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Abstract

The main aim of this paper is to present the construction of the Morse–
Smale complex of a compact smooth manifold M with boundary and to
establish the connection to the topology of M . This approach to connect-
ing the analysis of an appropriate function f : M → R — respectively the
dynamical system associated to such a function and a Riemannian metric
g — with the topology of the manifold was introduced by Thom (see [21])
and Smale (see [17], [18] and [19]). In the more traditional approach devel-
oped by Morse (see [10] for an presentation of these ideas) the function f is
used to construct a CW-space of the same homotopy-type as the manifold
M . The approach presented here uses the unstable manifold of the negative
gradient vector field of f with respect to g to construct a decomposition of
M that enables one to extract topological information from it. We remark
that the approach developed by Thom and Smale is often more suitable for
studying infinite-dimensional manifolds such as loop-spaces than the more
traditional approach. However, the techniques used to obtain similar results
in the infinite-dimensional setting differ substantially from the techniques
used in this paper. For an exposition of Morse Theory as a toy-model of
infinite-dimensional issues, see [16], for instance.

In the first chapter we start to introduce the basic terminology concern-
ing Morse Theory and present a prove of the important Morse Lemma.
Then we distinguish special pairs (f, g) - we call them Morse–Smale pairs
— of functions f : M → R and Riemannian metrices g. The main mo-
tivation is to gain control of the behaviour of the negative gradient vector
field − gradg(f) near critical points. We also introduce some conditions that
control the behaviour of f and g on the boundary of M . The boundary con-
ditions considered here are not the most common ones. The choice of these
boundary conditions is motivated by the idea that the boundary should
fit with the decomposition of M by the unstable manifolds. Consequently
the Morse–Smale complex associated to the critical points on the bound-
ary forms a sub-complex of the Morse–Smale complex of the whole mani-
fold. Stable and unstable manifolds are introduced next and the Lyapunov-
property is established. We prove that the stable and unstable manifolds
are sub-manifolds diffeomorphic to Euclidean spaces and state the Smale
condition.
Then we investigate if the conditions we imposed on the Morse–Smale pairs
are generic. In order to do this we define jets and cite some facts concerning
openness and density of certain subsets of smooth functions. The main re-
sult consists of two parts: First it is shown that the set of Morse functions is
C∞-dense and C2-open in the set of all extensions of a given Morse-function
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on the boundary (given a fixed collar of ∂M). And then we show that if
we fix an appropriate f , the set of Riemannian metrices such that (f, g)
is a Morse–Smale pair and such that g coincides with the pull-back of the
Euclidean metric by a Morse-chart is C∞-dense and C1-residual in the set of
all Riemannian metrices that coincide with the pull-back of the Euclidean
metric by a Morse-chart.

In the next chapter we continue the investigation of the dynamical sys-
tem associated to a Morse–Smale pair. We present a way to deal with the
boundary and show that the stable respectively unstable manifold really
form a decomposition of M .
Then we define the space of trajectories from one critical point to another
and equip it with a topology and then with a smooth structure. Next we
introduce the space of unparametrised trajectories from one critical point to
another critical point. Different ways to interpret this space are presented:
as the space of orbits of an R-action on the space of parametrised trajec-
tories, as a subset of the continuous functions from a compact interval to
M and as the intersection of the space of parametrised trajectories with a
level-hypersurface of f . We prove that the topologies obtained from this dif-
ferent interpretations coincide and then we equip this space with a smooth
structure.
The space of broken trajectories from one critical point to another one is
defined as the disjoint union of products of certain spaces of unparametrised
trajectories. We show that one can interpret this space as a subspace of
continuous functions from a compact interval to M and equip it with the
subspace topology. We show that this topological space that contains the
space of unparametrised trajectories as a subspace is compact.
Next we introduce the notation of a smooth manifold with corners. In Theo-
rem (2.27.) we prove that the space of broken trajectories can be canonically
equipped with the structure of a smooth manifold with corners such that
the k-boundary can be identified with the k-times broken trajectories. So
the space of unparametrised trajectories from p to q possesses a canonical
compactifaction which carries the structure of a smooth manifold with cor-
ners. To prove this we follow the treatment presented in the expositions [3],
[4] and [5].
In the next section we show that the unstable manifolds also possess a canon-
ical compactifaction that can be canonically equipped with the structure of
a smooth manifold with corners. The way we proceed is similar to the one
used to prove Theorem (2.27.): First we interpret the unstable manifolds
as subspaces of continuous maps from a compact interval to M then we
define Ŵ−(p) and show that these spaces can be interpreted as subspaces of
continuous mappings too and that these spaces are compact. In Theorem
(2.33.) we state that Ŵ−(p) can be canonically equipped with the structure
of a smooth manifold with corners.
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The end of the second chapter deals with orientations of the unstable man-
ifolds and how these induce orientations on the spaces of unparametrised
trajectories and their one-boundaries.

In the last chapter we use the information about the analysis of the negative
gradient flow to make contact with topology. We introduce the Morse-Smale
complex (over Z) and show that it is a differential complex. The homology
of this complex is called Morse homology.
We introduce spectral sequences of filtered complexes, explain convergence
and state two important results about spectral sequences.
In the third section a prove is presented that shows that Morse homology
is isomorphic to singular homology. The idea is to show that the decom-
position of M by the unstable satisfies the most important properties that
the relative homology groups of a CW-decomposition would satisfy. Then
we show that the Morse-Smale complex can be interpreted as some kind of
”cellular” complex of the decomposition of M by unstable manifolds. From
this the isomorphism follows and implies the Morse inequalities.
Next it is shown that the Morse cohomology is isomorphic to the deRham
cohomology. We define a map Int∗ from the real valued differential forms
into the dual of the Morse–Smale complex (over R) and prove that it is a
chain map. Then M is filtered with the help of the Morse function f and
show that Int∗ preserves the induced filtrations on Ω∗(M) and on Ck(f ; R).
Hence, Int∗ induces a map between the spectral sequences associated to the
induced filtrations of the differential complexes Ω∗(M) and Ck(f ; R). Int∗

induces an isomorphism between the E1-terms of the spectral sequences and
consequently it induces an isomorphism between the cohomology groups of
the two differential complexes.
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unentbehrliche Hilfe bei der Verfassung dieser Arbeit waren.



Contents

1 Basic Concepts 2
1.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Morse pairs and stable respectively unstable Manifolds . . . . 7
1.3 Questions concerning Genericy . . . . . . . . . . . . . . . . . 16

2 The Space of Trajectories 28
2.1 Properties of the negative gradient Flow . . . . . . . . . . . . 28
2.2 The Space of unparametrised Trajectories . . . . . . . . . . . 36
2.3 Compactification of the Space of unparametrised Trajectories 45
2.4 Compactification of the unstable Manifolds . . . . . . . . . . 54
2.5 Orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Morse Homology 70
3.1 Morse Homology . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Isomorphism to Singular Homology . . . . . . . . . . . . . . . 79
3.4 Isomorphism to deRham Cohomology . . . . . . . . . . . . . 91

A CV 101

1



Chapter 1

Basic Concepts

We start to investigate the basic notations necessary to define the Morse–
Smale complex. If not otherwise stated, M denotes a smooth compact man-
ifold, possibly with boundary, of dimension n.

1.1 Foundations

We introduce the main terminology concerning Morse functions and their
local behaviour and prove some basic facts. Most of this material is covered
by introductions to Morse Theory, see the classic [10] or the chapter about
”Morse Theory” in [8], for instance.
Additionally, an adaption of these concepts to manifolds with boundaries is
presented.

