; of".

For future reference we note the following. If Bis a continuous symmetric bilinear map
of ¥ x Vinto W then f: ¥V — W defined by flv) = B(v, v) is of class C®. In fact df,(v)
= 2B(p,v), &*f = 2B and d°f = 0.

§2. THREE BASIC THEOREMS

Mean Value Theorem
Let V and W be Banach spaces, p € V, 0 a convex neighborhood of pin Vandf: 0 - W
a Cxmap, k = 1, Then thereisa C* '-map R, : @ — L(V, W) such that if x = p + ve 0
fx) = flp) + Ry(x.

CoROLLARY (TAYLOR'S THEOREM). If m < k there is @ C* " ™-map R, :0 — L™(V, W)
such that if x == p + ve O then

Fx) = f(p) + dfp(0) + £ d¥ (v, v) + ... + ; d" 7, ... v) + R(x)(, ... v).

1
(m-1)
Inverse Function Theorem

Let V and W be Banach spaces, O open in V, and f: 0 — W a Ct-map, k > 1. Let
p € O and suppose that df, maps V one-to-one ontc W. Then there is a neighborhood U of
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p included in O such that f{U is a one-to-one map of U onto a neighborhood of f(p) and more-
over (f|U) ! is a C¥-map of f(U) onto U.

DEFINITION. If O is an open set in a Banach space V then a C*-vector field in 0 is a
C*map X : 0 — V. A solution curve X is a C'-map o of an open interval (a, b) < R into €
such that ¢’ = X o 0. If 0 €(a, b) we call 6(0) the initial condition of the solution a.

The following theorem is usually referred to as the local existence and uniqueness
theorem for ordinary differential equations (or vector fields).

THEOREM. Let X be a C*-vector field on an open set 0 in a Banach space V, k > 1.
Given p, €0 there is a neighborhood U of p, included in 0, an ¢ > 0, and a C*map
@ U x (—¢, &) — Vsuch that:

(1) If pe U then the map ¢, :(—e¢, &) — V defined by (1) = @(p, 1) is a solution of
X with initial condition p;

(2) If ¢ :(a, b) = V is a solution curve of X with initial condition p € U then o(1) =
o (1) for |t| < .

The proofs of these three basic theorems can all be found in [1] or in [4).

§3. DIFFERENTIABLE MANIFOLDS WITH BOUNDARY

If k¥ is a bounded linear functional on a Banach space V, k # 0 we call H=
{v e V|k(v) = 0} the (positive) half space determined by k, and éH = {ve Vik(v) = 0} is
called the boundary of H. A function fmapping an open set @ of H into a Banach space W
is said to be of class C* at a point p € ® n 0H if there exists a C*-map g : U - W, where U
is a neighborhood of pin ¥V, suchthat f{0 n U = ¢|0 n U. Itis easily seen that d"f, = d™g,
is then well defined for m < k and that if fis of class C* at each point of ® n 8H and also in
0 — 0H then d™f: 0 — L™(V, W) is continuous for m < k; in this case we say that fis of
class C* in @. Next suppose that f is a one-to-one C*-map of @ into an open half space
Kin W. We say that fis a C*-isomorphism of 0 into K if f(0) is open in K and if f ™! is of
class C* (if k > 1 then it follows from the inverse function theorem that this will be so if
and only if df, maps V one-to-one onto W for each p € 0).

Invariance of Boundary Theorem

Let H; be a half space in a Banach space V, and O; an open set in H; (i = 1,2). Let
f:0, — 0, be a C*-isomorphism. Then if either k > 1 or dim V,; < o f maps 0, n 8H,
C*-isomorphically onto 0, n 0H ,.

Proof. In case k > 1 the result is an immediate consequence of the inverse function
theorem. In case dim V; < oo the theorem follows from invariance of domain.

Caution. In case k = 0 and dim V; = o the conclusion of the theorem may well fail.
Thus if ¥ is an infinite dimensional Hilbert space and H a half space in V it is a (non-
trivial) theorem that # and H — JH are homeomorphic.
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In the following, to avoid logical difficulties, we shall fix some set S of Banach spaces
and whenever we say Banach space we will mean one which belongs to the set S.

A chart in a topological space X is a homeomorphism of an open set D(p) of X onto
either an open set in a Banach space or else onto an open set in a half space of a Banach
space. Two charts ¢ and ¢ in X, with U = D(p) n D()). are called C* related if ¢y o !
is a C*-isomorphism of @(U) onto ¥(U). A C*-atlas for X is a set A of pairwise C*-related
charts for X whose domains cover X, and A is called complete if it is not included in any
properly larger C*-atlas for X. It is an easy lemma that if each of two charts ¢, ¥ in X
is C*-related to every chart in A then ¢ and  are C*related. It follows that there is a
unique complete C*-atlas A including 4. namely the set of all charts ¢ in X such that ¢
is C*-related to every chart in 4. A is called the completion of A.

A C*-manifold with boundary is a pair (X, A) where X is a paracompact Hausdorff
space and A4 is a complete C*-atlas for X. In general we will use a single symbol, such as
M. to denote both a C*-manifold (X, A) and its underlying topological space X, and
elements of A will be referred to as charts for M. If pe M a chart at p is a chart for M
having p in its domain. If 4 is a (not necessarily complete) C*-atlas for X then by the
C*.manifold determined by A we mean the pair M = (X, 4). If m < k then A is a C™-atlas
for X and so determines a C™-manifold which we also denote by Af (an abuse of notation),
5o that a C*-manifold is regarded as a C™ manifold if m < k.

If M is a C-manifold, & > 1, we define M to be the set of p € M such that there exists
a chart ¢ at p mapping D(p) onto an open set in a half space H so that o(p) e dH. It
follows from the invariance of boundary theorem that every chart at p has this property
and also that {@|dM}, where ¢ runs over the charts for M, is a C*-atlas for dM, so oM is
a C*-manifold. Moreover we have the obvious, but satisfying relation é(@M) = ¢.

If M and N are C*manifolds a function f: M — N is said to be of class C* near p if
there exists a chart @ at p and a chart ¥ at f{p) such that y o f5 ¢~ is of class C¥ and fis
said to be of class C* if the latter holds for each p e M. It is easily seen that /1 M — N
is of class C*if and only if 5 f5 @~ ! is C* for every chart ¢ for M and y for N.

If we define objects to be C*-manifolds and morphisms to be C*-maps then the axioms
for a category are satisfied.

§4. TANGENT SPACES AND DIFFERENTIALS OF MAPS

Let {¥;};; be an indexed collection of Banach spaces and for each (i, j) e I? let ®;;
be an isomorphism of V; with V; (as topological vector spaces) such that ¢;; = identity
and @0, = @, From the data {V, ¢;;} we construct a new Banach space V (by a
process we shall call amalgamation) and a canonical isomorphism =;: ¥ — ¥, such that
n; = @yn;. Namely V is the set of {v;} in the Cartesian product of the V; such that
v; = @;;v;. Clearly Vis a subspace of the full Cartesian product, hence a topological vector
space. We define 7; to be the restriction of the natural projection of the Cartesian product
onto V,. To prove that V is a Banach space and n, an isomorphism it suffices to note that
there is an obvious continuous, linear, two sided inverse Ay to my namely A;(v); = @,Av).
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Given a second set of data {W,, ¢} satisfying the same conditions (with indexing
set K) suppose that for each (i, k)e/ x K we have a bounded linear transformation
T:V;— W, such that Y T,¢;; = T,;. Then if W is the amalgamation of {W,, ¢}
there is a uniquely determined bounded linear map T: V — W such that =, T = Ty;n,
namely if {v;} € Vthen T {v;} = {w,} where w, = T,,v;. T is called the amalgamation of
the T,;.

Now suppose M is a C*manifold kK = 1, pe M and let J be the set of charts at p.
Given ¢ € [ let V¥, be the target of ¢ (i.e. the Banach space into which ¢ maps D(¢)). Then
for each (o, ¥) € I? d(¥ » @™ o is an isomorphism of ¥, onto ¥,. Clearly d(p . ¢~ ) I
= identity and by the chain rule d(A > @™ "),y 0 d(@ o ¥ ™Dy, = d(A o Yy ™1y, Hence
the conditions for an amalgamation are satisfied. The resulting amalgamation is called
the tangent space to M at p and denoted by M.

Let N be a second C*-manifold f: M — N a C*map and X the set of charts at f{p).
For each (¢, y) e I x K we have a linear map d({ o fo @0~ ‘),,(p) of ¥, into W,. Moreover
the abstract condition for amalgamating is clearly satisfied, hence we have a well determined
amalgamated map df,: M, - N, called the differential of fat p.

§S. THE TANGENT BUNDLE

Let nn: E — B be a C* map of C*-manifolds and suppose for each be Brn~!(b) = F,
has the structure of a Banach space. We call the triple (E, B, n) a C*-Banach space bundle
if for each b, € B there is an open neighborhood U of b, in B and a C*isomorphism
f:U x F, = =~ '(U) such that v — f(b, v) is a linear isomorphism of F, onto F, for each
beU. If (E', B, ') is a second C*-Banach space bundle then a C*map f: E —» E' is
called a C*bundle map if for each b € B f maps F, linearly into a fiber F';,,. The map
f: B — B is then C* and is called the map induced by f.

Let M be a C“"'-manifold with boundary. Let T(M) = )\}, M, and define
n:T(M)— M by n(M,) = p. Given a chart ¢ for M with domain U and target V,
define ¢ : U x ¥V, - n~'(U) by letting v — ¢(p, v) be the natural isomorphism of V,
with M,. Then it is a straightforward exercise to show that the set of such ¢ is a C*-atlas
for a C*-manifold with underlying set T(M) and moreover that T(M) is a C*-Banach space
bundle over M with projection n. If fis a C**!-map of M into a second C***-manifold ¥
we define df': T(M) - T(N) by df |M, = df,. Then one shows that df is of class C* and
is a bundle map which clearly has f as its induced map. '

The category whose objects are C*-Banach space bundles and whose morphisms are
C*-bundle maps is called the category of C*-Banach space bundles. The function M — T(M),
f — dfis then a functor from the category of C**!-manifolds with boundary to the category
of C*-Banach space bundles. Since each author has his own definition of the tangent
bundle functor it is useful to have a general theorem which proves they are all naturally
equivalent, i.e. a characterization of T up to natural equivalence in purely functorial terms.
To this end we first note two facts. If © is an open subset of a C*-manifold M then @ is in
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a natural way a C*-manifold called an open submanifold of A: namely a chart for ¢ is a
chart for M whose domain is included in ¢. If M is a Banach space ¥ or else a half space
in a Banach space ¥ then the identity map of M is a chart in M and its unit class is a C**'-
atlas for M. The C**'-manifold defined by this atlas will also be denoted by M. The
corresponding full subcategory of the category of C**'-manifolds with boundary which
we get in this way will be referred to as the subcategory of Banach spaces and half spaces.
On this subcategory we have an obvious functor 7 into the category of C*-Banach space
bundles; namely with each such C**!-manifold M we associate the product bundle
(M) = M x V considered as a C*-Banach space bundle, and if f: M — Nisa C**'-map,
where N is either a Banach space W or else a half space in W, then the induced map
W(f)Y: M x V- N x Wis given by t( f)(m, v) = (f(m), df,(r)). We now characterize
the notion of a tangent bundle functor.

DEFINITION. A functor t from the category of C**'-manifolds to the category of C*-
Banach space bundies is called a tangent bundle functor if:

(1) «(M) is a bundle over M and if f - M — N then f is the induced map of 1( [,

(2) Restricted to the subcategory of Banach spaces and half spaces ¢ is naturally equivalent
to 1,

(3) If M is a C**'-manifold and @ is an open-submanifold and 1 : 0 — M the inclusion
map then {(0) = t(M)|0 and (1) is the inclusion of 1(0) in {( M).
THEOREM. The functor T defined above is a rangent bundle functor. Moreover any two
tangent bundle functors are naturally equivalent.

§6. INTEGRATION OF VECTOR FIELDS

Let o:(a, b)) > M be a C**'-map of an open interval into a C**'-manifold M. We
define a C*map o’ : (g, b) —» T(M), called the canonical lifting of o, by o'(r) = do’,(l)
We note that no’ = o i.e. that ¢ is in fact a lifting of o. -

DEFINITION. A Ckvector field on a C**'-manifold M is a C*-cross section of T(M),
ie.a Cmap X: M — T(M) such that = o X = identity. A solution curve of X isa C'-map
o of an open interval into M such that ¢’ = X o c. If 0 is in the domain of the solution o we
call a(0) the initial condition of the solution ¢.

The facts stated below are straightforward consequences of the local existence and
uniqueness theorem for vector fields and proofs will be found in [4, Chapter IV].

Let M be a C**'-manifold (k > 1) with 3M = ¢ and let X be a C*-vector field on M.

THEOREM (1). For each p € M there is a solution curve o, of X with initial condition p
such that every solution curve of X with initial condition p is a restriction of a,.

The solution curve o, in the above theorem is called the maximum solution curve of X
with initial condition p. We define t* : M — (0, co] and 1~ : M — [— o0, 0) by the require-
ment that the domain of ¢, is (+7(p), 1 (p)). Thcy are called respectively the positive and
negative escape time functxons for X.
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THEOREM (2). If t7(p) < s < t*(p)and q = a (s) then g, = 0,0 T, where T, R - R
is defined by 1 (t) = s + t. In particular t*(q) = t*(p) — sand t7(q) = t*(p) — s.

THEOREM (3). t* is upper semi-continuous and t~ is lower semi-continuous. Also if

t¥(p) < oo then o,(f) has no limit point in M as t — t*(p) and if t™(p) > — o0 then a (1)
has no limit point in M as t — t~(p).
COROLLARY. If M is compact then 1™ = oo andt”™ = —c0.