1.1. Definition Critical points, Hessians
Let f : M → R be a smooth real-valued function on M .
A point x ∈ M is called critical if the one-form df ∈ Ω1(M) := Γ∞(T ∗M)
is zero at x, where dfp : TpM → R is defined by dfp(Xp) := Xp(f) with
Xp ∈ TpM arbitrary. If a point is not critical it is called regular.
Critical values are points in the image of critical points and regular values
are points in R with no critical point in the pre-image under f .
The Hessian Hf of f at a critical point p is the bilinear map TpM×TpM → R
given by (X,Y ) 7→ X̃(Ỹ (f))p where X̃ and Ỹ are smooth vector fields such
that X̃p = X and Ỹp = Y .

Remark: the Hessian
As can be seen easily, the Hessian of a smooth function at a critical point is
bilinear. Its failure to be symmetric can be measured by the difference

Hf (X,Y )(p)−Hf (Y,X)(p) = X̃p(Ỹ (f))− Ỹp(X̃(f)) = [X̃, Ỹ ]p(f) = dfp([X,Y ]).

2
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Consequently, the Hessian is a symmetric bilinear form on TpM because
dfp maps every vector in TpM to zero, in particular dfp([X,Y ]) = 0, and
so the difference between Hf (X,Y )(p) and Hf (Y,X)(p) vanishes. Further-
more, Hf (X,Y )(p) is independent from the particular choice of extensions
of X and Y : on the one hand we know that X̃p(Ỹ (f)) = X(Ỹ (f)) and
hence it is independent from the extension X̃ of X and on the other hand
Ỹp(X̃(f)) = Y (X̃(f)) and so it is independent from the extension Ỹ of Y .
So, given a critical point p of f , we have a natural symmetric bilinear form
associated to it: Hf (X,Y )(p) : TpM × TpM → R.

1.2. Definition Morse functions
A critical point p is called non-degenerate if the Hessian of f is non-degenerate
at this point, i.e. the induced map

TpM → T ∗pM,Xx 7−→ Hf (Xp, ·)(p)

is an isomorphism of vector spaces. If all the critical points of a function
are non-degenerate, the function is a Morse function.

Remark: index of a symmetric bilinear form
In general, given a bilinear form H on a vector space V , we define the index
of H to be the dimension of a maximal linear subspace of V on which H is
negative definite. This subspace is not canonically given what can be seen al-
ready in the easiest case: V := R2 andH((v1, v2), (w1, w2)) := v1 ·w1−v2 ·w2.
However, these maximal subspaces on which the non-degenerate bilinear
form is negative definite are all of the same dimension, and consequently
the index is well-defined nevertheless. This is a direct consequence of the
Theorem of Sylvester.

1.3. Definition index of a critical point, Crk(f), Cr(f)
Let f be a Morse function on M and assume p is a critical point of f . The
index of p is defined to be the index of the Hessian of f at p and we write
ind(p) for it.
The set of all critical points of f will be denoted by

Cr(f) := {x ∈M : df(x) = 0}

and the set of all critical points of a fixed index k by

Crk(f) := {x ∈ Cr(f) : ind(x) = k}.
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Remark: the situation in charts
Let p be a critical point of a Morse function f and (U, u) a chart centred
at p, i.e. u(p) = 0, where U ⊂ Rn. To express the condition dfp = 0 in
the chart, we pull-back f to a function from u(U) to R. In this chart we
calculate d(f ◦ u−1)u(p). To simplify the notation, we denote f ◦ u−1 by f̃

and u(p) by x := (x1, . . . , xn). We obtain df̃( ∂
∂xi ) = ( ∂

∂xi )(f̃) = ∂f̃
∂xi and

hence

dfx = df̃(x1,...,xn) =
n∑

i=1

∂f̃

∂xi
dxi (1.1)

where dxi, i = 1, . . . , n denote the one-forms defined on the chart (U,ψ)
by dxi(y) = yi with y a vector in TpU and yi its i’ th component. These
one-forms constitute a basis of T ∗pU .
So, our condition dfx = 0 is equivalent to the vanishing of all partial deriva-
tives of the pull-back of f , and of course, this condition for ”extremal points”
is well-known from analysis.
The local expression for the Hessian is well-known too: in a chart containing
a critical point, the Hessian computes to:

Hf̃ (
∂

∂xi
,
∂

∂xj
)(x) =

(
∂

∂xi
(
∂f̃

∂xj
)

)
x

= (
∂2f̃

∂xi∂xj
)x

Consequently the Hessian is the invariant formulation of what is known as
the Hessian matrix in analysis and the non-degeneracy of Hf is equivalent

to the matrix ( ∂2f̃
∂xi∂xj )i,j being non-degenerate — or stated another way —

det( ∂2f̃
∂xi∂xj )i,j 6= 0.

It is also known that the Morse function near a critical point is well-behaved:
for any critical point p of a Morse function f there is a chart (U, u) centred
at this point such that the local expression of f in this chart, i.e. f ◦ u−1,
has the form

f(p)− (x1)2 − . . .− (xk)2 + (xk+1)2 + . . .+ (xn)2

where n = dimM , k = ind(p) and (x1, . . . , xn) = u(y) for y ∈ U . Charts
with this properties are called Morse charts. Before proving the existence
of Morse charts, we follow closely the exposition in [10] and prove:

1.4. Lemma
Let f be a smooth function on a convex neighbourhood V of 0 in Rn with
f(0) = 0. Then we can find n smooth functions denoted by gi, i = 1, . . . , n,
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on V with gi(0) = ∂f
∂xi (0) such that

f(x1, . . . , xn) =
n∑

i=1

xigi(x1, . . . , xn)

holds on V .

Proof:
By convexity of V we can write

f(x1, . . . , xn) =
∫ 1

0

df(tx1, . . . , txn)
dt

dt =
∫ 1

0

n∑
i=1

∂f

∂xi
(tx1, . . . , txn) · xidt

=
n∑

i=1

xi

∫ 1

0

∂f

∂xi
(tx1, . . . , txn)dt

and consequently gi(x1, . . . , xn) :=
∫ 1
0

∂f
∂xi (tx1, . . . , txn)dt, i = 1, . . . , n, pos-

sess the desired properties.

2

1.5. Theorem Lemma of Morse
Let p be a non-degenerate critical point of f . Then there is a chart (U, u)
centred at p, such that f has the following form in this chart

f(p)− (x1)2 − . . .− (xk)2 + (xk+1)2 + . . .+ (xn)2 (1.2)

where (x1, . . . , xn) are the local coordinates of this chart and k is the index
of f at p.

Proof:
If we had found such a chart it is clear that k must be the index of p because
we can compute the Hessian in this chart and obviously it has index k.
To find such a chart choose an arbitrary chart centred at p, furthermore we
can assume that f(p) = 0 because we can apply a shift of −f(p) to the whole
function. Write f̃ for the local representation of f in the chosen chart. As
the chart is centred at p and f(p) = 0 we have f̃(0) = 0 and so we can apply
Lemma (1.4.) and write f̃ as

f̃(x1, . . . , xn) =
n∑

j=1

xjgj(x1, . . . , xn)

in some neighbourhood of 0 with appropriate smooth functions gj , j =
1, . . . , n. One knows that gj(0) = ∂f̃

∂xj (0) = 0 because 0 ∈ Rn is a critical
point of f̃ and so we can apply Lemma (1.4.) again and obtain

gj(x1, . . . , xn) =
n∑

i=1

xihij(x1, . . . , xn)
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on some small neighbourhood of 0 with smooth functions hij and conse-
quently

f̃(x1, . . . , xn) =
n∑

i,j=1

xixjhij(x1, . . . , xn).