To state the final and principal result we need the notion of the product of two C*-
manifolds. This is defined if at least one of the two manifolds has no boundary. If
@ : D(p) = V is a chart for M and ¢ : D(y) - W is a chart for N then ¢ x ¥ : D(¢) x
D() = V x Wis a chart in M x N (note that the product of a half-space in V with W
is a half-space in ¥ x W). The set of such charts is a C*-atlas for M x N and we denote
by M x N the resulting C*-manifold. If N has no boundary then é(M x N) = (6M) x N.

Now we go back to our C*-vector field X on a C**!-manifold M with ¢M = ¢.

DeFINITION. Let D = D(X) = {(p. e M x Rjt™(p) < t < t*(p)} and for each
teR let D,=D(X)= {peMi(p,t)e D}. Define o:D— M by o(p,1) = c,(t) and
@,: D, = Mbyo(p) = o,(t). The indexed set @, is called the maximum local one parameter
group generated by X.

THEOREM (4). D is openin M x Rand ¢ : D — M isof class C*. For each teR D, is
open in M and @, is a C*isomorphism of D, onto D_, having @_, as its inverse. If pe D,
and ¢ (p)€ D, thenpe D,,,and 0., (p) = ¢ (¢ (p)).

§7. REGULAR AND CRITICAL POINTS OF FUNCTIONS

Let M be a C'-manifold, f: M — R a C'-function. If p e M then df, is a bounded
linear functional on M,. If df, # O then p is called a regular point of f and if df, = O then
p is called a critical point of f. If ¢ € R then f~'(c) is called a level of f (more explicitly the
c-level of /') and it is called a regular level of £ if it contains only regular points of fand a
critical level of fif it contains at least one critical point of /. Also we call c a regular value
of fif f~!(c) is regular and we call ¢ a critical value of fif f ~'(c) is critical.

If fand M are C? then there is a further dichotomy of the critical points of f into
degenerate and non-degenerate critical points. We consider this next.

LEMMA. Let ¢ be a C*-isomorphism of an open set 0 in a Banach space V onto an open
set 0’ in a Banach space V' (k > 2). Letf: 0" - Rbeofclass C*andletg = fop:0 — R.
Then l:fdgp = Ov dzgp(vly Ul) = dzf(p(p)(d(pp(vl)) dq)p(vz))'

Proof. From the chain rule we get

dgx = dfw(x) de, and
dzgx(vh UZ) = dsz(x)(d(px(vl)y d‘px(UZ)) + dfw(x)(dz(Px(vl, UZ))'

Putting x = p in the first equation gives df,,, = O (because dg, is a linear isomorphism)
and then putting x = p in the second equation gives the desired result.
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PROPOSITION. [If f is a C*-real valued function on a C*-manifold M and if p is a critical
point of f then there is a uniquely determined continuous, symmeric. bilinear form H(f),
on M, called the Hessian of f at p, with the following property: if ¢ is any chart at p

H(.f)p(v’ w) = dz(f° 0 l)w(pi(uw Wo).
Proof. Immediate from the lemma.

Given a Banach space V' and a bounded, symmetric bilinear form B on V' we say that
B is non-degenerate if the linear map 7: ¥V — V* defined by T(v)(w) = B(v, w) is a linear
isomorphism of ¥ onto V*, otherwise B is called degenerate. Also we define the index of
B to be the supremum of the dimensions of subspaces W of V on which B is negative
definite. The co-index of B is defined to be the index of — 5.

DEerINITION. If f is @ C*-real valued function on a C*-manifold M and p is a critical
point of f we define p to be degenerate or non-degenerate accordingly as the Hessian of f at p
is degenerate or non-degenerate. The index and co-index of f at p are defined respectively
as the index and co-index of the Hessian of fat p..

The finite dimensional version of the following canonical form theorem is due to
Marston Morse:

MORSE LEMMA. Let f be a C**%- real valued function (k > 1) defined in a convex
neighborhood O of the origin in a Hilbert space H. Suppose that the origin is a non-degenerate
critical point of fand that f vanishes there. Then there is an origin preserving C*-isomorphism ¢
of a neighborhood of the origin into H such that flo(v)) = 'Pvi? — (1 — P)ei* where P
is an orthogonal projection in H.

Proof. We shall show that there is a C*-isomorphism ¢ of a neighborhood of the
origin in A such that Y(0) = 0 and f{v) = {AY(v), Y(v)> where {,> denotes the inner
product in A and A is an invertible self-adjoint operator on /. The remainder of the proof
uses the operator calculus as follows. Let 4 be the characteristic function of [0, «0). Then
h(A) = P is an orthogonal projection. Let g(1) = [4|~'/%. Since zero is not in the spectrum
of A4, g is continuous and non-vanishing on the spectrum of 4 50 g(4) = T is a non-singular
self-adjoint operator which commutes with 4. Now Ag(2)?t = sgn(i) = k(L) — (1 — h(A)
so AT* =P —~ (1 — P). Then

SO Ty =(ATv, Tv) = (AT v, v) = (Pv,v) — {(1 — P)u, t)
= [IPeil* — [i(1 = Pyo]2.
It remains to find . By Taylor’s theorem with m = 2 f(v) = B(¢){v, v) where Bisa C*-map
of ¢ into bounded symmetric bilinear forms on H. Using the canonical identification of the
latter space with self-adjoint operators on A we have f(r) = (A(v)r, ) where 4 is a C*-map
of 0 into self-adjoint operators on H. Now d?fo(v, w) = 2{A(0)r, w) and since the origin
is 2 non-degenerate critical point of £, A(0) is invertible, so A(r) is invertible in a neighbor-
hood of the origin which we can assume is @. Define B(v) = A(x) " 'A(0). Since inversion is
easily seen to be a C®-map of the open set of invertible operators onto itself (it is given
locally by a convergent power series) B is a C*-map of ¢ into L(H. H), and each B(v) is
invertible. Now B(0) = identity and since a square root function is defined in a neighbor-
c
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hood of the identity operator by a convergent power series with real coefficients we can
define a C*-map C: 0 — L(H, H) with each C(¢) invertible, if @ is taken sufficiently small,
by C(r) = B(r)'/%. Since A(0) and A(r) are self-adjoint we see easily from the definition
of B(v) that B(v)*A(r) = A(v)B(r) (both sides equaling 4(0)) and clearly the same relation
then holds for any polynomial in B(¢r) hence for C(r) which is a limit of such polynomials.
Thus C(v)*A(r)C(r) = A(r)C(r)* = A(t)B(r) = A(Q0), or A(r) = C,(v)*A(0)C,(r) where we
have put C,(r) = C(v)~!. If we write Y(v) = C,(v)v then  is of class C¥ in a neighborhood
of the origin and f(v) = (C,(t)*A0)C,(v)r, > = {AOW(v), Y(r)) so it remains only to
show that d, maps H isomorphically, and hence, by the inverse function theorem that
¥ is a Ckisomorphism on a neighborhood of the origin. An easy calculation gives
dy, = C,(v) + d(C)),(v) so in particular dy, = C,(0) which in fact is the identity map
of H.

COROLLARY. The index of f at the origin is the dimension of the range of (1 — P) and
the co~index of f at the origin is the dimension of the range of P.

Proof. Let W be a subspace on which d?f, is negative definite. If we W and

(1 = P)w = 0 then d%fo(w, w) = 2/[Pwi* — 2](1 — P)w|? = 2{|Pw|* 2 0 so w = 0. Thus
(1 — P)is non-singular on W, hence dim W < dim range (1 — P).

q.ed.

Canonical Form Theorem for a Regular Point

Let f be a C*-real valued function defined in a neighborhood U of the origin of a Banach
space V(k = 1). Suppose that the origin is a regular point of f and that f vanishes there.
Then there is a non-zero linear functional [ on V and an origin preserving C*-isomorphism ¢
of a neighborhood of the origin in V into V such that f(p(v)) = l(v).

Proof. Let ! = df, # 0. Choose x € V such that [(x) = 1. Let W = {ve V|{(v) = 0}.
Define 7: V- W x R by T(v) = (v — l{(v)x, I(v)). Then T is a linear isomorphism of V
onto W x R. Define y: U > W x R by y(v) = (v — Kv)x, f(v)). Then ¢ is of class C*
and dy (v) = (v — v)x, df(v)). In particular dif, = T so by the inverse function theorem
Y~ 'T is a C*isomorphism of a neighborhood of the origin in V into ¥ which clearly
preserves the origin. If v' = ¢ ~!'Tv then (v' — I(¥")x, f(v")) = Y(¥) = T(v) = (v — Hv)x,
(), ie. f(Y~'Tv) = o).

q.e.d.

DErINITION. Let M be a C*-manifold and let N be a closed subspace of M. We call N
a closed C*-submanifold of M if the set of charts in N which are restrictions of charts for M
form an atlas for N. This atlas is automatically C* and we denote the C*-manifold determined
by this atlas by N also.

Smoothness Theorem for Regular Levels

Let f be a C*-real valued function on a C*-manifold M (k = 1). Let acR be a
regular value of f and assume that f~'(a) does not meet the boundary of M. Then
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M, = {xe M|fix) < a} and f~Y(a) are closed C*-submanifolds of M and M, is the disjoint
union of M, N M and f~*(a).

Proof. An immediate consequence of the canonical form theorem for a regular point.

§8. THE STRONG TRANSVERSALITY THEOREM

Let M be a C**'-manifold without boundary (k > 1), X a C*vector field on M and
@, the maximum local one parameter group generated by X (see §6). If fis a C* real valued
function on M we define a real valued function Xf on M by Xf(p) = df,(X,). In general
Xf will be of class C*~! but of course in special circumstances it may be of class C* or
C** 1. If we define h(1) = f(p(p)) = flo, (1) then h'(t) = df, (.\(0,'(1)) = df,,((X. 1) =
Xf(o(p)) so that if Xf =1 then flop)) = f(p) + ¢.

PROPOSITION. Assume that Xf =1, iM) = (—¢, ¢) for some ¢ > 0, and that ¢ (x)
is defined for |t + f(x)| < e. Then W = f~(0) is a closed C*-submanifold of M and the map
F: W x (—¢ ¢) > M defined by F(w,1) = @,(w) is a C*-isomorphism of W x (—¢, €)
onto M which for each c e (— ¢, £) maps W x {c} C*-isomorphically onto f~'(c).

Proof. Since at a critical point p of f Xf(p) = df,(X,) = 0 the condition Xf =
implies that every real number is a regular value of f, hence that every level f ~!(c) and in
particular W is a closed C*-submanifold of M. If F(v, 1) = F(w', ') then

t=f(w)+t=flew) =flo (W) =f(W)+1 =1
hence @, (w) = @ (w") and since ¢, is one-to-one w = w’. We have proved that F is one-
to-one. If me M then |—f(m) + f(m)| < e s0 w = @_ ;(,,(m) is well-defined and f(w) =
fm) — flm) = 0 so we W. Moreover F(w, f(m)) = @ (@~ r(m(m)) = m. Hence F is
onto and moreover we see that F~'(m) = (¢_ /(. (m), f(m)) which by Theorem (4) of §6
is a C*map of M into W x (—¢, ¢). Thus F is a C*isomorphism and since f(F(w, ¢)) =

Ao w)) = f(w) + ¢ = c the final statement of the theorem also follows.
qg.e.d.

DEFINITION. A C*-vector field X on a C**'-manifold without boundary M (k = 1) will
be said to be C*-strongly transverse to a C*-function f: M — R on a closed interval [a, b)
if for some 6 > 0 the following two conditions hold for V = f~Ya — 5, b + §):

(1) Xfif of class C* and non vanishing on V;

(2) If pe V and ¢, is the maximum solution curve of X with initial condition p then
o ,(t) is defined and not in V for some positive t and also for some negative t.

Now given the above, V' is clearly an open submanifold of M and by (1) ¥ = X/Xf
is a well-defined C*-vector field on V. Moreover Yfis identically one on ¥ so the integral
curves of Y are just the integral curves of X reparametrized so that f(a(1)) = f(a(0)) + ¢,
hence condition (2) is equivalent to the statement that if i, is the maximum local one
parameter group generated by Y on V then  (p) is defined fora — § < fip) + t < b + b.
If we put

a+b b—a

g=/Iv-2"" =

3 2+5
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we see that the triple (V, g, Y) satisfies the hypotheses made on the triple (M, f, X) in the
above proposition. This proves

Strong Transversality Theorem

Let f be a C* real valued function on a C**'-manifold without boundary M (k > 1).
If there exists a C*-vector field X on M which is C*-strongly transverse to f on a closed interval
la, b] then W = f~Y(a) is a closed C*-submanifold of M and for some & > O there is a C*
isomorphism F of W x (@ — 6, b + &) onto an open submanifold of M such that F maps
W x {c} C*isomorphically onto f~'(c) for all ce(a — &, b + 8). In particular f~'([a, b))
is C*-isomorphic to W x [a, b].

COROLLARY. There is a C*map H: M x I — M such that if we put H(p) = H(p, s)
then:

(1) H, is a C*-isomorphism of M onto itself for all se I;

(2) Hfm)=mifmé¢f~'(a— 8/2,b + 5/2);

(3) H, = identity;

(@) H(f (-, a]) = f7(—0, b].

Proof. Let h: R — R be a C®-function with strictly positive first derivative such that
ity =tifté(a — 6/2,b + 8/2) and (@) = b. Define H = identity in the complement of
f~Ya — 8/2, b + 8/2)and define H,inf " '(a — 8, b + )by H (F(w, D) = F(w, (1 — $)t +
sh(1)).