We can assume that hij = hji, because otherwise we could replace hij by
1/2(hij + hji) in the formula. Next we calculate

∂f̃

∂xm
=

n∑
j=1

xjhmj(x1, . . . , xn) +
∑
i=1

xihim(x1, . . . , xn) +
n∑

i,j=1

xixj ∂hij

∂xm
(x1, . . . , xn)

= 2
n∑

i=1

xihim(x1, . . . , xn) +
n∑

i,j=1

xixj ∂hij

∂xm
(x1, . . . , xn)

and so

∂2f̃

∂xm∂xl
(0) = 2hml(0) =⇒

hij(0) =
1
2

∂2f̃

∂xi∂xj
(0)

and by non-degeneracy of the critical point 0 the matrix (hij(0))ij is non-
degenerate too.
To construct a chart such that f is of the desired form, we use a sequence of
coordinate transformations near 0 in the domain of the chart u(U). Assume
that there exist coordinates y1, . . . , yn in an open neighbourhood U1 of 0
such that

f̃(y1, . . . , yn) = ±(y1)2 ± . . .± (yr−1)2 +
n∑

i,j≥r

yiyjHij(y1, . . . , yn)

holds on U2 ⊂ U1, an open neighbourhood of 0 and assume Hij = Hji.
Furthermore we can assume that Hrr(0) 6= 0 as we can always perform linear
coordinate transformations in the last n − r + 1 coordinates such that this
holds. On an open neighbourhood of 0 g(y1, . . . , yn) :=

√
|Hrr(y1, . . . , yn)|

is a smooth, non-zero function. We perform the coordinate transformation

zi = yi for i 6= r and

zr(y1, . . . , yn) = g(y1, . . . , yn)

(
yr +

∑
i>r

yiHir(y1, . . . , yn)
Hrr(y1, . . . , yn)

)
.

To show that this is a valid coordinate transformation on a small neighbour-
hood of 0 we make use of the inverse function theorem and the fact that the
Jacobian of the transformation is non-degenerate. To prove this, it suffices
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to observe that ∂zr

∂yr (0) = g(0, . . . , 0) 6= 0.
In the new coordinates f̃ is of the form

f̃(z1, . . . , zn) = ±(z1)2 ± . . .± (zr)2 +
n∑

i,j≥r+1

zizjH ′
ij(z

1, . . . , zn)

with appropriate symmetric H ′
ij . This is demonstrated by the following

calculation:

(zr)2 = ±|Hrr(y1, . . . , yn)|

(
yr +

∑
i>r

yiHir(y1, . . . , yn)
Hrr(y1, . . . , yn)

)2

= ±|Hrr(y1, . . . , yn)|(yr)2 + 2
∑
i>r

yryiHir(y1, . . . , yn)

±
∑
i,j>r

yiyrHjr(y1, . . . , yn)Hir(y1, . . . , yr)
Hrr(y1, . . . , yn)

and that coordinates with the desired properties exist follows by induction
over r.

2

Remark: the local behaviour of a Morse function near a critical point
By the Lemma of Morse, the local situation near critical points only depends
on the index of the critical point. Furthermore, take an arbitrary critical
point x and choose a Morse chart (U, u) for it. Clearly, p is the only critical
point in U because only there ∂f̃

∂xi = 0, for i = 1, . . . , n. So we have found
an open neighbourhood U of p in which p is the only critical point. Hence:

1.6. Corollary
The critical points of a Morse function are isolated and because M is as-
sumed to be compact, there are only finitely many of them.

1.2 Morse pairs and stable respectively unstable
Manifolds

Remark: collars
Given a smooth manifold M with boundary ∂M . An open collar of ∂M is
an embedding

ϕ : ∂M × [0, ε[↪→M such that ϕ(·, 0) = id∂M (ε > 0).
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A closed collar is an embedding ϕ : ∂M × [0, ε] ↪→ M such that ϕ(·, 0) =
id∂M as before. For an arbitrary manifold M with boundary the following
theorem holds:

1.7. Theorem Collaring Theorem
∂M has a collar.

Proof:
A proof of this fact can be found in [8].

2

Remark: the gradient of a Morse function
If M is equipped with a Riemannian metric, i.e a smooth section of the
bundle of fibrewise positive definite inner products on TxM , we have a nat-
ural isomorphism [ : TM → T ∗M and this induces a bijection between
Γ∞(M ;TM) and Ω1(M) = Γ∞(M ;T ∗M) given by Z 7−→ g(Z, ·). The in-
verse isomorphism T ∗M → TM is denoted by ].
We define the gradient of a smooth function on M to be ](df) and denote it
by gradg(f), i.e. g(gradg(f), Y ) = df(Y ). By definition, critical points of f
are exactly the zeros of the gradient vector field gradg(f).

1.8. Definition Morse pairs
Let M be a compact manifold with boundary ∂M , ι : ∂M →M denotes the
embedding of ∂M into M . For f ∈ C∞(M ; R), f0 denotes the restriction of
f to ∂M , i.e. f0 := f ◦ ι. Let g denote a Riemannian metric on M . ι∗g is
the pull-back of g under ι : ∂M →M .
We call (f, g) a Morse pair if the following conditions are satisfied:
1.) f is a Morse function on M .
2.) There is a collar ϕ : ∂M × [0, ε[→ M of ∂M such that f ◦ ϕ can be
written in the following way:

f ◦ ϕ(x, t) = h(x) + t2 for x ∈ ∂M, 0 ≤ t < ε (1.3)

and h ∈ C∞(∂M ; R). Furthermore the pull-back of g under ϕ has the form:

ϕ∗g = π∗g∂M + dt⊗ dt (1.4)

with g∂M a Riemannian metric on ∂M and π : ∂M × [0, ε[→ ∂M the pro-
jection on the first factor.
3.) For critical points on M \ ∂M there is a Morse chart (U, u) such that
g = u∗gE on U where gE denotes the Euclidean metric on u(U) ⊂ Rn.
4.) Critical points of f lying on ∂M are critical points of f0 too and with re-
spect to this Morse function on the manifold ∂M there exists a Morse chart
such that the pull-back of the Euclidean metric on Rn−1 under this chart
coincides with ι∗g.
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Remark: condition 2.)
Condition 2.) implies that the critical points of f0 are exactly the criti-
cal points of f on the boundary. With the help of the collar one obtains
df = dh + 2tdt for points on the collar and consequently df = dh on the
boundary. Furthermore one sees that there are no critical points on the
collar except the ones lying on the boundary ∂M .
Furthermore, by condition 2.) Hf (p) is given by(

Hf0(p) 0
0 2

)
for all critical points on the boundary and that assures that the indices of
critical points of f lying on the boundary are equal to the indices when the
points are regarded as critical points of f0.
The gradient vector field of the function f with respect to ϕ∗g coincides with
the gradient vector field of f0 := f ◦ ι on ∂M with respect to g∂M because
∂f
∂t = ∂t2

∂t = 0 on the boundary and ∂
∂t is orthogonal to ∂M . Especially, the

gradient vector field is tangential to the boundary.

Remark: condition 3.)
The special forms of the Morse function and of the Riemannian metric to-
gether in one chart — we will call such a chart convenient — imply that
the gradient vector field of f is explicitly known near critical points. In a
convenient chart one has:

gradg(f) = ](df) =
n∑

i=1

∂f̃

∂xi

∂

∂xi

because the isomorphism [ : TM → T ∗M induced by the Euclidean metric
just maps dxi to ∂

∂xi . Inserting the explicit expression of a Morse function
in a Morse chart one obtains

gradg(f) = −2
k∑

i=1

xi ∂

∂xi
+ 2

n∑
i=k+1

xi ∂

∂xi
. (1.5)

Remark: condition 4.)
Together with the collar, the special chart that is assumed to exist in con-
dition 4.) can be used to construct charts that are especially suitable. First
use a Morse chart (U, u) for f0 : ∂M → R for which the pull-back of the
Euclidean metric under u coincides with g. Next, define

V := U × [0, ε[, v : U × [0, ε]→ u(U)× [0, ε[, v := u× id
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and hence we get a chart centred at p with the following properties:
In this chart f is of the form

f(p)− (x1)2 − . . .− (xk)2 + (xk+1)2 + . . .+ (xn−1)2 + t2 (1.6)

and the Riemannian metric is of the form

g(v, w) :=
n−1∑
i=1

vi · wi + vt · wt (1.7)

where vt and wt correspond to the components in the direction ∂
∂t .

The boundary of M corresponds to {t = 0} in such a chart. We will call
these convenient charts for critical points on the boundary.

Remark: the boundary conditions
The boundary conditions we impose on Morse pairs are not the most com-
mon ones. The motivation of this choice is the following: The unstable
manifolds will be shown to build a decomposition of the manifold M and
we want the boundary ∂M to be compatible with that decomposition. An
early presentation of the idea to decompose a manifold with the help of an
appropriate function and to get topological informations from this decompo-
sition can be found in [21]. We remark that a pair (f, g) — with f a Morse
function on a manifold M and g a Riemannian metric — is also called a
generalised triangulation if for very critical point of f there is a Morse chart
such that the pull-back of the Euclidean metric in this chart coincides with
g and if (f, g) satisfies the Morse–Smale condition (Definition (1.15)), see
[3] for instance.
Another possibility to deal with the boundary is to look at Morse functions
f such that the gradient vector field is transversal to the boundary. More
about this type of boundary condition can be found in [8] or [18] for in-
stance.

1.9. Definition the negative gradient flow of a Morse pair
Given a Morse pair (f, g) on a compact manifold M we can investigate the
negative gradient flow, i.e. the solutions of

γ′x(t) = − gradg(f)(γx(t)), γx(0) = x (1.8)

called the negative gradient flow of f .

Remark: the negative gradient flow of a Morse function
The local existence and uniqueness of this flow for points in the interior of
the manifold, i.e. in M\∂M , is implied by the Theorem of Picard-Lindelöf
for ODEs: in charts, the flow equation is just a first-order ODE. For points
on the boundary, the condition 2.) — especially that gradg(f) is tangential
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to the boundary — implies local existence and uniqueness: one can look
at the flow equation restricted to ∂M and there the flow exists and then
this flow also satisfied the flow equation on the whole manifold. Because
M is compact, the flow of the negative gradient vector field is even defined
globally, i.e. on all of R.
Observe that critical points of f are exactly the stationary solutions of (1.8).

1.10. Definition stable and unstable manifolds
Given a Morse pair (f, g) assume p is a critical point of f . We define

W−(p) := {y ∈M : lim
t→−∞

γy(t) = p}

W+(p) := {y ∈M : lim
t→+∞

γy(t) = p}

where γy(·) denotes the negative gradient flow of (f, g), and one calls W−(p)
the unstable and W+(p) the stable manifold of p.
In the next chapter the existence of the limits in the definition of the stable
and unstable manifolds is shown for every point in M , see Lemma (2.2.).

Remark: stable and unstable manifolds
W−(p) respectively W+(p) are all points in M that are transported asymp-
totically to p under the negative gradient flow (for t → −∞ respectively
t→ +∞).
To justify our terminology it remains to proof that W−(p) and W+(p) are
really manifolds (with boundary). Obviously, we can define stable and unsta-
ble sets for any dynamical system, however they need not form sub-manifold
anymore, see [17] and [18] for expositions concerning more general dynami-
cal systems.
Next, we show that the flow of the negative gradient vector field possesses
the Lyapunov-property, i.e. there is a smooth function that strictly decreases
along non–degenerate flow-lines.

1.11. Lemma
Given a Morse pair (f, g) on M . Then f decreases along flow lines of the
negative gradient flow. Furthermore, assume that x and y are two points
lying on a flow line of the negative gradient flow with f(x) = b, f(y) = a
and a < b. Then this flow line intersects all level hyper surfaces f−1(c)
where a < c < b, with c regular, and it does so transversally. Additionally
the flow line intersects such a hyper surface exactly once.

Proof:
That f decreases along the flow line follows from:

d

dt
f(γx(t)) = df(γx(t))(γ′x(t)) = g(gradg(f)(γx(t)), γ′x(t))

= −g(γ′x(t), γ′x(t)) = −||γ′x(t)||2 ≤ 0.
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and strictly smaller 0 when x is not a critical point of f . The flow line
gives us a smooth path from x to y and so f must take every value between
f(x) = b and f(y) = a. As the function strictly decreases away from critical
points, every such value is taken exactly once.
That the intersection is transversal can be checked directly: for any t ∈ R
the level hyper surface is given by Hx(t) = {y ∈M : f(y) = f(γx(t))} where
γx(t) is the solution of (1.8.) with γx(0) = x. Hx(t) is a sub-manifold of
codimension 1.
So we have a smooth embedding i : Hx(t) ↪→ M and the induced map
Ti : Tγx(t)Hx(t) ↪→ Tγx(t)M . Choose an arbitrary vector Z tangential to
Hx(t), i.e. Z ∈ Ti(Tγx(t)Hx(t)). Now we have:

g(γ′x(t), Z) = −g(gradg(f)(γx(t)), Z),= −df(Z)γx(t) = 0

where the equalities follow from the definition of γx(t), the definition of the
gradient vector field and the fact that f restricted to Hx(t) is constant and
hence df = 0 for vectors in Tγx(t)Hx(t).

2

1.12. Proposition
There are no non-constant flow lines with

lim
t→−∞

(γx(t)) = lim
t→+∞

(γx(t)).

Proof:
This is a direct consequence of Lemma (1.11.): If the two limits exist and
are equal, f would have the same value along the whole flow line γx(t), so
by the equality

d

dt
f(γx(t)) = −||γ′x(t)||2

γ′x(t) = 0 and hence γx(t) would be a stationary point of the flow.

2

Remark: stable and unstable manifolds near critical points
Given a Morse pair (f, g) we can give an explicit description of the stable
and unstable manifolds near critical points. Assume that p is a critical point
lying on the boundary ∂M . By condition 4) in the definition of Morse–Smale
pairs there is a chart centred at p that satisfies (1.6) and (1.7). We remark
that if a flow line starts at a point in a local chart for p and then leaves
this chart after some time, this flow line can never return into the domain
of this chart. This is an immediate consequence of the Lyapunov-property.
In the chosen chart we can do a splitting into coordinates having a minus
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in front of them and the ones that do not (including the t-coordinate). We
define y := (x1, . . . , xk) ∈ Rk and x := (t, xk+1, . . . , xn−1) ∈ [0, ε[×Rn−k−1.
By (1.5) we obtain

− gradg(f) = 2

(
k∑

i=1

yi ∂

∂yi

)
− 2

(
n−k−1∑

i=1

xi ∂

∂xi

)
− 2t

∂

∂t

In our notation equation (1.8) reads:

t′(s) = −2t(s), x′(s) = −2x(s), y′(s) = 2y(s) (1.9)

and hence

t(s) = t0e
−2s, x(s) = x0e

−2s, y(s) = y0e
2s. (1.10)

With the help of the Lyapunov-property one sees that points on the stable
manifold of p are points z such that lims→+∞ γz(s) = 0. From the explicit
description of the negative gradient flow one easily deduces that W+(p)∩U
is given by

([0, ε[×Rn−k−1 × 0) ∩ u(U) (1.11)

where (U, u) denotes the convenient chart. In the same manner one sees
that W−(p) ∩ U is given by

(0× Rk) ∩ u(U) (1.12)

and observe that unstable manifolds of a Morse pair on the boundary are
”trapped” in the boundary. If a unstable manifold W−(p) on the boundary
would be contained in a unstable manifold of the whole manifold that is
larger than W−(p), a shift in the index would occur at p, seen as a critical
point of the boundary on the one hand, and as a critical point of the whole
manifold on the other hand. But this is forbidden by condition 4) for Morse
pairs. Additionally, the stable manifolds intersect the boundary transversal:
We use the collar and observe that ∂

∂t is always transversal to T (∂M) in
TM restricted to ∂M .
The same calculations can be made for points in the interior of the manifold
with the obvious small adaptions.