§9. HILBERT AND RIEMANNIAN MANIFOLDS

Let M be a C**'-Hilbert manifold (k > 0), i.e. M is a C**'-manifold and for each
p€M M, is a separable Hilbert space. For each pe M let {,>, be an admissible inner
product in M, i.e. a positive definite, symmetric, bilinear form on M, such that the iorm
v, = {v, v)'/? defines the topology of M,. Let ¢ be a chart in M having as target a
Hilbert space H with inner product {,>. We define a map G® of D(¢) into the space of
positive definite symmetric operators on H as follows: if x € D(¢) then de~! is an iso-
morphism of H onto M,, hence there is a uniquely determined positive operator G* (x)
on H such that {(G® (x)u, v) = {(de;'(u), de;'(v))>,. Suppose y is another chart in M
with target H. - Let U= D(o) n D(Y) and let f = @ .y~ y(U) = o(U), so dy;' =
de;' - dfy( for xe U. Then

<G*(x)u’ U> = <d‘P;l df&(x)(“)’ d(p;‘ dfw(x)(v)>x
= <G¢(X) df&(x)(u), df&(x)("’)):

hence G*(x) = df §,G®(x) df, (), x € U. Since fis of class C**! it follows that if G® is of
class C*in U then so also is G*. Hence it is consistent to demand for each chart ¢ that G°
is of class C*. If this is so we will call x - {,>, a C* Riemannian structure for M, and M
equipped with this extra structure will be called a C**!-Riemannian manifold. We will
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maintain the notation used above. That is given a chart ¢ in a C*Riemannian manifold
M we will denote by G® the function defined above, and in addition we define Q¥ on
D(p) by Q*x) = (G%(x))~"'. Also we define a function | in T(M) by ‘v{ = (v, t)'/?
for ve M,. Clearly | * is of class C* on T(M), hence | | is continuous on T(M) and of
class C* on the complement of the zero section. If o:[a, b] = M is a C'-map then
t — jo’())l is continuous on [a, b] hence

b
L(o) =J lle’(Dl dt

is well defined and is called the length of . It is easily seen that if x and y are two points
in the same component of M then there exists a C'-curve joining them, hence we can define
a metric p in each component of M by defining p(x, y) to be the infimum of the lengths of
all C'-paths joining x and y. It is clear that p is symmetric, satisfies the triangle inequality,
and is non-negative. That p(x, y) > 0if x # y and is hence a metric, and that the topology
given by this metric is the given topology of M follows easily from the following two lemmas:

LemMma (1). Let H be a Hilbert space, [ [a. b] —» H a C'-map. Then

b
j I/ (eyii de = {1 f(b) — fla)].

Proof. We can suppose f(b) # fla). Let g(t)( f{6) — f(a)) be the orthogonal projection
of f{t) — f(a) on the one-dimensional space spanned by f(6) — f(a). Then g:[a.b] = R
is C', gla) =0, g(b) =1 and f{1) ~ fla) = g(t)(f(b) — fla)) + h(t) where h:[a. b] -
(f(6) — fla))! is C'. Then f'(t) = g'((f(b) — fla)) + A'(1) where A'(1) L ( f(b) — fla)).
hence

LSO = 06y —f@121g' (O + 1@ 2 | f(b) — fla))* g
SO
b b
J- If ()l de = [If(b) = f(a)y f lg’ () dt. -
But
b b
j lg'(n)} dt Zj g'(1)dt = g(b) — g(a) = 1.
q.e.d.

LeEMMA (2). Let H be a Hilbert space, p € H, and G a continuous map of a neighborhood
of p into the space of positive operators on H. Then there exists r > 0 such that G is defined
on B,(p) and positive constants K and L such that:

(1) if f: [a, 6] ~ B,(p) is a C'-map with fla) = p

b b
LJ O, (Y2 de sj GBS (0, £ (D512 dr

b
< K_[ S, f1(nyt de,
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() iff:la, b] = Hisa C'-map with f(a) = pand c = Sup {t€ [, b}l ({a, t}) = B.(p)}
then

f (GO, fryY3de = Lr.

Proof. Let Q(x) = G(x)™'. By continuity of G and Q we can choose K and L >0
such that |G(x){ < K* and |Q(x)|| < L~? for x in some open ball B,(p). Then
(G, f' (D) < KX, £ ()
and
L0, £ = QUGS D) (1), £
< L3 G(F ) (0, /()

if f(ty e B(p). Then (1) follows immediately while (2) follows from (1) and Lemma (1).
q.e.d.

DErFINITION. If M is a C**'-Riemannian manifold then the metric p defined above on
each component of M is called the Riemannian metric of M. If each component of M is a
complete metric space in this metric then M is called a complete C**'-Riemannian manifold.

If o is a C'-map of an open interval (a, b) into a Riemannian manifold M we define the
length of o, L(0),4t0 be

8
limj o’ (D] dt.

B—b

Of course L(s) may be infinite. However suppose L{c) < <. Given & > 0 choose
th=a<t, <..<t, <b=t,, sothat

j“”na'(t)u dr <.

te

Then clearly o((a, b)) is included in the union of the e-balls about the o(¢) i = 1, 2,—:., n,
Thus

ProPosITION (1). If M is a C**'-Riemannian manifold and ¢ : (a, b) - M is a C'-curve
of finite length, then the range of o is a totally bounded subset of M, hence has compact
closure if M is complete.

PrOPOSITION (2). Let X be a C*-vector field on a complete C**'-Riemannian manifold
M(k > 1) and let ¢ : (a, b) - M be a maximum solution curve of X. If b < co then

b
J‘ | X(a(D) dt = 0
0

(in particular {{X(c(8)}|| is unbounded on [0, b)) and similarly if a > —co then

0
J’ [ X (el dt = o0

(in particular [(X(a(1))i{ is .unbounded on (a, 0]).
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Proof. Since ¢'(1) = X(o(1)) it follows from Proposition (1) that if

b
J 1X(e()l dt < =0
)

then o(¢) would have a limit point as t — b, contradicting Theorem (3) of §6.
q.e.d.

Now let f: M — Rbe a C**! real valued function on a C** '-Riemannian manifold .
Given p € M df, is a continuous linear functional on M, hence there is a unique vector
Vf, € M, such that df,(v) = (v, Vf,), for all v & M,. Vf, is called the gradient of f at p
and Vf:p — Vf, is called the gradient of f. We claim that V/is a C*-vector field in M.
To prove this we compute it explicitly with respect to a chart ¢ : D(p) — H where H is a
Hilbert space with inner product, {,>. Let T be the canonical identification of H* with
H, so if le H* then /(t) = (v, T!y. Since T is a linear isomorphism it is C®. Define g on
the range U of ¢ by g = - @~ !. Then g is of class C**! hence dg: U — H* is class C*
so Todg = 4is C*. Now by definition of G®

(G*(x) dp(Vf,), v) = (Vf,, dos ' (v)), = df,des ()
= dgw(x)(v) = <T dg(p(x)vv>
so de (V) = Q°x)A(p(x)). Since x — G?(x) and hence x — G°(x)"! = Q°(x) are C*
it follows that x — de.(Vf,) is a C-map of D(p) into H. By definition of the C*-structure
on T(M) this means that Vf is a C*vector field on M. We note the following obvious
properties of Vf. First Vf, is zero if and only if p is a critical point of £, so the critical locus
of fis just the set of zeros of the real valued function {|V/ |. Moreover
(YN f(p) = df,(Vf,) = <Vf,p VI, = 1Y/,
so (Vf)f is positive off the critical locus of f.

§10. TWO-THIRDS OF THE MAIN THEOREM —

In this section we assume that M is a C**2-Riemannian manifold (k > 1) without
boundary and that f: M — R is a C**?-function on M having only non-degenerate critical
points and satisfying condition

(C) If S is any subset of M on which fis bounded but on which V/!| is not bounded
away from zero then there is a critical point of f adherent to S.

We note that it is an immediate consequence of the Morse Lemma of §7 that a non-
degenerate critical point of a C? function on a Hilbert manifold is isolated. In particular
the critical locus of f is isolated. We will now prove that much more is true. Leta < b
be two real numbers and suppose that {p,} was a sequence of distinct critical points of f
satisfying a < f(p,) < b. Choose for each n a regular point g, such that

1 1
(4., p,)<;, llqunll<; and a<f(q,) <b.

Then by condition (C) a subsequence of the {g,} will converge to a critical point p of f.
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But clearly the corresponding subsequence of {p,} will also converge to p, contradicting
the fact that critical points of f are isolated. Hence

PROPOSITION (1). If a and b are two real numbers then there are at most a finite number
of critical points p of f satisfying a < f(p) < b. Hence the critical values of f are isolated and
there are at most a finite number of critical points of f on anv critical level.

LEMMA. Assume M is complete and let ¢ - (a, B) — M be a maximum solution curve of

Vf. Then either lim f(o{1)) = <o or else B = o and a(1) has a critical point of f as a limit
i~
point as t — B. Similarly either lim f(o(f)) = — o0 or else 2+ = ~ o and o(1) has a critical
t—zx

point of fas a limit point as t — x.
Proof. Let g(1) = f(o(2)). Then

g = dfam(ol(t)) = dfa(l)(vfa(t)) = HVfamHZ-
Thus g is monotone, hence has a limit Bas t — 8. Suppose B < «. Then since

g(t) = g(0) +J g'(s)ds = ¢(0) +J [Vf, it ds
4] 0

it follows that

8
J [Vfoiall? ds < co.
0

By Schwartz's inequality we have

B 8 1/2
J‘ 1V ool ds < ﬂ”z(J‘ IV aal® dS)
0 0

so B < oo would contradict Proposition (2) of §9. Hence 8 = oc. But then clearly
liV/, !l cannot be bounded away from zero for 0 < s < o since then the above integral
could not converge. Since f(a(s)) is bounded for 0 < s < oo (and in fact lies in the interval
[ f(c(0)), B] it follows from condition (C) that o(¢) has a critical point of f as limit_point
ast1 — fi.

PROPOSITION (2). If M is complete and f has no critical values in the closed interval
la, b] then Vf is C**'-strongly transverse to f on |a, b} hence by the Strong Transversality
Theorem (§8) M, = {xe M| f(x) < a} and M, = {x € M| f(x) < b} are C**'-isomorphic.

Proof. By Proposition (1) of this section there is a § > 0 such that f has no critical
values in [@a = 38,6+ 6] Let V=f""a—4,b+4). Then (Vf)f = [Vf}i? is strictly
positive and C**' in V. Let pe M and let o : (a, f) - M be the maximal integral curve of
Vf with initial condition p. We must show for some 2 < t, < 0 < t; < 8 that ¢(¢,) and
o(t,) are not in V, i.e. that f(6(,)) < @ — 6 and f(o(¢,)) = & + 5. Suppose for example
that f(o()) < b + 5 for 0 < t < B. Then by the lemma o(f) would have a critical point p
as limit point as ¢t — 8. Since f is continuous and f{(o(f)) monotone it follows that
a—6 < flo)y < fl(p) < b+ 5 sof(p) would be a critical value of fin [@a — 8,6 + 6}, a
contradiction.

q.e.d.
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Before completing the Main Theorem we must discuss the process of adding a handle
to a Hilbert manifold.

§11. HANDLES

Let D* denote the closed unit ball in a separable Hilbert space H of dimension &
(0 < k < ). Notethatsince f: H — R defined by f(x) = |ix|?isa C™ real valued function
in H and zero is the only critical value of f, it follows from the Smoothness Theorem for
Regular Levels (§7) that D* = f~!(—co, 1] is a closed C* submanifold of H. Moreover
the boundary ¢ D* of D* is S~ !, the unit sphere in H. We call D* x D'a handle of index &
and co-index /. Note that D* x D'is not a differentiable manifold since both D* and D'
have non-empty boundaries (unless k or / = 0). However if we put D* = D* — 8D*
then both $*~! x D'and D* x D'are C*-Hilbert manifolds.

DEefINITION. Let M be a C'-Hilbert manifold and N a closed submanifold of M. Let f
be a homeomorphism of D* x D' onto a closed subset h of M. We shall write M = N fo h

and say that M arises from N by a C™-attachment f of a handle of type (k, ) if:
(Y M =NuUh
(2) f1S*~! x D'is a C"-isomorphism onto h ~ éN;
(3) fID* x D'is a C’-isomorphism onto M — N.

Suppose we have a sequence of C™-manifolds ¥ = Ny, Ny, ..., N, = M such that
N, arises from N, by a C"-attachment f; of a handle of type (k,, /,). If the images of the
f: are disjoint then we shall say that M arises from N by disjoint C"-attachments (f, ..., f,)
of handles of type ((k,, /), ..., (k,, {,)).

With the next lemma and theorem we come to one of the crucial steps in seeing what
happens when we “pass a non-degenerate critical point”.

LeEmMMA. Let i: R — R be a C* function which is monotone non-increasing and satisfies
Mx)=1ifx<1/2, {(x) >0ifx <land A(x) =0if x> 1. For0 < s < 1 let a(s) be
the unique solution of A(c)/1 + ¢ = 4#(1 — 5) in the interval [0,1]. Then o is strictly
monotone increasing, continuous, C® in [0, 1) and a(0) = 1/2, a(1) = 1. Moreover if ¢ > 0
andu® — vt > —eandu® — v? — (3¢/)A(?/e) < — ¢ then

1 v?
u- <eo 31
€+ u

Proof. Clearly A(o)/1 + o is strictly monotonically decreasing if 0 < ¢ < 1. Since
it is one for ¢ = 0 and zero for o = 1 the theorem that a continuous monotone map of an
interval into R has a continuous monotone inverse gives easily that ¢ exists, is continuous
and monotone. That ¢(0) = 1/2 and o(1) = 1 is clear and since A(¢)/1 + ¢ has a non-
vanishing derivative in [0, 1) it follows from the inverse function theorem that ¢ is C® in
[0, I). Now consider f(u, v) = u? — eo(v?/(e + u?)) in the region

3¢ [u?
u?—p? > —g, ul —~ v - = A—} < —¢.
2 £
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For v fixed fis clearly only critical for « = 0 where it has a minimum, hence f must assume
its maximum on the boundary. On the boundary curve u? — v? = —& we have
v¥(e + u?) = 1so flu,v) = u* — &. If (u, v) is not also on the other boundary curve then

b 2 2
—i_ﬁ).(u—) <0 so A(E—) >0
2 \e¢ €
so u? < £5s0 f(u, v) < 0. On the other hand if (&, ¢) is on the boundary
3
R AMu?je) = —¢
2
we have

2 3 2
__P__z R QR ,1(5_)'
et+u 2(1 + u*je) \¢
Now on this boundary

2
utle > 1/2 (otherwise "< 0)
e+ u

and clearly
ur uz .
— <1 so —=oda(p).
& &

By definition of a(p)
v? 3 ia(p))
e+ u? 21+ 0(p) (L=p)=»

hence

vZ

f@wruﬂ—wﬂ+ﬁ)=wm»wdm

i.e. f vanishes on this boundary. Thus f < 0 everywhere on the boundary of the region
and hence also in the interior. -
q.e.d.

THEOREM. Let B be the ball of radius 2¢ about the origin in a Hilbert space H. Define
f:B—>Rbyf(v) = |Pv|* — ||Qul|* where P is an orthogonal projection on a subspace H'
of dimension | and Q = (1 — P) is a projection on a subspace H* of dimension k. Let

3
g@=ﬂw—§uww%)

where A:R — R is as in the lemma. Then M = {x e B|lg(x) < —¢} arises from N =
{x € B| f(x) < — ¢} by a C™ attachment F of a handle h of type (k, I).

Proof. Before commencing on the proof we givea diagram of thecase k = / = 1 (Fig. 1).

Let D* and D' be the unit discs in H* and H' respectively. Let 4 be the set in B where
f= —tandg< —esoM=Nuhand Nnh < ON. Define F: D* x D' - H by

F(x, y) = (es(Ix)lyii* + &)*2x +(eo (1x]2))"/y.
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HX

Where ¢ is as injthe lemma. Then
SF(x, ) = e[o(ixiHIyi? — (1 + o(lixiHlIy1)1x)1%]
= e[o(Ilx[yI1*(1 = IxI?) — Ix[*] = —¢
g(F(x, y)) = ela(Ix ) yIIP(L = [x[?) — [Ix)1?
= 3(a(Ix1D)IyI*)]
Since Z is monotone decreasing
g(F(x, »)) < e[a(ix®)(1 = Ix]?) — {ix]* — 34(a(lix][*)] -
but A(a(|lx[?)) = #(1 + o(|lx|))(1 — |ix||*) by definition of ¢; substituting we see that

g(F(x,y)) < —e¢, hence Fmaps D* x D'intoh. Conversely suppose we h and let u = Pw,

v=0Owso lul® — |v)]? > —¢eand

2 . 3 -
1l — Jui® —§A(1|u1|2/e) < —e

Then [[p]*/(e + |ul®) < 1 so x = (e + [u|>)"Y?ve D* Also o([v]*/(e + [u}?)) is well
defined and by the lemma [ju[%/ea(|lv]*/(c + lul?) < 150 y = (ea(lloii*/(e + lul[*))) ™ u
e D', Thus

G(w) = ((e + I1Pw]®) ™ 20w, (ea(liQwI|*/(e + |Pwii*))) ™ /2 Pw)
defines a map of 4 into D* x D! It is an easy check that F and G are mutually inverse
maps, hence F is a homeomorphism of D* x D! onto A. From the fact that ¢ is C* with
non-vanishing derivative in [0, 1) it follows that F is a C*®-isomorphism on B* x D! On

S*"' x D' Freduces to
F(x, y) = (e(flyll* + D) 2x + €'y
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which is clearly a C®-isomorphism onto N N h, the set where f = —¢ and 'Pwl?

< e

g.e.d.
§12. PASSING A CRITICAL LEVEL

In this section we will complete the proof of the main theorem by analyzing what

happens as we pass a critical level. We will need:

LemMa. Let Q and f be bounded, symmetric, non-degenerate bilinear forms on a Hilbert
space H, Q positive definite. Then there exists an admissible inner product {,> in H such
that Q(v, v) = (Guv,v) and flv, v) = |Pri* — |(1 — P)t!|* where P is an orthogonal pro-
Jjection which commutes with the positive operator G.

Proof. We essentially proved this in the course of proving the Morse lemma. Note
that Q(u, v) is an admissible inner product in H, hence f(v, v) = Q(Av, r) where A is an
invertible operator self adjoint with respect to this inner product. Let G = |4|™! and
P = h(A), where h is the characteristic function of [0, o), and define {u, ¢> = Q(|A4ly, v)
so Q(u, vt) = {Gu, v). It is clear that any function of A4 is self adjoint relative to {,> so P
is an orthogonal projection and G a positive operator in this inner product, and both being
functions of A they commute. Now [A]7!'4 = AA) — (1 — A{A)) so GA =P — (1 — P)
50 f(v, v) = Q(Ar, v) = (GAv, v) = ||Pp|i* — [[(1 — P)if®.

. q.e.d.

We now return to the situation of §10; M is a complete C**2-Riemannian manifold
(k = 1)and fis a C**2-function on M all of whose critical points are non-degenerate, and
condition (C) is satisfied. Let ¢ be a critical value of f. We reduce to the case ¢ = 0 by
replacing f by f — c. By §10 there are a finite number of critical points p,, ..., p, of f with
f(p) = 0. Let k; and /; be respectively the index and coindex of f at p;. By the Morse
Lemma (§7) we can find for some § < 1 a C*-chart ¢, at p, whose image is the ball of radius
26 in a Hilbert space H, such that ¢,(p) =0 and fo7;'(v) = P> — (1 — PYol?
where P, is an orthogonal projection in H; of rank /; and (1 — P)) has rank k;. Moreover
by the above lemma if G is the positive operator in H, defined by {(de,, (), do, ' (), =
{G'u, v) then we can assume that G' commutes with P,. This will be crucial at a later point
in the argument.

By Proposition (1) of §10 we can choose ¢ < §%so small that 0 is the only critical value
of fin (=3¢, 3¢). Let W = f~1(—2¢, c0). We define a C*-real valued function g in W by

9(o7 ) =S (07 ') = 5 Al Puoll%e),

where 1 is as in the lemma of §11, and g(w) = fiw)if w ¢ U D(¢,). Note that if w = ¢7'(v)

i=1

e Wand f(w) + g(w) then A(||P,v|*/€) + Oso ||Pw|? < & (hence f(w) < ) and ||Pp||® —
I — P)oll? = f(w) > — 2es0 fjo)®> = |Pw|? + I ~ P)v|* < 4e < 48, so the
closure of {w e W D(¢)|f(w) + g(w)} is included in the interior of D(¢,), which proves
that g is C* The above also shows that {wé¢ W |f(w) < e} = {we W| gWw) < &}.
Now it follows immediately from the theorem of §11 that {we W|g(w) < — &} arises from
{we W|f(w) < —¢} by the disjoint C*-attachment of r handles of type (k,, /) ...,
(k,, 1,). We will prove:
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LeMMA. If ¢ is sufficiently small then Vf is C*-strongly transverse to g on [— ¢, €].

Itthen follows from the strong transversality theorem that there exists a C*-isomorphism
h of W onto itself such that A(w) = wif [g(w)] > —3¢/2 and A maps {we Wig(w) < —¢}
C*-isomorphically onto {w ¢ W|g(w) < ¢} = {we W|flw) < ¢}. We can extend A to a
C*isomorphism of M by defining A(x) = x if x¢ W. It follows that {xe M| f(x) < ¢}
is C*-isomorphic to {x € M| f(x) < — ¢} with r-handles of type (k, /,), ..., (k,, /,) disjointly
C*-attached. More generally by applying Proposition (2) of §10 to the intervals [a, — &]
and [g, b] we get the third part of the main theorem.

THEOREM. Let f be a C**? real valued function on a complete C**2-Riemannian manifold
M(k = 1). Assume that all the critical points of f are non-degenerate and that f satisfies
condition (C). Let py, ..., p, be the distinct critical points of fon f~'(c) and let k; and [; be
the index and coindex of fat p;. If a< ¢ < b and c is the only critical value of f in [a, b]
then {xe M|f(x) < b} is C*-isomorphic to {xe M|fix) < a} with r-handles of type
ki, 1), ..., (k,, 1) disjointly C*-attached.

It remains to prove that Vfis C*-strongly transverse to g on [— ¢, &}, if ¢ is sufficiently
small. Let
Se Se
V= [er‘ - — < g(x) <—}.
l I 3 g(x) 3
We note that since

3e R
—L<g<
S 5 =9sJ

and f has no critical value in (—3¢, 3¢) except zero, the only possible critical points of f
in Vcould be p,, ..., p,. But
3e

g(p) = — E‘

so f has no critical points in V. Now let pe ¥ and let ¢ : (a, f) = M be the maximal integral
curve of Vf with initial condition p. Then by the lemma of §10 either f(a(f)) - 0 as ¢t — B,
so a(#) gets outside V as + — B or else o(t) has a critical point of fas limit point as t - f
so again o(f) must get outside V as r — f. Similarly o(¢) must get outside V as t — a.

Thus it remains only to show that (Vf)g is C* and positive in V. Qutside U Dip), f=g
i=1

so (Vf)g = (Vf)f = |Vf ||* which is C**" and is positive since f has no critical points in V.
What is left then is to show that (V/f)g is C* and does not vanish on D(¢,) except at 2
The following proposition settles this local question.

ProrosiTION (1). Let @ be a neighborhood of zero in a Hilbert space H with inner product
(), made into a C**'-Riemannian manifold (k = 0) by defining (u, v), = (G(w)u, v>
where G is a C*- map of 0 into the invertible positive operators on H. Let P be an orthogonal
asrojection in H which commutes with G(0) and define f(v) = ||Pr{* — (1 — P)v|® and

3
9(v) = F(0) = 5 alliPollje)



320 RICHARD S. PALAIS

where A is as in the lemma of §11. Then (Vf)g is C* and for ¢ sufficiently small does not
vanish on the 2¢ ball about the origin except at the origin.

Proof. Let Q(x) = G(x)™*! so that Q(0) also commutes with P. Let T(x) = PQ(x)
— Q(x)P. Note that [|Px|| < |x|l and (2P — x|l = |Ix}| so

{Px, QUx)(2P — Dx) = {Px, PQ(x)(2P — x>
= (Px, T(x)(2P — x) + {Px, Qx)Px)
> (Px, T(x)(2P — I)x)
= — [ T(x)l- fixil®
Now ul? = (u, G(x)Q(x)u) < |G(x)] < u, Q(x)u) hence
(2P = Dx, Q2P = Dx> 2 16~ -iixii®.
Since ||T(0)f| = O while [[G(0)||™' > 0 we can find a neighborhood U of the origin,
independent of ¢, such that for xe U
IGE)I™" > 3 T(x)| supl 4.
Since 4’ < 0 it follows that for x in U
4L2P — I)x, Q)P — Dx) — (|| Px]|}/e) {Px, Qx)2P — D)xD)
241G~ — HAUPxi?fe)l - | Txl)lix)?.
which is positive unless x = 0. Since the left-hand side is clearly C* it will suffice to prove
that it equals (Vf)g. From the definition of f and g df.()) = 2{QP ~ Dx,y) =
2{Q(x)2P — Dx, y), so Vf, = 2Q(x)(2P — Dx while
dg.(y) = df,(y) = 32 (I Px|[e){ Px, y)
= 2({Q2P = Dx, y> = 3X(|1Px|*[e)XPx, y)).
Since Vf,(g9) = dg.(vf,) the desired expression for (Vf)g is immediate.
g.ed.

This completes the proof of the Theorem. We now consider an interesting corollary
of the proof of Proposition (1). Maintaining the notation of the proof let us define
p(x) = |ix|i* = [IPx|i* + (1 — P)x|* so that (f — p)(x) = —2{(1 — P)x|i* and

(VNS = p)(x) = 8(P — I)x, Q(x)(2P — D)x)
= 8P — Dx, Q(x)(P — Dx> + 8{(P — Dx, Qx)Px>.
Since Q(x)Px = PQ(x)x — T(x)x and since PQ(x)x is orthogonal to (P — I)x we get
(VIS = p)(x) = 8{(P — Dx, Qx)(P — Nx) — (P — Dx, T(x)x>.
Recalling the inequality (u, Q(x)ud = [|G(x){|™! . |ul?
(VNS — p)(x) = 8ii(P — Dx|I(I(P — DxIt- GO~ = xl - T(x)i).
Since ||[T(0)|] = 0, in a sufficiently small neighborhood of the origin we have ||T(x)!! <
1|IG(x)||~" so in this neighborhood

VIS = p)x) = 8I(P — Dl 1GEI “(!I(P ~ x| - ”12“)
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If f(x) < 0 then (P — Dxi|* = iPx}|i* so 2i(P — DNx||* > !x;j* which implies that

. .l
WP~ Dxjz= >

hence near the origin f{x) < 0 implies (V/)(f — p)(x) > 0. It follows that f — p is mono-
tonically increasing along any solution curve of Vf which is close enough to the origin and
on which fis negative. Since clearly f{x) > —p(x) we see that if ¢ is sufficiently small and
o(t) is the maximum solution curve of Vf with initial condition p, where p(p) < ¢/2, then
p(a(8)) > ¢ implies f(o(2)) > 0. This proves

ProposiTion (2). Let f be a C*-real valued function on a C3-Riemannian manifold M
and let p be a non-degenerate critical point of f. Then if U is any neighborhood of p there is a
neighborhood O of p such that if ¢ is a maximum solution curve of Vf having initial condition
in O then for t > 0 either o(t) € U or f(c(2)) > f(p).