Remark: stable and unstable spheres
Consider a convenient chart (U, u) centred at a critical point p of index k.
The Morse function has the form (1.2) respectively (1.6) in such a chart
and we have a splitting into the stable and the unstable part, see (1.11) and
(1.12). Without loss of generality we can assume that f(p) = 0 and if f is
restricted to (0× Rk) ∩ u(U) it has the form

−(y1)2 − . . .− (yk)2;
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(x1)2 + . . .+ (xn−k)2

if f is restricted to the stable part with (x1, . . . , xn−k, 0, . . . , 0) ∈ ([0, ε[×Rn−k−1×
0)∩u(U) or to (x1, . . . , xn−k, 0, . . . , 0) ∈ (Rn−k× 0)∩u(U) respectively. We
define

S−−d(p) := f̃−1(−d) ∩ (0× Rk) = 0× Sk√
d

(1.13)

S+
d (p) := f̃−1(d) ∩ (Rn−k × 0) = Sn−k√

d
× 0 (1.14)

for d > 0 and call S−d (p) the unstable sphere of p with radius d and S+
d (p)

the stable sphere of p with radius d. We can always find d > 0 sufficiently
small such that the stable and unstable spheres are contained in u(U).
Let z ∈ W−(p) with 0 < f(p) < −d. By Lemma (1.11.) it is clear that
the trajectory of the negative gradient flow that starts at z must intersect
S−d (p) in exactly one point. If 0 > f(p) > −d this is also true because
of the explicit form of the trajectories in the convenient chart, see (1.10).
Analogous arguments hold for S+

d (p) and points in W+(p).

1.13. Theorem stable and unstable manifolds
Given a Morse pair (f, g), the stable and unstable manifolds of any criti-
cal point are sub-manifolds of M . The dimension of the unstable manifold
equals the index of the critical point and the dimension of the stable one is
equal to dimM minus the index of the critical point.

Proof:
First assume that p is a critical point of (f, g). Then we can find a convenient
chart for p. We computed how the stable respectively unstable manifolds
look like in this chart, see (1.11) and (1.12) and obviously the convenient
chart is a sub-manifold chart for the stable and unstable manifolds at p.
That the stable and unstable manifolds are sub-manifolds of M can be seen
as follows: near the critical point this is obvious. For an arbitrary point
x on the stable / unstable manifold fix a time T such that γx(±T ) is con-
tained in an appropriate chart. Choose an open neighbourhood U of γx(±T )
that is totally contained in the appropriate chart. Now γU (∓T ) is an open
neighbourhood of x that is diffeomorphic to U . Hence it can be used as a
sub-manifold chart of the stable / unstable manifold near x. Observe that
this works because the diffeomorphisms provided by the negative gradient
flow preserve the stable and unstable manifolds and the boundary of M .
The dimensions can be read off the explicit description in a convenient chart.

2

1.14. Proposition
Given a manifold M of dimension n and a Morse pair (f, g) on M . Let p be a
critical point of (f, g). If p lies in the interior of M , W+(p) is diffeomorphic
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to Rn−ind(p) and W−(p) is diffeomorphic to Rind(p). If p lies on the bound-
ary of M , W+(p) is diffeomorphic to the half space {(x1, . . . , xn−ind(p)) ∈
Rn−ind(p) : x1 ≥ 0} and W−(p) is diffeomorphic to Rind(p).

Proof:
For W+(p) \ {p} with p in the interior of M we can use the following para-
metrisation:

S+
d (p)× R→W−(p) \ {p}, (θ, s) 7→ γθ(

1
2

ln(s)). (1.15)

We have seen that this mapping is bijective and smoothness of this mapping
is a general result concerning solutions of flow equations, see [13] or [9]. The
same argument works for W−(p) as well.
Now assume p ∈ ∂M . The unstable manifolds are contained in ∂M . And
we can use an adaption of the map (1.15.) to parametrise W−(p) and

(S+
d (p) ∩ (s ≥ 0))× R→W+(p) \ {p}, (θ, s) 7→ γθ(

1
2

ln(s)) (1.16)

to parametrise W+(p) \ {p}. In a convenient chart

S−d (p)×]0,∞[→W−(p), (θ, s) 7→ γθ(
1
2

ln(s))

is given by (θ, s) 7→ θeln(s) = θs — see (1.10) — and hence is just the
parametrisation by polar coordinates. Consequently, it can be extended to
a smooth diffeomorphism Rind(x) ∼= W−(p).
Analogous arguments work for the stable manifolds. For critical points on
the boundary the parametrisation (1.16) implies that the stable sphere is
diffeomorphic to the half space {(x1, . . . , xn−ind(p) ∈ Rn−ind(p) : x1 ≥ 0}.

2

1.15. Definition Morse–Smale condition and Morse–Smale pairs
We call a pair (f, g), with f ∈ C∞(M,R) and g a Riemannian metric Morse–
Smale, if
1.) (f, g) is a Morse pair and
2.) for every pair of critical points p and q, the stable manifold W−(p) is
transversal to the unstable one W+(q), written W−(p) t W+(q), i.e. for
every x ∈W−(p) ∩W+(q) we have

TxM = TxW
−(p) + TxW

+(q). (1.17)

Remark: the Morse–Smale condition
The Morse–Smale condition will guarantee that W+(p) ∩W−(q) are mani-
folds for every p, q ∈ Cr(f).
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1.3 Questions concerning Genericy

So far we have introduced the basic terminology and have established some
facts, but we have not clarified the question whether there are Morse–Smale
pairs with the desired properties on any manifold with boundary, if there
are ”plenty” of them, etc. This questions will be dealt with in this section.
In [18] similar questions are investigated.

Remark: jet bundles
We outline the most important properties of jets, see [1] for information
about jets of sections, [12] for an exposition of the theory of jets on mani-
folds with corners and [8] for a general introduction.
Let p : E → X be a smooth vector bundle with finite dimensional fibre,
x1, x2 ∈ X, (U, u, u0) a vector bundle chart of p : E → X, i.e. u denotes
the trivialization of the vector-bundle over U and u0 denotes the chart for
U induced by u, such that x1, x2 ∈ U , and s1, s2 ∈ Γ∞(U ;E|U ), i.e. local
sections of the vector bundle over U (by partition of unity we can extend
them to sections on the whole manifold, and in the reverse direction, we can
”chop” every global section into local ones). One has

u : p−1(U)
∼=→ u0(U)× Fu

su
1 , s

u
2 : u0(U)→ Fu

where su
i denotes the local representation of the sections si in the chart u

and Fu is the typical fibre of E.
We can introduce an equivalence relation on pairs (x, s) ∈ X × Γ∞(X;E)
by setting (s1, x1) ≡k (s2, x2) :⇐⇒

x1 = x2 and (su
1(u(x1)), . . . , Dksu

1(u(x1))) = (su
2(u(x2)), . . . , Dksu

2(u(x2)))

for one (and then any) vector bundle chart (U, u, u0). Dlsu denotes the l’th
derivative of the local representative su of the section s. Obviously this is an
equivalence relation and equivalence classes are denoted by [s(x)]k =: jks(x),
the k-jet of s at x. Set