COROLLARY. If ¢ is a maximum solution curve of Vf and if p is a limit point of o(?) as
t = o (t > —o0) then lim o(t) = p ( lim o(t) = p).

[Aad] t— ~x
PROPOSITION (3). Let M be a complete C*-Riemannian, f a C3-real valued function on M
which is bounded above (below), has only non-degenerate critical points, and satisfies condition
(C). If o is any maximum solution curve of Vf then lim o(t)( lim o(t)) exists and is a critical

[ aade ] t——~x
point of f.
Proof. Animmediate consequence of the above corollary and the lemma to Proposition
(2) of §10.

§13. THE MANIFOLDS H(I, V) AND Q(V; P, Q)

In this section we will develop some of the concepts that are involved in applying the
results of the preceding sections to Calculus of Variations problems.

A map o of the unit interval / into R" is called absolutely continuous if either and hence
both of the following two conditions are satisfied:

(1) Given £ > 0 there exists § > 0 such that if

k
0<ty<..<tye <1 and Y |ty —tl <6
i=0

then
3 lolizien) = ot <2
(2) Thereisage L'(/,R")
( i.e. g is a measurable function from [ into R" and J: gD dt < oo)

such that

o(t) = o(0) + J“g(s) ds.
0
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The equivalence of these two conditions is a classical theorem of Lebesque. From the
second condition it follows that ¢'(r) exists for almost all 7 € /, that ¢’ ( =g) is summable and

ott) = o(0) +J‘ c’(s) ds.
[4]

From the first condition it follows that if ¢ is a C'-map of R" into R™, or more generally
if ¢ : R" — R™ satisfies a Lipshitz condition on every compact set, then ¢ » ¢ is absolutely
continuous. -

For reasons of consistency that will become clear later we will denote the set of measure-
able functions ¢ of I into R" such that

1
J‘ llo(DI?dt <o by Holl, R"),
s}

rather than the more customary L2(Z, R"). Then H,(I, R") is a Hilbert space under pointwise
operations and the inner product (,), defined by

1
<G’, P>o =J‘ <O"(I), P(’)> dt
0

where of course ¢.) is the standard inner product in R".

We will denote by H (I, R") the set of absolutely continuous maps ¢ : 7 — R" such
that o’ € Ho(Z, R"). Then H (I, R") is a Hilbert space under the inner product {,>, defined
by <o, p>1 = <a(0), p(O)) + <', p'>o and in fact the map R" @ Ho(l, R") — H,(/, RY)
defined by (p, g) — o, where

a(t) =p +jlg(5) ds,
Is an isometry onto. °
DErFINITION. We define L: H, (I, R") = H,(l, R") by Lo = ¢’ and we define
HYI,R") = {0 e H,(I,R"|a(0) = (1) = 0}. —
Then the following is immediate:

TueoReM (1). L is a bounded linear transformation of norm one. HY(I, R") is a closed
linear subspace of codimension 2n in H,(I, R") and L maps H{(I, R") isometrically onto the
set of g € Hy(I, R") such that

1
f g()dt =0,

0
i.e. onto the orthogonal complement in Hy(I, R") of the set of constant maps of I into R".

THEOREM (2). If p € HY(I, R") and A is an absolutely continuous map of I into R" then

1
J (), p(1)) dt = (4, —Lp),.
0

Proof. Clearly t — (i(1), p(1)) is an absolutely continuous real valued function with
derivative (A'(1), p(1)) + {A(n), p'()). Since an absolutely continuous function is the
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integral of its derivative and since {i(¢), p(#)) vanishes at zero and one, the theorem follows.
q.e.d.

We shall denote the set of continuous maps of [ into R* by C°(Z, R"), considered as a
Banach space with norm || |, defined by [o!, = sup{ia(s)||reI}. We recall that by the
Ascoli-Arzela theorem a subset S of C°(Z, R") is totally bounded if and only if it is bounded
and equicontinuous (the latter means given ¢ > 0 there exists 6 > O such thatif |s — ¢] < 4
then [g(s) — g(t)] < ¢ for all g€ S). Since the inclusion of C°(Z, R") in Hy(/, R") is clearly
uniformly continuous it follows that such an S is also totally bounded in Hy(/, R").

The following is a rather trivial special case of the Sobolev inequalities:

THEOREM (3). If o € H,(, R") then
llo(t) — a(s)]| < It — s|"| Lolo.

Proof. Let h be the characteristic function of s, ¢]. Then

j’a’(x) dx

1
=J- h(x)lla’(x)|| dx

0

fio(t) — o(s)ll =

SJ llo"(x)] dx

and Schwartz’s inequality completes the proof.
g.e.d.

CoRrOLLARY (1). If o€ H,({, R") then lig], < 2ic]l,.

Proof. By definition of || |, we have [o(0)]] < llo![, and [Lall, < |oll,. Now
lle(nh < ile(0)il + lio(r) — o(0)]] and by the theorem {lo(r) — o(0){! < {[La,.

g.e.d.

COROLLARY (2). The inclusion maps of H,({,R") into C°(I,R") and Hy(I,R") are
completely continuous. .

Proof. Let S be a bounded set in H,(/, R"). Then by Corollary (1) S is bounded in
C°(I, R™ and by the theorem S satisfies a uniform Holder condition of order 1/2, hence is
equicontinuous. g.e.d.

THEOREM (4). If@ : R" > RPisa C***-map theno — ¢ o cisa C*-map @ : H,(I, R") —
H,(I, RP). Moreover if | < m < k then

d"Go(Ar oo s A)(D) = A"y (y(D)s ..., in(D)):

Proof. This is a consequence of the following lemmaifwetake F = dp 0 < s < k — 1.

[Note that in the lemma if s = O then we interpret L*(R", R”) to be R”.]

LEMMA. Let F be a C'-map of R" into L3(R", R?). Then the map F of H,(I, R") into
L(H,(I, R"), H\(I, RP)) defined by
F(a)(lh LR ) j'1)(1) = F(a(t))(;‘l(t), LR} ':‘s(t))

is continuous. Moreover if F is C* then F is C' and dF = dF.
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Proof. We note that
(F@) s -0 20 = 4F o0 0N (0, oo, 20) + 3 F(ON0), oo, K0, 1)

hence
I(F©X Ay, .oy A)Y O < IdF 0l - lo" O - A DI ... TiALD]

+ TAFGOTa®] . 15O .. 1ol

Since 14,1, < 2!i4ll; (Corollary (1) of Theorem (3)) we see that [(F(o)Z,..... ) %
< 2°L(0)i4, iy - Al where L(o) = SupildF, .l ie’ilp + s SupiF(a(1). Also [F(o)
(Ays ooy Al < 25 SuplIF(a(8))i- iA, Iy ... l4,]l;. Recalling that ['p/|2 = Ip(0)* + 'p" .3
we see [1F(0)(4,, ..., A)ll, < K(o){A.ll, ... liA,ll,. Since F(o) is clearly multilinear it
follows that F(¢) e L(H,(I, R"), H,(I, R?)). 1f p e H,(I, R") then

1(F(o) — F(@))(A1, .-, Al < 2° Supi|F(a(£)) — Fo(O - Aty ... Al
and a straightforward calculation gives

[((F(o) = F(0))(Ays ..o s A Mo < 2°M(a, p)lIAglly ... 1Al
where

M(a, p) = SuplldF,)l-lle” — p'llo + SuplidFoqy — dF il 1lp o + s Supll F(a(1) — F(p(n)]

SO
[l (e) — F(p)lIl < K(a, p)

where ||} ||| is the norm in L(H (I, R", H,({, R?)), and K(c, p) — 0 if Sup!|F(o(1)) —
F(p(M)!l, SuplidF,(,, — dF,(,ll, and Jlo' — p’lly all approach zero. But if p— o in
H (I, R") then llo" — p’lly < lle — pll; goes to zero and by Corollary (1) of Theorem (3)
p — o uniformly, hence since F and dF are continuous F(p(z)) — Fo((t)) uniformly and
dF,(,, — dF,,, uniformly, so K(g, p) = 0. Thus {||[F(s) — F(p)||| — 0 so F is continuous.
This proves the first part of the lemma. Now suppose F is C3 so dF is C2. By the mean
value theorem there is a C'-map R:R" —» L*(R", L*(R", R")) such that if x = p + v then
F(x) — F(p) — dF,(v) = R(x)(v,v). Then R: H,({,R") —» L*(H,(I, R"), H,(I. L'(R", RP)))
is continuous by the first part of the theorem and if ¢ and x = p + o are in H{(/,R")
F(x) - F(6) — dF ,(p) = R(x)(p, p). It follows that F is differentiable at ¢ and dF , = dF,.
Since dF, is a continuous function of & by the first part of the lemma F is C’.

q.e.d.

The following is trivial:

THEOREM (5). Consider R™ and R" as complementary subspaces of R™*". Then the map
(4, ) = 1 + o is an isometry of H,(I, R™) @ H,(I, R") onto H,(I, R™*").

DEerINITION, If V is a finite dimensional C*-manifold we define H (1, V) to be the set of
continuous maps o of I into V such that ¢ . ¢ is absolutely continuous and (¢ o 6)'|| locally
square summable for each chart ¢ for V. If Vis C? and o € H,(I, V) we define H,(L, V), =
{Ae H(L TN eV, Sfor all tel}. If P, QeV we define QV;P, Q)=
{oe H({, Me(0) = P,o(1) = Q} and if oceQ(V;P, Q) we define VP, Q),

I
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{Ae H(, V),IA0) = 0p and i(1) = 0,}. We note that H,(I, V), is a vector space under
pointwise operations and that Q(V; P, Q), is a subspace of H (I, V),.

THEOREM (6). If V is a closed C***-submanifold of R" (k > 1) then H (I, V) consists
of all o€ H\(I, R") such that o(I) S V and is a closed C*-submanifold of the Hilbert space
H(I,R"). IfP, Q€ VithenQ(V; P, Q) is a closed C*-submanifold of H (1, V). Ifo € H(l, V)
then the tangent space to H (I, V) at ¢ (as a submanifold of H (I, R™) is just H(I, V),
which is equal to {J.€ H (I, R)|A(t) e V,,t €1} and if 6 € Q(V'; P, Q) then the tangent space
to Q(V; P, Q) at o is just WV, P, Q), which equals {i e H (I, V),|A0) = A(1) = 0}.

Proof. That H,({, V) equals the set of 6 € H,(/, R") such that ¢(f) = V is clear, and
so is the fact'that H,(I, V), and Q(V; P, Q), are what they are claimed to be. Since V is
closed in R" it follows that H (I, V) is closed in C°(/, R"), hence in H,(/, R") by Corollary (2)
of Theorem (3). In the same way we see that Q(V; P, Q) is closed in H(/, R") and that
H\(I,V),and Q(V; P, Q), are closed subspaces of H,(/, R"). Since Vis a C***-submanifold
of R” we can find a C**>-Riemannian metric for R” such that ¥ is a totally geodesic sub-
manifold. Then if E:R" x R*— R" is the corresponding exponential map (i.c.
t — E(p, tv) is the geodesic starting from p with tangent vector v), £ is a C**?-map. Let
oce H|(l,V) and define ¢: H, (I, R") » H (I, R") by @(i)}1) = E(a(s), Ar)). Then by
Theorems (4) and (5) ¢ is C* and clearly @(0) = o. Moreover by Theorem (4) dg,(4)(1) =
dE(A(r)) where E°®(v) = E(o(), v). By a basic property of exponential maps dEJ"" is
the identity map of R”, hence de¢, is the identity map of H,(/, R") so by the inverse function
theorem ¢ maps a neighborhood of zero in H,(/, R") C*-isomorphically onto a neighbor-
hood of ¢ in H,(/, R"). Since V is totally geodesic it follows that for 1 near zero in H,(/, R"),
e(N)e H (L, V) if and only if ie H,(I,V), and similarly if ceQ(V; P, Q) then
(D) e QV; P, Q)ifand onlyif 1 € Q(V; P, 0),. Consequently ¢ ~! restricted to a neighbor-
hood of ¢ in H, (I, V) (respectively Q(V; P, Q)) is a chart in H,(I, V) (respectively
Q(V; P, Q) which is the restriction of a C*-chart for H,(/, R"), so by definition H,(/, V)
and Q(V; P, Q) are closed C*-submanifolds of H,(/, R") and their tangent spaces at & are
respectively H,({, V), and Q(V; P, Q),. -

g.e.d.

THEOREM (7). Let V and W be closed C***-submanifolds of R" and R™ respectively
(k=1) and let ¢:V - W be a C***-map. Then @:H (I, V)— H,(I, W) defined by
@(0) =@ooc is a Cmap of H,(I, V) into H,(I, W). Moreover d@,: H,(I, V), —
HU(I, Wioy is given by d,(0)(1) = A, (A()).

Proof. Bya well-known theorem of elementary differential topology ¢ can be extended
to a C***-map of R" into R™ and Theorem (7) then follows from Theorems (4) and (6).

DEFINITION. Let V be a C***-manifold of finite dimension (k = 1) and let j: V — R"
be a C***-imbedding of V as a closed submanifold of a Euclidean space (such always exists
by a theorem of Whitney). Then by Theorem (1) the C*-structures induced on H,(I, V)
and Q(V; P, Q) as closed C*-submanifolds of H,(I, R") are independent of j. Henceforth
we shall regard H (I, V) and S(V; P, Q) as C*-Hilbert manifolds. If ¢ : V — Wisa C***-
map then by Theorem (7) @ : H\(I, V) — H,(I, W) defined by (c) = @ - ¢ is a C*-map and
d@, (A1) = de,(A(1)). We note that § maps Q(V; P, Q) C* into Q(W; o(P), o(Q)).
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THEOREM (8). The function V — H((I, V), ¢ — @ is a functor from the category of
finite dimensional C***-manifolds to the category of C*-Hilbert manifolds (k > 1).

DEFINITION. Let V be a C***-finite dimensional Riemannian manifold (k > 1). We
define a real valued function J¥ on H (I, V) called the action integral by

_ 1 I
J"(a)=;J o' ()il dt.
<Jo

THEOREM (9). Let V and W be C***-Riemannian manifolds of finite dimension and let
@V = Wbhea C**local isometry. ThenJ" =J% , .

Proof. p(a)' (1) = (9 - 0)' () = de,(,(o'(1)). Since do,,, maps V,,, isometrically into
W oiaiyy 1@(0) (1) = llo’()]l and the theorem follows.

CoROLLARY (1). If V is a C***-Riemannian submanifold of the C***-Riemannian
manifold W thenJ" = JY|H (I, V).

COROLLARY (2). If V is a closed C***-submanifold of R" then J"(6) = }|Lo|j3.
Consequently J¥ : H,(I, V) - R is a C*-map.

Proof. By definition J*(¢) = 4||/La|3, so the first statement follows. Since J*" is a
continuous quadratic form on H,(I, R") (Theorem (1)), J*" is a C®-map of H,(/, R") into
R, hence its restriction to the closed C*-submanifold H,(/, V) is C*.

g.ed.

COROLLARY (3). If V is a complete finite dimensional C***-Riemannian manifold then
JV is a C*-real valued function on H,(I, V).

Proof. By a theorem of Nash [7] ¥ can be C***-imbedded isometrically in some R",
so Corollary (3) follows from Corollary (2).

Remark. Let W be a complete Riemannian manifold, ¥ a closed submanifold of W and
give ¥ the Riemannian structure induced from W. Let p, and p, denote the Riemannian
metrics on V and W. Then clearly if p, g€ V py(p, q) = pw(p, q) since the right hand side
is by definition an Inf over a larger set than the left. Hence if {p,} is a Cauchy sequence in
Vit is Cauchy in W and hence convergent in W and therefore in ¥ because V is closed in W.
Hence V is complete. From this we see that

TueoreM (10). If V is a closed C***-submanifold of R" then H,(I, V) is a complete
C*-Riemannian manifold in the Riemannian structure induced on it as a closed C*-submanifold
of H,(1, R").

Caution. The Riemannian structure on H,(J, ¥) induced on it by an imbedding onto
a closed submanifold of some R" depends on the imbedding. To be more precise if ¥ and
W are closed submanifolds of Euclidean spaces and ¢ : ¥ — W is an isometry it does not
follow that ¢ : H,(I, V) - H,(I, W) is an isometry. It seems reasonable to conjecture that
@ is uniformly continuous but I do not know if this is true.

Tueorem (11). If V is a closed C***-submanifold of R" and P, Q € V then Q(V; P, Q)
is included in a translate of HY(I, R"), and QUV; P, Q), < Hi(I, R").
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Proof. If ¢ and p are in Q(V; P, Q) then (o — p)(0) = P — P =0and (¢ — p)1) =
0 — Q =0, and the first statement follows. The second statement is of course a con-
sequence of the first, but it is also a direct consequence of the definition of Q(¥V; P, Q),.

CoroOLLARY (1). If we regard Q(V; P, Q) as a Riemannian submanifold of H (I, R")
then the inner product {,>, in SV; P, Q), is given by {p, i>, = {(Lp, L),.

Proof. Immediate from Theorem (1).

COROLLARY (2). If S € Q(V; P, Q) and if J¥ is bounded on S then S is totally bounded
in C%(I, R™) and Hy(I, R").

Proof. Since J¥(6) = }||Loi} (Corollary (2) of Theorem (9)) iLa|, is boﬁndcd on S.
Since S is included in a translate of H{(J, R") it follows from Theorem (1) that S is bounded
in H (I, R"), hence by Corollary (2) of Theorem (3) S is totally bounded in €%/, R") and
Hy(I, R").

CoroLLArY (3). If {o,} is a sequence in QUV;P, Q) and [L(s, — 0,)iio — 0 as
n,m — o then o, converges in (V; P, Q).

Proof. By Theorem (11) ¢, — o,, € Hi(I, R") hence by Theorem (1) {a,} is Cauchy
in H,({,R"), hence convergent in H,(J, R"). Since Q(V; P, Q) is closed in H,(I, R") the
corollary follows.

DEFINITION. Let V be a closed C***-submanifold of R" (k > 1) and let P, Qe V. If
o€ Q(V; P, Q) we define h(c) to be the orthogonal projection of Lo on the orthogonal
complement of L(Q(V; P, Q),) in Hy(I, R").

THEOREM (12). Let V be a closed C***-submanifold of R" (k 2 1), P, Q€ V and let J
be the restriction of J¥ to Q(V; P, Q). If we consider Q(V; P, O) as a Riemannian manifold
in the structure induced on it as a closed submanifold of H (I, R"), then for eacha € Q(V'; P, Q)
VJ, can be characterized as the unique element of Q(V P, Q), mapped by L onto Lo —h(s).
Moreover VT, |, = ILe — h(o)|,-

Proof. Since Q(V; P, Q), is a closed subspace of H,(/, R") (Theorem (6)) and is
included in H}(J, R") (Theorem (11)) it follows from Theorem (1) that L maps Q(V; P, Q),
isometrically onto a closed subspace of Hy(J, R") which therefore is the orthogonal com-
plement of its orthogonal complement. Since Lo — k(o) is orthogonal to the orthogonal
complement of L(Q(V; P, Q),) it is therefore of the form LA for some ie Q(V; P, Q),
and since L is an isometry on Q(V; P, Q), 4 is unique and |lA]l, = {iLill, = ||iLe — A(0)],
so it will suffice, by the definition of VJ,, to prove that dJ (p) = {4, p), forp e QV; P, Q),,
or by Coroliary (1) of Theorem (11), that dJ,(p) = <L4, Lp)>, = {L, — h(s), Lp), for
pefV; P, Q), Since by definition of (o) we have (h(0), Lp>, = 0 for p e QV; P, Q),
we must prove that dJ,(p) = (Lo, Lp), for pelV; P, Q),. Now J¥(a) = |iLa|?
(Corollary (2) of Theorem (9)) so dJ¥(p) = (Lo, Lp), for pe H,(I, R"). Since
J = J%|Q(V; P, Q) by Corollary (1) of Theorem (9) it follows that dJ, = dJ¥|Q(V; P, 0),.

q.ed
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§14. VERIFICATION OF CONDITION (C) FOR THE ACTION INTEGRAL

In this section we assume that V is a closed C***-submanifold of R*(k > 3), P, Qe V
and J = JY|QV; P, Q). We recall from the preceding section that Q(V; P, Q) is a complete
C*-Riemannian manifold in the Riemannian structure induced on it as a closed submanifold
of H,(/,R") and J is a C*-real valued function. Our goal in this section is to identify the
critical points of J as those elements of Q(V; P, Q) which are geodesics of V' parameterized
proportionally to arc length, and secondly to prove that J satisfies condition (C).

DEFINITION. We define a C**3-map Q : V — L(R", R") by Q(p) = orthogonal projection
of R"on V,. If 6 e Q(V; P, Q) we define UV, P, Q), to be the closure of QV; P, Q), in
Ho(I. R") and we define P, to be the orthogonal projection of Ho(I, R on Q(V'; P, Q),.

THEOREM (1). If o€ QV: P, Q) then QV; P, Q), = {Aie Ho(I, R)i(1) € V() for
almost all t e I} and if i € Hy({, R") then (P,A)(1) = Q{c(1))A(2).

Proof. Define a linear transformation n, on Hy(l, R") by (mi)1) = Q(a(t)A(?).
Since Q(a()) is an orthogonal projection in L(R", R") for each ¢t e/ it follows from the
definition of the inner product in Hy(/, R") that n, is an orthogonal projection. From the
characterization of Q(V; P, @), in Theorem (6) of §13 it is clear that =, maps H}(/, R")
onto Q(V; P, 0),. Since HY(I,R" is dense in Hy(/, R") it follows that the range of =,
is Q(V; P, Q),, hence =, = P,. On the other hand it is clear that i € H,(/, R") is left fixed
by n, if and only if A(+) € V,,, for almost all e /. Since the range of a projection is its
set of fixed points this proves the theorem.

q.e.d.

CoroLLARY (1). Ifa e Q(V; P, Q) then

P,(H\(I,R") = H\({, V),
and
P(HYI(, R = QV: P, 0),.

COROLLARY (2). Ifae QV; P, Q) then P,Lc = Lo.
Proof. Clearly (Lo)(1) = o'(t) € V,(,) whenever ¢'(1) is defined, so Lo € Q(V; P, Q),.

THEOREM (2). Ler T € Hy(I, L(R", R?)) and define for each ) € Hy(I, R") a measureable
function T(A) : [ - R? by T(A)(t) = T(H)A(t). Then:

(1) T is a bounded linear transformation of Hy(I, R") into L'(I, RP);
(2) If T and A are absolutely continuous then so is T4 and (TA)' (1) = T'(DA(D) + T()A'(2);
(3) If Te H,(I, LR, R?), i e H,(I, R") then TA € H,(I, RP).

Proof. 1f n = p = 1 then (1) follows from Schwartz’s inequality, (2) is just the product
rule for differentiation and (3) is an immediate consequence of (2). The general case
follows from this case by choosing bases for R" and R? and looking at components.

DEFINITION. Given 6 € Q(V; P, Q) we define G, € H,(I, LR, R")) by G, = Q-0 and
we define Q, € Ho(I, LR, R") by Q, = G,".
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Remark. That G, e H,(I, L(R", R")) follows from Theorem (4) of Section (13).

THEOREM (3). Let ce V. P, Q). If pe H(L,R") then (LP, — P,L)p(t) = Q ,(1)p(1)
Giren fe Hy(I, R") define an absolutely continuous map g . I - R" by

i1
g(0) =J Q.(s)f(5) ds.
o]
Then if pe H(I, R")
S (LP, = P,L)pdo =<9, —Lp)o.

Proof. Since P,p(t) = G ()p(1) and P (Lp)t) = G,(1)p'(r) by Theorem (1). the fact
that (LP, — P,L)p(¢) = Q,(t)p(?) is an immediate consequence of (2) of Theorem (2).
By (1) of Theorem (2) s — Q,(s) f(s) is summable so g is absolutely continuous. Next note
that since G,(1) = Q(o(?)) is self-adjoint for all ¢, Q,(r) = G, () is self-adjoint wherever
it 1s defined, hence

1 1
S (LP, — P,L)p)o =J S0, Q,(0p(1)) dt =j (Q,(0f(1), p(1)) dt
0 0

1
=J g'(1), p(n) dt.
0

Then if p € H}(I, R") Theorem (2) of §13 gives

SALP, = P,L)p)o =y, —Lp)o q.e.d.

We now recall that if 6 € Q(V; P, Q) then in §13 we defined h(s) to be the orthogonal

projection of Lo on the orthogonal complement of L(Q(V: P, Q),) in Hy(/,R"). By
Corollary (1) of Theorem (1) above it follows that {a(s), LP,p> = 0if pe H}(/, R").

THEOREM (4). If 0 € Q(V'; P, Q) then P, h(c) is absolutely continuous and (P,h(c)) (t) =
Q. (h(o)(1).
Proof. 1f pe H*(I, R") then
(Ph(0), Lpdo = <h(o), P,Lp)o = (h(0), (P,L — LP)p)o

since {h(6), LP,p> = 0. Hence by Theorem (3) {P,h(c), Lp), = {g, Lp)q if we define g
to be the absolutely continuous map of I - R"

g(1) = jOQa(S)h(G)(S) ds.

Then P, k(o) — g is orthogonal to L(H (I, R")) so by Theorem (1) of §13 P,h(c) — g is
constant. Since g is absolutely continuous so is P,h{c) and they have the same derivative.
But g'(1) = Q,(DA(a)(1).

q.e.d.

THEOREM (5). If o is a critical point of J then 6 € C***(I'V) and moreover ¢” is everywhere
orthogonal to V. Conversely given o € SV'; P, Q) such that o’ is absolutely continuous and
(6’ is almost everywhere orthogonal to V, o is a critical point of J.