Jk(X;E) := {[s(x)]k : s ∈ Γ∞(X;E), x ∈ X},

this is called the k-jet bundle of p : E → X. There are two natural maps

jks : X → Jk(X;E), x 7→ jks(x)

called the k-jet extension map and

pk : Jk(X;E)→ X, jk(x) 7→ x

the k-jet projection. The k-jet projection makes Jk(X;E) into a smooth
vector bundle with finite dimensional fibre over X, see [1], and hence its
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name is justified. Given a vector bundle chart (U, u, u0) of p : E → X we
obtain a canonical vector bundle chart for Jk(X;E):

uk(jks(x)) = (u0(x), Dsu(u0(x)), . . . , Dksu(u0(x)))

and one can see the structure of the fibre from this chart. Furthermore there
are maps

πk
l : Jk(X;E)→ J l(X;E), jks(x) 7→ jls(x)

for k ≥ l. These maps satisfy

πk
k = idJk(X;E), and

πl
m ◦ πk

l = πk
m for all k ≥ l ≥ m

hence we can build the inverse limit of the system

J0(E;X)
π1
0←− J1(E;X)

π2
1←− . . .

in the category of Hausdorff topological spaces and obtain J∞(X;E), and
elements of this space are denoted by j∞s(x). There are again mappings

j∞s : X → J∞(X;E),
p∞ : J∞(X;E)→ X,

π∞k : J∞(X;E)→ Jk(X;E)

J∞(X;E) is a complete metric space, as a countable inverse limit of com-
plete metrical spaces. Next we want to introduce topologies on the space of
smooth sections Γ∞(X;E). We follow the approach used in [1].

1.16. Theorem topology on the space of continuous sections
Let p : E → X be a vector bundle with finite dimensional fibre and with
compact base space X. Let ϕ be a fibre metric on p : E → X. Then:
1.) || · ||sup is a norm on Γ0(X;E)
2.) The topology on Γ0(X;E) determined by || · ||sup is independent from the
choice of ϕ.
3.) In this topology Γ0(X;E) is a separable Banach-space.

Proof:
A proof can be found in [1].

2

Remark: the Cr-topology
The Cr-topology on Γr(X;E) is the topology induced by the injection jr :
Γr(X;E) 7→ Γ0(X;Jr(X;E)), i.e. the coarsest topology on Γr(X;E) so that
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jr is continuous.
In the case of functions one can also define jets and the Cr-topology in
the same manner, see [12] for more details. In particular we remark that
Cr(X;Y ) equipped with the Cr-topology is a complete topological space,
provided that X is compact.
Γ∞(X;E) is contained in Γr(X;E) for r ∈ N and we define the Cr-topology
on Γ∞(X;E) as the subspace topology Γ∞(X;E) inherits from Γr(X;E)
equipped with the Cr-topology.
Another description of these topologies on the space of sections uses fami-
lies of fibre-metrics. J∞(X;E) becomes a Fréchet-space in this description.

1.17. Lemma
The map jr : Γr(X;E) → Γ0(X;Jr(X;E)), s 7→ jr(s), r = 0, 1, . . . ,∞ is a
linear continuous injection with closed image.

Proof:
Again, we refer to [1] and [12] for the proof.

2

Next we cite two results from [12] respectively [1] and their proofs can also
be found there. We remark that Theorem (1.18.) makes use of the Theorem
of Sard, see [13] for instance.

1.18. Theorem Density of transversal Intersections
Let X,Y, Z,W be manifolds with corners (in particular, this type of spaces
includes manifolds with boundary), let f : Z → Y be a smooth mapping. Let
ϕ : W → C∞(X,Y ) be a mapping. Consider Φ : W × X → Y , given by
Φ(w, x) := ϕ(w)(x), and assume that Φ is smooth.
Assume Φ t f . Then the set {w ∈ W : ϕ(w) t f} is dense in W (in fact:
its complement in W has Lebesgue measure 0).

Remark:
Two maps f : A → X and g : B → X are called transversal, f t g,
if TxX = (Tf)(TaA) + (Tg)(TbB) holds for any a ∈ A and b ∈ B with
f(a) = g(b) = x.

1.19. Lemma
Let X,Y, Z be manifolds with corners with compact X, let f : Z → Y be a
proper smooth mapping, i.e. the pre-images of all compact sets are compact.
Then the set {g ∈ C∞(X,Y ) : g t f} is C1-open in C∞(X,Y ).

With this preparation we can start to construct suitable functions that will
be the functions of Morse–Smale pairs. We need the following basic fact:
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1.20. Theorem Morse functions
Let M be a compact smooth manifold without boundary. Then the set of
Morse functions is C∞-dense in C∞(M ; R) and open with respect to the C2-
topology.

Proof:
Let f : M → R be a fixed smooth function on M .
Set X := M , Y := T ∗M , 0M : M ↪→ T ∗M the embedding of M into T ∗M
as the zero-section and Z := 0M (M). A function has non-degenerate critical
points if and only if df ∈ Ω1(M) is transversal to Z. We intend to apply
Theorem (1.18.) and Lemma (1.19.).
For any q ∈ M choose a chart (U, u) and set hi

U := xi, i = 1, . . . , n, in
this chart, with u(y) = (x1, . . . , xn) the coordinate functions of this chart.
Consequently dhi

U = dxi in this chart. Outside an open neighbourhood V
of q that is contained in U . We extend the local functions hi

U to smooth
functions hi

V on M . We can find such a V for every q ∈M and this family
of subsets constitute an open cover of M . By compactness there is a finite
sub-cover denoted by V.
Now we set W := R|V|n and define

ϕ : R|V|n → C∞(M ;T ∗M), λV,j 7→ df +

 ∑
V ∈V,j=1,...,n

λV,jdh
j
V


and so

Φ : R|V|n ×M → T ∗M, (λV,j , x) 7→ df(x) +

 ∑
V ∈V,j=1,...,n

λV,jdh
j
V (x)


hence Φ is a smooth mapping.
Next we claim that Φ is transversal to the zero section. So, let y ∈ M
arbitrary, than there is a W ∈ V with y ∈W . On W hj

W coincides with hj
U

for all j = 1, . . . , n and consequently we obtain

df̃ +

 ∑
j=1,...,n

λW,jdx
j


in the chart if we set (λ)V,j = 0 for V 6= W ∈ V and j arbitrary. Obviously
we can span T ∗yM by varying the components of (λ)W,j .
Now we can apply Theorem (1.18.) and so the set of points (λ)V,j in R|V|n

such that ϕ((Λ)V,j) is transversal to the zero-section is dense. So we can
always find (Λ)V,j arbitrary small such that

f +

 ∑
V ∈V,j=1,...,n

λV,jh
j
V


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has only no-degenerate critical points and consequently the Morse functions
are C∞-dense in C∞(M ; R).
Furthermore, the map 0M : M → T ∗M is proper by compactness of M and
so the set {g ∈ C∞(M ; R) : dg t 0M} is C2-open in C∞(M ; R) by Lemma
(1.19.). The shift from C1 to C2 occurs because a function h must by two
times differentiable if dh should be one time differentiable as can be seen in
charts - see the remark about the situation in charts in the last section.

2

Fix φ : ∂M × [0, ε] → M a closed collar of ∂M . Regard ∂M as a compact
manifold without boundary and let f0 be a Morse function on ∂M . Extend
f0 to the collar by setting

f(x, t) := f0(x) + t2

with x ∈ ∂M and t ∈ [0, ε[. We can extend f to a smooth function on the
whole manifold, for instance, with the help of a bump function. However,
extensions of f need not be Morse any more. But we can prove:

1.21. Theorem extending Morse functions from the collar
Let f0 be a Morse function on a fixed closed collar of ∂M of the form
f(x, t) = f(x) + t2 on this collar. Consider the set

M := {h ∈ C∞(M ; R) : h extends f and h is a Morse function on M}.

M is C∞-dense and C2-open in the set of all smooth functions that extend
f .