Proof. By Theorem (12) of §13 if o is a critical point of J then Lo = A(s). Since
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P,Lo = Lo (Corollary (2) of Theorem (1) above) it follows that P,h(s) = h(s) so by
Theorem (4) 5’ is absolutely continuous (so ¢ is C') and

() a’() = Q,(a'(D).
Now since Q: ¥ — L(R", R" is C**> and

o d
Q=1 Q(o(1)

it follows that if ¢ is C™ (1 < m < k + 3) then Q.(¢) is C™~!, hence by (*) ¢" is C" !
so g is C™*1. Since we already know o is C! we have a start for an induction that gives
ceC** If peQ(V; P, Q), then Lo = k(o) is orthogonal to Lp, so by Theorem (2) of
§13 (and the fact that Q(V; P, 0), & HI(J, R")—Theorem (11) of §13) ¢” is orthogonal
to p. Since ¢” and p are continuous it follows that {(a"(¢), p(t)) = 0 for all te]. Now it
is clear that if t € 7 is not an endpoint of I and v, € V,, then there exists p € Q(V; P, 0),
such that p(r) = vq, hence ¢"(t) is orthogonal to ¥, ,,, and by continuity this holds at the
endpoints of 7 also. Conversely suppose o€ Q(V; P, Q) is such that ¢’ is absolutely
continuous and ¢”"(¢) is orthogonal to ¥, ,, for almost all re /. Then by Theorem (2) of
§13 Lo is orthogonal to L(Q(V; P, Q),) so Lo == A(s) and by Theorem (12) of §13 ¢ is a
critical point of J.

q.e.d.

COROLLARY. If o€ QV; P, Q) then o is a critical point of J if and only if ¢ is a geodesic
of V parameterized proportionally to arc length.

Proof. 1t is a well-known result of elementary differential geometry that o € C*({, V)
is a geodesic of V parameterized proportionally to arc length if and only if ¢” is everywhere
orthogonal to V't

LeMMA. Given a compact subset A of V there is a constant K such that

1
j 1Q.,(0p(0)il dt < KliLsliollpile -
0

for all pe Hy(I, R") and all ¢ € H,(I, R") such that o(I) € A.

Proof. Let A* be the compact subset of R” x R" x R" consisting of triples (p, ¢, x)
such that pe 4, v is a unit vector in ¥, and x is a unit vector in R". Since Q is c*+3,
(p, v, x) = IdQ (v)x|| is continuous on 4* and hence bounded by some constant K. Since

d d
Qul0) = 3, Go(1) = 7 Qo (1) = Ay 5(a" (1))

it follows that
1Q.(p()] < Klta (B)if - [l eIl

Integrating and applying Schwartz’s inequality gives the desired inequality.
g.e.d.

We now come to the proof of condition (C).

t See EISENHART: An Introduction to Differential Geometry, p. 246.
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THEOREM (6). Let S = Q(V; P, Q) and suppose J is bounded on S but that VJi is not
bounded away from zero on S. Then there is a critical point of J adherent to S.

Proof. By Theorem (12) of §13 we can choose a sequence {o,} in S such that
WwJ, i = liLe, — h(a,)llp — 0. Since each P, is a projection, hence norm decreasing. it
follows from Corollary (2) of Theorem (1) of this section that Lo, — P, A(5,) i, — 0, and
by Corollary (2) of Theorem (11), §13, we can assume that |6, — 0,i, = 0Oasm, n — .
It will suffice to prove that 'L{g, — 7,)ilp = 0 as m, n — o for then by Corollary (3)
of Theorem (11}, §13, o, will converge in (QV; P, Q) to a point ¢ in the closure of S, and

since IVJ1| is continuous it will follow that {VJ_ i = 0, 1.e. ¢ is a critical point of J. But
iL(g, — a5 = {LOy, L(0s — 6u)D0 — (LT L(o, — 0n)0

hence it will in turn suffice to prove that {(Lo,, L(6, — 6,)>o — 0 as m, n - 0. Now

\Lo,1* = 2J(c,) is bounded, hence |L(o, — 0,)]l, is bounded, and since L, — P, h(s,)

— 0 in Hy(/, R") it will suffice to prove that (P, A(c,) L(c, — 6,)>0 — 0 asm. n - co.

Recalling that o, — o, € H{(I, R") (Theorem (11) of §13) it follows from Theorem (4)

above and Theorem (2) of §13 that

1
[{P, h(a,), L(o, — 0,) )0l = | J (@, (Dh(a D), (0, — a,)1)) di]
0

1
< llon— omli» J 19, ()h(a,)V)i dt
0

and since o, — 0,!l, — 0 it will suffice to prove that

1
f 1Q,.(Dh(a, )OI dt
0

is bounded. Let A be a compact set such that ¢,(/) = A (the existence of A follows from
the fact that {o,} being uniformly Cauchy is uniformly bounded). By the lemma there
exists K such that

1
j 19, (Dh(e XDl dt < K| Lafiolih(an)lio.
0

Now it has already been noted that [{Ls |, is bounded, and since {iLo, — h(a,)i, — 0 so
is [h(a )l
g.e.d.
For the sake of completeness we give here a brief description of the classical conditions
that the critical points of J be non-degenerate and of a geometrical form of the Morse
Index Theoremf.

Let E denote the exponential map of ¥/, into V; ie. if ve ¥V, then E(v) = a(|u])
where o is the geodesic starting from P with tangent vector v/fiv|. Then Eis a C**%-map.
Given v € ¥, define A(v) = dimension of null-space of d£,. If A(z) > O we call v a conjugate
vector at P. A point of V is called a conjugate point of P if it is in the image under E of

t For a detailed exposition the reader is referred to I. M. Singer's Notes on Differential Geometry
(Mimeographed, Massachusetts Institute of Technology, 1962).
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the set of conjugate vectors at P. By an easy special case of Sard’s Theoremt the set of
conjugate points of P has measure zero and in particular is nowhere dense in V.

Given ve E7'(Q) define 5eQ(V; P, Q) by #(s) = E(1(v)). Then 7 is a geodesic
parameterized proportionally to arc length (the proportionality factor being |vi}), hence a
critical point of J by corollary of Theorem (5), and conversely by the same corollary any
critical point of J is of the form # for a unique v e E~Y(Q).

Non-degeneracy Theorem

If ve ETY(Q) then © is a degenerate critical point of J if and only if v is a conjugate
vector at P, hence J has only non-degenerate critical points if and only if Q is not a conjugate
point of P. It follows that if Q is chosen outside a set of measure zero in V then J: Q(V; P, Q)
— R has only non-degenerate critical points.

Morse Index Theorem

Let ve E™'(Q). Then there are only a finite number of t sarisfying 0 < t < 1 such that
tv is a conjugate vector at P and the index of v = Y A(tv). In particular each critical point

O<r<1
of J: QUV; P, Q) = R has finite index.

§15. TOPOLOGICAL IMPLICATIONS

Until now we have given no indication of why one would like to prove theorems such
as the Main Theorem. Roughly speaking the answer is that as a consequence of the Main
Theorem one is able to derive inequalities relating the number of critical points of a given
index with certain topological invariants of the manifold on which the function is defined.
These are the famous Morse Inequalities and are useful read in either direction. That is,
if we know certain facts about the topology of the manifold they imply existential statements
about critical points, and conversely if we know certain facts about the critical point
structure we can deduce that the topology of the manifold can be only so compli-
cated.

As a start in this direction we will show that if M is a complete C2-Riemannian
manifold and f: M — R is a C*-function bounded below and satisfying condition (C) then
on each component of M f assumes its lower bound. Note that we do not assume that the
critical points of f are non-degenerate, however since it is clear that a point where f assumes
a local minimum is a critical point, and is of index zero if non-degenerate, it follows that
if the critical points of fare all non-degenerate then there are at least as many critical points
of index zero as there are components of M. This is the first Morse inequality.

In what follows we denote the frontier of a set K by K.
THEOREM (1). Let M be a connected C'-manifold f: M — R a non-constant C'-function
and K the set of critical points of f. Then f(K) = f(K).

t De RHaM: Variete's Differentiable, p. 10,
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Proof. Let pe K. We will find xe K such that f{x) = f(p). Choose ge M with
flgy # fip) and ¢ : I — M a C'-path such that 6(0) = p and o(1) = ¢ and let g(r) = f(o(8)).
Then g'(t) = df,,,(¢’(1)) and since g is not constant, g’ is not identically zero, so a({f) is
not included in K. Let ¢, = Inf{te|o(t) ¢ K}. Then x = o{ty) € K and since g’(r) = 0
for0 < r < t,. flx) = glty) = g(0) = f(p).

q.e.d.

THEOREM (2). Let M be a C'-Riemannian manifold, f: M — R a C'-function
satisfving condition (C) and K the set of critical points of f. Then f|K is proper,
ie giten —c <a<b< x. Kn f~'([a. b)) is compact (note we do not assume that M
is complete).

Proof. Let {p,} be a sequence in K witha < f{p,) < b. Since K is closed it will suffice
to prove that {p,} has a convergent subsequence. Since p,e K we can choose g, ¢ K
arbitrarily close to p,. In particular since ;Vf/  is continuous and [Vf, i = 0 we can
choose ¢, so close to p, that

|
1|v/q,,zl<;, a—-1l<f(qg)<b+1

and also
1
Gy Pu) < —
n

where p is the Riemannian metric for M. Then by condition (C) a subsequence of {gq,} will
converge to a critical point p of . Since

1
g p)) <=
124

the corresponding subsequence of {p,} will also converge to p. q.e.d.

Remark. f|K need not be proper—for example if M is not compact and f is constant
then f trivially satisfies condition (C) and K = M. -

THEOREM (3). Let M be a complete C*-Riemannian manifold without boundary,
f: M - R a C>-function satisfying condition (C) and ¢ : (2, B) - M a maximum integral
curve of Vf. Then either lim f(o(f)) = co or else § = co and o(t) has a critical point of f
as a limit point as t — co. Similarly either lim f(a(1)) = —co or else x = — 0 and o(r)
has a critical point of [ as limit point as t - —cC.

Proof. This is just the lemma to Proposition (2) of §10 restated verbatim. We simply
note that in the proof of that lemma we did not use the standing assumptions of §10 that f
was C3 or that the critical points of f were non-degenerate.

THEOREM (4). Let M be a complete C*-Riemannian manifold and f: M - R a C*-
Sfunction satisfying condition (C). If f is bounded below on a component M, of M then f|M,
assumes its greatest lower bound.

1 In this regard see also Proposition (3) of §12.



334 RICHARD S. PALAIS

Proof. We can assume that M is connected. Let B = Inf{ fix)|xe M}. Given ¢ > 0
choose p € M such that f{p) < B + e. If 6: (%, f) = M is the maximum integral curve of
V/ with initial condition p then by Theorem (3) « = — oo and o(r) has a critical point g as
limit point as t - —cc. Since f(o(r)) is monotonic non-decreasing f{g) < B + &. Since
the theorem is trivial if /' is constant we can assume f is not constant and it follows from
Theorem (1) that if K is the set of critical points of f we can find x in K, the frontier of K,
such that flx) < B + &. Choose x, € K such that

1
B< f(x,) <B+-.
n

Then by Theorem (2) a subsequence of {x,} will converge to a point x and clearly f(x) = B.
g.e.d.

COROLLARY (1). If the set of critical points of f has no interior and if f is bounded below
on M then f assumes its greatest lower bound.

Proof. 1f B is the greatest lower bound of f then for every positive integer n we can
choose x, € K (a minimum of f on some component of Af) such that

1
B <f(x)< B+~
n

Since K has no interior and is closed K = K, so by Theorem (2) a subsequence of {x,} will
converge to a point x where f(x) = B.
g.e.d.

COROLLARY (2). If V is a C® complete Riemannian manifold and P, Q € V then the
action integral J¥ assumes its greatest lower bound on each component of S(V'; P, Q) and
also on {(V; P, Q).

Proof. We saw in Theorem (6) of §14 that condition (C) is satisfied. If K is the set of
critical points of JY|Q(V; P, O) then by the corollary of Theorem (5) of §14 the elements ¢
of K are (geodesics) parameterized proportionally to arc length. By making a small para-
meter change we can get element of Q(V; P, Q) arbitrarily close to ¢ which are not
parameterized proportionally to arc length, hence K has no interior.

Remark. If V is a complete Riemannian manifold and P, Q € V then given an abso-
lutely continuous path ¢ : / - V with 6(0) = P, o(1) = Q define the length of ¢, L(0), by

1
L(o) =J‘ fio’(D)ii dr.
0

Then by Schwartz’s inequality if ¢ € Q(V; P, Q) L(s) < (2J(c))"'* and moreover equality
occurs if and only if |l¢'|] is constant, i.e. if and only if ¢ is parameterized proportionally to
arc length. Now if ¢ : 7 — V is absolutely continuous and a(0) = P, o(1) = Q we can
reparameterize o proportionally to arc length, getting y: / = V. Then y e Q(V; P, Q) and since
arc length is independent of parameterization L(y) = L(s). Since reparameterizing also does
not affect the homotopy class of o we see that if J¥ assumes its greatest lower bound on a
component of Q(V; P, Q) at a point y (so that y is a geodesic parameterized proportionally
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to arc length) then among all absolutely continuous paths joining P to Q and homotopic
to v, 7y has the smallest length. Together with the preceding corollary this gives:

THEOREM (5). If V is a complete CS-Riemannian manifold, P, Q € V then given any
homotopy class of paths joining P € Q there is a geodesic in this class whose length is less than
or equal to that of any other absolutely continuous path in the class. Moreover there is a
geodesic joining P to Q whose length is p(p, q).

Let H; be a Hilbert space of dimension d,, i = 1, e, D, the closed unit disc in H; and
S; the unit sphere in H,. Let g,:S; - X be continuous maps with disjoint images in a
topological space X. We form a new space XU, D, u ...u, D, (called the result of
attaching cells of dimension d,, ..., d, to X by attaching maps g¢,, ..., g,) by taking the
topological sum of X and the D; and identifying y € D; with g,(») € X. Suppose now that
d<wi=1 ..,mand d;, =wi>m Then Xu, D, u..u, D, is a strcng de-
formation retract of X u,, D, u ... u, D, It will suffice to prove that if D is the unit
disc and S the unit sphere in a Hilbert space A of infinite dimension then S is a strong
deformation retract of D, or since D is convex it will suffice to find a retractionp : D — S.
By a theorem of Klee [2.2 of 3] there is a fixed point free map 4: D — D (to see this note
that if {x,},.z is a complete orthonormal basis for H then

f() = (COS n(t;— ")) + <sin ulCh n))x"H n<t<n+1

2

defines a topological embedding of R onto a closed subset F of D. Since F is an absolute
retract the fixed point free map f(r) - f(r + 1) of F into F can be extended to a map
h: D — Fwhich is clearly fixed point free). We definep: D — S by p(x)} = point where the
directed line segment from A(x) to x meets S.

It now follows (by excision) that if A, denotes the singular homology functor with
any coefficient group G then

Hy(X U, Dy U ..U, Dy XY= Y Hy(DY. S47H)
i=1

hence for any positive integer r
H(X v, Dy v ...y, D, X)= G
where p(r) is the number of indices i = 1, ..., n such that d;, = r.

Next let N be a Hilbert manifold with boundary and suppose M arises from N by
disjoint C"-attachments ( f}, ..., f,) of handles of type (d,, e,), ..., (d,, e,) (§11). Define
attaching maps g;: S“~!' = dN by g(») = fi(», 0). (Note that since f,: D¥ x D% - M
is a homeomorphism each g, is a homeomorphism.) Then clearly N u f,(D% x Q) U ...
U f,(D* x 0) can be identified with N u,, D% U ... u, D%. We shall now prove that

Nu uf(D%x0)
i=1

is a strong deformation retract of M, hence by what we have just proved above that if
di<owi=1.,md =ci>mthen Nu, DU ..U, D* is a strong deformation
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retract of M. It will suffice to prove that (D? x 0) U (S9! x D°) is a strong deformation
retract of D¢ x D¢, and since D? x D® is convex it will suffice to define a retraction r of
D?* x D onto (D? x 0) (S9! x D°). Define r(x, 0) = (x, 0) and if y # 0 define

2 .
rx ) = (T:TW'O) if x| <1 —__”;”
= (2] vy o Iy
N =[—,(2 G2 bt
r(x, y) (”x“ Clixil + 1yt =2) ”y“) it x> 1 :

From the above remarks together with the theorem of §12 we deduce:

THEOREM (6). Let M be a complete C3-Riemannian manifold, f+ M — R a C>-function
satisfying condition (C) all of whose critical points are non-degenerate, ¢ a critical value of f,
Dis --» DPn the critical points of finite index on the level ¢, and let d; be the index of p;. If
¢ is the only critical value of f in a closed interval {a, b] then M, has as a deformation retract
M, with cells of dimension d,, ..., d, disjointly attached to ¢M, by homeomorphisms of the
boundary spheres. Hence if H, denotes the singular homology functor in dimension k with
coefficient group G then H(M,, M) =~ G*® where C(k) is the number of critical points of
index k on the level c.

Remark. The surprising fact about Theorem (6) is that the homotopy type of (M, M,)
depends only on the critical points of finite index on the level ¢, those of infinite index being
homotopically invisible. This is of course just a reflexion of the theorem of Klee that the
unit disc modulo its boundary in an infinite dimensional Hilbert space is homotopically
trivial. If it were not for this unexpected phenomenon we would have to make the rather
unaesthetic assumption that all critical points were of finite index in order to derive Morse
Inequalities.

In deriving the Morse Inequalities we shall follow Milnor closely. Let F denote a
fixed field and H, the singular homology functor with coefficients F. We call a pair of
spaces (X, Y)admissible if H, (X, Y)is of finite type, i.e. each H,(X, Y)is finite dimensional
and H (X, Y) = 0 except for finitely many £. From the exact homology sequence of a
triple (X, Y, Z) it follows that if (X, Y) and (Y, Z) are admissible then so is (X, Z). We
call an integer valued function S on admissible pairs subadditive if S(X, Z) < S(X, Y) +
S(Y, Z) for all triples (X, Y, Z) such that (X, Y) and (Y, Z) are admissible, and S is called
additive if equality always holds in the above inequality. Then by an easy induction if
X,2X,.,2..2 X, and each (X,,,, X)) is admissible it follows that (X,, X,) is
admissible and

n—1
S(X, Xo) £ ), S(Xi4y, X))
i=o

if S is subadditive, equality holding if S is additive.

DEFINITION. For each non-negative integer k we define integer valued functions R, and
S, on admissible pairs by R (X, Y) = dim H (X, Y)and

S(X, V)= Zk( —1*""R.(X, Y).
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We define the Euler characteristic y for admissible pairs by
m=0

LeMMA. R, and S, are subadditive and y is additive.

Proof. Let (X, Y, Z) be a triple of spaces such that (X, Y) and (Y, Z) are admissible.
From the long exact homology sequence of the triple (X, Y, Z)
é

S H(Y,Z) S Ho(X, Z) 2 Ho(X, Y) S Ho_ (Y, Z) =
we derive the usual three short exact sequences
0—im(¢,.,)—H (Y, Z)—im(i,) —0
0~ im(i,) — H, (X, Z)—im(}j,) — 0
0—im(j,)— H,(X,Y)—im(d,)—0
from which follow
R.(Y, Z) = dim H,(Y, Z) = dim im(d,,, ;) + dim im(i,,)
R,(X,Z)=dim im(i,) + dim im(J,,)
R (X, Y) =dim im(j,) + dim im(J,,)

hence
(x) R.(X,2)—R(X,Y)-R,(Y,2)= —(dimim(@,) + dim im(,, +))-

If we multiply (,) by (—1)* ™ and sum over m from m = 0 to m = k we get

SUX,Z) — SyX, Y) = S(Y, Z) = (=D dim im(G,) — dim im(&,4 )
which is negative since in fact 8, = 0. Similarly if we multiply (,) by (—=1)™ and sum over
all non-negative m we get (X, Z) — x(X,Y)— {¥,Z) =0 since é.,., =0 for k

sufficiently large.
-g.e.d.

Now let fand M be as in Theorem (6). Let —~c0 < a < b < oo and suppose a and b
are regular values of f. Let ¢y, ..., ¢, be the distinct critical values of fin [g, b] in increasing
order. Choosea,, i =0, ..,nsothata =ay <c¢; <ag, < ¢, < ... <@,y <, <a,=b
and put X; = M, = {xe M|f(x) < a;}. Then by Theorem (6) (X;,, X;) is admissible
and R,(X,,, X;) = number of critical points of index k on the level ¢;. Hence

N k
S Xis, X)) = Y (=1)* ™ (number of critical points of index m on Jevel c;)
m=0

and
WX+, X)= Y (—1)™ (number of critical points of index m on the level ¢;).
m=0
Hence

n—1 k
Y SiXi+, X)= Y, (—1)*"™ (number of critical points of index m in f ~'([a, b))
i=0 m=0
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while
n—1 0
Y 1(Xisy. X) = Y (=™ (number of critical points of index m in y~'([a, b])
i=0 m=0 .

Since S, and y are subadditive and additive respectively we deduce

THEOREM (7). (MORSE INEQUALITIES.) Let M be a complete C3-Riemannian manifold,
f: M - Ra C3function satisfying condition (C) all of whose critical points are non-degenerate.
Let a and b be regular values of f, a < b. For each non-negative integer m let R,, denote the
mth betti-number of (M,, M) relative to some fixed field F and let C,, denote the number of
critical points of f of index m in f~'({a, b]). Then

R, —Ry<C, -~ C,

k k
Y (=D "R, < Y (=1)F"C,
m=0 m=0

and

kel

UM M) = § (~D"Ry = 3 (=D7C,,

m=0
CoroLLARY (1). R,, < C,, for all m.

COROLLARY (2). Iffis bounded below then the conclusions of the theorem and of Corollary
(1) remain valid if we interpret R, = mth betti-number of M, and C,, = number of critical
points of f having index m in M, respectively.

Proof. Choose a < glb f.

COROLLARY (3). If f is bounded below then for each non-negative integer m Ry < Ch,
where RY is the mth betti-number of M and C, is the total number of critical points of f having
index m. (Of course either or both of R} and C, may be infinite.)

Proof. By Corollary (2) we have C} > R, {(M,) for any regular value b of f. Hence it
will suffice to show that if R* = dim H,_(M; F) > k for some non-negative integer £ then
R.(M,) = k for some regular value b of f. Let hy, ..., i, be linearly independent elements
of H (M; F),z,, ..., z, singular cycles of M which represent them, and C a compact set
containing the supports of z,, ..., z,. Then as b —» oo through regular values of f the
interiors of the M, form an increasing family of open sets which exhaust M, hence C < M,
for some regular value b of £ Then z, ..., z;, are singular cycles of M,, moreover no
non-trivial linear combination of them could be homologous to zero in M, since that same
combination would a fortiori be homologous to zero in M. Hence R, (M,) > k.

qg.ed.

Caution. The assumption that fis bounded below is necessary in Corollary (3) as can
be seen by considering the identity map of R which has no critical points even though
RR) = 1.

We refer the reader to [8] for more delicate forms of the Morse Inequalities.
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Remark. If V is a complete C®-Riemannian manifold, P, Q € V define Q, (V) to be
the set of continuous maps ¢ : [/ — V such that ¢(0) = P and o(1) = Q, in the compact
open topology. The standard techniques of homotopy theory relate the topology of ¥ and
that of Qp o(¥), while Theorem (7) and the results of §14 together give results concerning
the topology of Q(V; P, Q). Clearly some sort of bridge theorem relating Q, ,(¥) and
Q(V; P, Q) is desirable. Now if V is imbedded as a closed submanifold of R* then
Q(V; P, Q) is a closed submanifold of (I, R"). While Qp o(¥) is a subspace of C°(Z, R"),
hence it follows from Corollary (2) of Theorem (3) (§!4) that the inclusion map
i1 Q(V: P, Q) = Qp o(V) is continuous. The desired bridge theorem is the statement that
i is in fact a homotopy equivalence. A homotopy inverse can be constructed by using
smoothing operators of convolution type.

§16. MORE GENERAL CALCULUS OF VARIATIONS PROBLEMS

Given an n-tuple x = (x,. ..., 2,) of non-negative integers let

n
Ja] = Z %;

i=1
and let D* = @1*ljéx*%' ... éx*r . We define norms ; i on the space C*(D", R™) of C*-maps
of the n-disk into R™ by | f12 = j‘f{f(x)‘{z du(x) (where u is Lebesque measure on D")
and
Ifi2 = 3 IDYi3
jxi sk

Then the completion of C*(D", R™) relative to the norm || |, is a Hilbert space which we
denote by H, (D", R™). We denote by H;(D", R™) the closure in H, (D", R™) of the set of
fin C*(D", R™) such that (D*f)(x) = 0 if xeS" ! and |x| < k — 1. Let V be closed
C*-submanifold of R™ and let H,(D", V) = { fe H (D", RM|F(D") < V}. Ifge H(D", V)
we define Q(V;g) = {fe H(D", V)| f — ge H}D", R™}. It follows from the Sobolev
Inequalities that if 2k > n H (D", V) and Q"(V; g) are closed submanifolds of the Hilbert
space Hy(D", R™). More generally analogous Hilbert manifolds of H, maps of M into V
can be constructed for any compact C* n-manifold with boundary M replacing D". Note
that for k = n =1, H (D', V) = H,(I, V) and Q'(V, g) = Q(V; g(0), g(1)). A question
that immediately presents itself is to find functions J: Q*(V; g) — R which are analogues
of the action integral and satisfy condition (C). If A4 is a strongly elliptic differential operator
of order 2k then J( f) = } {Af, f > is such a good analogue of the action integral provided
Af = 0 has nosolutions fin H(D", R™). In particular if L is an elliptic kth order elliptic
operator such that Lf = 0 has no solutions f in H{(D", R™) then J(f) = }Lf I} =4
(L*Lf, f >, is such a function (taking k = » = 1 and L = d/d¢ gives the ordinary action
integral). Smale has found an even wider class of functions which also satisfy condition (C).

Now let n < m and regard 0(n) < 0(m) in the standard way. Define an orthogonal
representation of @(n) on H, (D", R™) by (T/)(x) = T(f (T 'x)). If we take ¥ = S™~! then
since V is invariant under 0(n) it follows that H, (D", V) is a invariant submanifold of
H (D", R™). Moreover if we define g € H (D", V) by g(x) = (x4, ..., x,, /1 — [Ix{%,0 ... 0)
then Tg = g for any T € 0(n) and it follows that *(V, g) is also an invariant submanifold
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of H (D", V), hence 0(n) is a group of isometries of the complete Riemannian manifold
Q"(V,g). Now suppose A i1s a strongly elliptic differential operator of order 2k,
A:C?(D",R™) — C*(D", R™), such that A(Tf) = T(Af) for all Te0(n), for exampie
A = A* where A is the Laplacian
n gt

Then J: Q(V, g) — R defined by J(f) = +{Af, [ >, satisfies /(Tf) = f for any T e On).
hence if fis a critical point of J so is Tf for any T € 0(n). and since non-degenerate critical
points of J are isolated, Tf = f if f is a non-degenerate critical point of /. But Tf = fis
equivalent to R( f(x)) being a function F of |ix! where R is the distance measured along the
sphere S™”' = V of a point on ¥ to the north pole. Moreover F will satisfy an ordinary
differential equation of order 2k. With a little computation one should be able to compute
all the critical points and their indices and hence, via the Morse inequalities, get information
about the homology groups of Q'(V, g) (which has the homotopy type of the nth loop
space of S™™'). Clearly the same sort of process will work whenever we can force a large
degree of symmetry into the situation.
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