Proof:
Let g be an arbitrary smooth extension of f .
Let A := φ(∂M × [0, ε]) be the embedded collar. Then g is a Morse function
on A because it has the special form f0(x) + t2 there. U should be a finite
family of charts of M such that the chart-neighbourhoods U ∈ U constitute
a finite open cover of M . Such a finite family of charts alway exists as M is
compact. For U ∈ U set V := U \ A. This is an finite open cover of M \ A
denoted by V and (V, v) are charts of M again where v is the restriction of
u to V ⊂ U ∈ U . Construct local functions hj

V := xj j = 1, . . . , n for all
V ∈ V and extend these local functions to functions on M with the help of
bump functions in a special way:
For V ∈ V with V ∩ A = ∅ we can extend the functions hj

V , j = 1, . . . , n so
that supp(hj

V ) ∩ A = ∅. For V ∈ V with V ∩ A 6= ∅ we use the following
construction: Since f is Morse there as can bee seen by the special form of f
on the collar, there is an open neighbourhood Wy for every y ∈ A such that
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g is Morse on this neighbourhood because dg 6= 0 is an open property. The
union of these sets Wy is open and denoted by B. We know that g is Morse
on B. On V ∩ B we can change hj

V in such a way that supp(hj
V ) ∩ A = ∅

and even find an extension hj
V such that supp(hj

V ) ∩A = ∅.
But now we can use arguments similar to the ones used in the proof of The-
orem (1.20.). We set X := M , Y := T ∗M , M ↪→ T ∗M and W := R|V|n. We
consider the mappings

ϕ : R|V|n → C∞(M ;T ∗M), (λ)V,j 7→ dg +

 ∑
V ∈V,j=1,...,n

λV,jdh
j
V


and

Φ : R|V|n ×M → T ∗M, (λV,j , x) 7→ dg(x) +

 ∑
V ∈V,j=1,...,n

λV,jdh
j
V (x)


and Φ is smooth.
Observe that ϕ leaves dg unchanged on A as all the hj

V vanish there identi-
cally. For points in B the transversality of Φ is clear because g is Morse by
construction. For points in the complement of B we can find λV,j ’s to prove
that Φ is transversal to the zero-section as was done the proof of Theorem
(1.20.).
Now we can apply Theorem (1.18.) to show that the set M is C∞-dense in
the set of all smooth extensions of f and Lemma (1.19.) to argue that M
is C2- open too: {g ∈ C∞(M ; R) : dg t 0M} is C2-open in C∞(M ; R) and
consequently

{g ∈ C∞(M ; R) : dg t 0M and g = f on A} =
{g ∈ C∞(M ; R) : dg t 0M} ∩ {g ∈ C∞(M ; R) : g = f on A}

is C2-open in the space of smooth extensions of f , i.e. in {g ∈ C∞(M ; R) :
g = f on A}.

2

Next we intend to construct Riemannian metrics that serve as the metrics
of the Morse–Smale pairs we are interested in:

Remark: construction of convenient Riemannian metrics on the collar
Be aware that Riemannian metrics are not arbitrary sections of a vector bun-
dle. They form a subspace in the space of all sections of the vector bundle
of fibrewise symmetric bilinear forms on T ∗M , Symm(T ∗M ⊗ T ∗M)→M ,
so we can equip the space of smooth sections of this bundle with the Cr-
topologies and the space of Riemannian metrics inherits the corresponding
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subspace topologies.
Let f be a Morse function with the properties described so far. ∂M is a com-
pact smooth manifold without boundary and for all critical points on ∂M
we can find a chart (U, u) such that f has the form (1.6). The charts can be
chosen in such a way that they have disjoint topological closure. Define local
metrics on the chart-neighbourhoods with help of the chart by pulling back
the Euclidean metric from the chart domain contained in Rn−1×[0,∞[. Now
we can extend the local metrics near the critical points to an Riemannian
metric g0 on ∂M with the help of bump functions. Then we extend g0 to a
Riemannian metric on the collar by setting g := g0 + dt⊗ dt. Consequently,
the charts (U, u) become convenient charts for the critical points on the
boundary.
Now we can consider critical points in the interior of the manifold. Again
we choose Morse charts for each critical point and pull-back the Euclidean
metric on Rn to these chart-neighbourhoods. Then we find Riemannian
metrics on M such that they coincide with the local metrics in the Morse
charts and with the fixed Riemannian metric on the collar. So these Morse
charts become convenient charts too.
The next task is to deal with the Morse–Smale condition. Before we start
with this investigation we cite two facts we will use. The first one is stated
in [1] and the second one is an adaption of a result in the same exposition.

1.22. Lemma
Let X be a compact smooth manifold, ξ0,η vector fields on X, ψ0 the flow
of ξ0, and ψλ (with λ ∈ R) the flow of the vector field ξλ := ξ0 + λη. Then
for x ∈ X and t ∈ R:

d

dλ

(
ψλ

t (x)
)

λ=0
=
∫ t

0
(Tψ0

s) ◦ η ◦ ψ0
−s+t(x)ds.

Proof:
A proof of this ”Perturbation Theorem” can be found in [1].

2

1.23. Lemma
Let X be a compact smooth manifold with Riemannian metric g , f a Morse
function and x a fixed regular point on a trajectory of the negative gradient
flow − gradg(f). We denote the flow of ξλ = − gradg(f) + λη (λ ∈ R) by
ψλ.
For given y 6= x with ψ0

t (y) = x for some t ∈ R and given v ∈ TxX there
exists a smooth vector field η supported away from critical points such that

d

dλ

(
ψλ

t (x)
)

λ=0
= v.
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Proof:
Choose a smooth function h : R→ R, supported on [0, t] with

∫ t
0 h(s)ds = 1.

Define
η(z) := h(s) · (Tψ0

−s)v

for z = ψ0
−s+t(y), 0 ≤ s ≤ t, on the flow line that contains x and y.

η can be extended to a smooth vector field on X, supported away from
critical points, this can be done with the help of the so-called Straightening-
out Theorem for instance, which can be found in [1]. Now we calculate∫ t

0
Tψ0

s ◦ η ◦ ψ0
−s+tds =

∫ t

0
h(s)vds = v

and the claim follows with the help of the Perturbation Theorem.

2

1.24. Theorem Morse–Smale pairs
Given a Morse function f on a compact smooth manifold M and fixed local
Riemannian metrics on open neighbourhoods of critical points of f that are
totally contained in Morse charts, where the metrices are obtained by pulling
back the Euclidean metric with help of the Morse chart.
G denotes the set of all Riemannian metrics such that (f, g) satisfies the
Morse–Smale condition and such that these metrices coincides with the local
metrics on the fixed neighbourhoods of the critical points.
The set G is C∞-dense and C1-residual in the set of all Riemannian metrics
that coincide with the local metrics on the fixed neighbourhoods of the critical
points.

Proof:
We follow the idea outlined in [2], see [18] and [15] for a similar treatment.
Let g be an arbitrary Riemannian metric that coincides with the local Rie-
mannian metrics defined on the domains of the Morse charts (U, u). If we
modify the Riemannian metric, the critical points remain unchanged and
we will change g only outside an open neighbourhood of the critical points,
so the splitting of u(U) into the stable and unstable part remains the same.
Hence we can still use the parametrisation (1.15) of the stable respectively
unstable manifolds. Observe that if we change the Riemannian metric in
a smooth way, the negative gradient vector field also changes in a smooth
way, as can seen in charts and the flow also changes in a smooth manner by
the Perturbation Theorem.
First observe that one can reduce the problem of transversality of all stable
and unstable manifolds to the question how the stable and unstable spheres
intersect: Let p and q be two critical points such that S−e (p) intersects
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S+
e (q) transversally in f−1(e). Let y ∈W−(p)∩W+(q) arbitrary. But then

the stable and unstable spheres of q respectively p intersect transversally
if transported to the hyper surface f−1(f(y)) because the flow induces dif-
feomorphisms. The stable and unstable manifolds are flow-invariant in the
sense that if a point is contained in them so is the whole trajectory of the
negative gradient flow through that point and hence the vector − gradg(f)
is always contained in the tangential space of stable and unstable manifolds.
So TyW

−(p) and TyW
+(q) span TyM for y ∈W−(p)∩W+(q). In the other

direction, one observes that the dimension of the tangential space of the
intersection of a stable and an unstable sphere is the same as the dimension
of the tangential space of the stable and unstable manifolds minus one and if
W−(p) and W+(q) intersect transversally this implies that S−e (p) and S+

e (q)
intersect transversally in the submanifold f−1(e).
We denote the parametrisation of the unstable manifold of a critical point
p of index k by

u : R× S−f(p)−d(p)× R→M, (g, θ, t) 7→ ug(θ, t)

where ug(θ, ·) denotes the flow line of the negative gradient flow with respect
to g starting at θ ∈ S−f(p)−d(p) and R is the set of Riemannian metrics that
coincide with the fixed ones near critical points. We consider

u : R×
⋃

p∈Cr(f)

(S−f(p)−d(p)× R)→M,

(g, θ, t) 7→ ug(θ, t) (1.18)

and observe that the Morse–Smale condition is satisfied for g ∈ R iff u is
transversal to

⋃
q∈Cr(f) S

+
f(q)+d(q).

We intend to apply Theorem (1.18.) and hence set

X :=
⋃

p∈Cr(f)

(S−f(p)−d(p)× R),

Z := M,

Y :=
⋃

q∈Cr(f)

S+
f(q)+d(q)

but it remains to find a subspace of R that serves as W . We have

ϕ : R→ C∞(X;Z), g 7→ ug

Φ : R×X → Z, (g, θ, t) 7→ ug(θ, t).

We have seen that it suffices to find a finite-dimensional family of Rie-
mannian metrics such that u becomes transversal for all combinations of
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stable and unstable spheres for different critical points. This families can be
constructed step by step by starting with a critical point of highest critical
value, denoted by p. We consider an unstable sphere of p, S−d (p). For every
point y on the unstable sphere we can find n vector fields supported in a
small neighbourhood of y such that

d

dλ

(
ψλ

1,t(x)
)

λ=0
, . . . ,

d

dλ

(
ψλ

n,t(x)
)

λ=0

span TyM . But then these vector fields also span TzM for z in an open
neighbourhood Vy of y. These open neighbourhoods build an open cover-
ing of the unstable sphere and by compactness there is a finite sub-cover.
Consequently we have found finitely many vector fields such that the map
λ 7→ ψλ

t (x) is submersive at ψ0
t (x), where ψλ denotes the the flow of the per-

turbed vector field − gradg(f)+λX. But if it is submersive it is transversal
to any sub-manifold, especially to any stable sphere. The same arguments
work for all the other unstable spheres and so we can find finitely many
vector fields for which u is transversal to

⋃
q∈Cr(f) S

+
f(q)+d(q) step by step.

Because there are only finitely many critical points we also obtain finitely
many vector fields supported away from the critical points that must be
varied such that u is transversal to

⋃
q∈Cr(f) S

+
f(q)+d(q). If we denote these

vector fields by X1, . . . , Xm we can set W := Rm and then

u : Rm ×
⋃

p∈Cr(f)

(S−f(p)−d(p)× R)→M ×M,

(Λ, θ, t) 7→ uΛ(θ, t)

where Λ ∈ Rm and uΛ is the flows of the vector field

− gradg(f) +
∑

i=1,...,m

ΛiXi.

This is a smooth mapping and it is transversal to
⋃

q∈Cr(f) S
+
f(q)+d(q). In or-

der to apply Theorem (1.18.), it remains to show that there are Riemannian
metrics that coincide with the fixed Riemannian metrics g on the domains
of Morse charts near critical points and such that

− gradg(f) +
∑

i=1,...,m

ΛiXi = − gradg(f)

at least for (λ1, . . . , λm) sufficiently small. Then the map g 7→ gradg(f)
would be submersive and so we would have found a finite-dimensional family
of Riemannian metrices such that (1.19.) is transversal to

⋃
q∈Cr(f) S

+
f(q)+d(q).

So, given X := gradg(f) and Y a vector field that is equal to X outside an
open subset U that contains no critical point of f . Y shall be sufficiently
close to X in the sense that df(Y ) > 0 everywhere (this holds for X by
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definition). Then there is a splitting of TyM into < Yy > ⊕(ker df)y if y
is not a critical point of f . With the help of the splitting we can define
a Riemannian metric g as the bilinear form represented by the following
matrix: (

df(Y ) 0
0 g ker df

)
where gker df is the restriction of g to the sub-bundle ker df in T ∗M . For
Y = X this coincides with g because then df(X) = g(X,X) and the splitting
< X > ⊕ker df is g-orthogonal. For Y sufficiently small g defines a smooth
Riemannian metric and outside U g coincides with g. Furthermore let Z be
an arbitrary vector field with µY + Z̃ the decomposition of Y with respect
to the splitting < Y > ⊕ker df . Then

df(Z) = df(µY + Z̃) = µdf(Y ) = g(µY, Y ) = g(µY + Z̃, Y ) = g(Z, Y )

holds and so the constructed metric satisfies gradg(f) = Y .
No we can apply Theorem (1.18.) and obtain the result that the set G is
C∞-dense in the set of all Riemannian metrics that coincide with the fixed
local metrics on chart neighbourhoods of the critical points.
That G is C1-residual can be seen as follows: Apply Lemma (1.19.) to

Xn :=
⋃

p∈Cr(f)

(S−f(p)−d(p)× [−n, n]),

Y :=
⋃

q∈Cr(f)

S+
f(q)+d(q) and Z := M

with ι : Y ↪→ Z the smooth embedding of the stable spheres intoM . We have
seen that it suffices to check transversality of the unstable manifolds with
the stable spheres to obtain that the Morse–Smale condition is satisfied. By
Lemma (1.19.) the set {h ∈ C∞(Xn, Z) : h t ι} is C1-open in C∞(Xn, Z).
Consider the set B ⊂ C∞(Xn, Z) consisting of all h ∈ C∞(Xn, Z) such
that h(θ, t) = Φg

θ(t), where Φg is the flow induced by − gradg(f) for some
Riemannian metric g that coincides with the pull-back of the Euclidean
metric in convenient charts for all the critical points. Then B ∩ {Φg t ι}
is C1-open in B for all n ∈ N. That this set is C1-dense too is shown
similar to the C∞-denseness of Riemannian metrices as before. If we take
the intersection over the set of all Riemannian metrices such that Φg t ι for
Xn, n ∈ N, we obtain that the set of Riemannian metrices such that Φg t ι
for
⋃

p∈Cr(f)(S
−
f(p)−d(p)× R) is the intersection of countable many C1-open

and dense sets and hence C1-residual.

2



CHAPTER 1. BASIC CONCEPTS 27

Remark:
Given a function that satisfies all conditions imposed on functions of a Morse
pair we can apply this result as follows: Consider critical points on the
boundary, find Morse charts for them and extend these charts with the help
of the collar. Near critical points fix Riemannian metrices by pulling back
the Euclidean metric defined on the domain of the charts. By the previous
Lemma, the Riemannian metrics that coincide with these local metrics and
that satisfy the Morse–Smale condition are C∞-dense. Then extend such a
Riemannian metric to the collar and fix local Riemannian metrics on Morse
charts for critical points in the interior of M . We can extend these local
metrices and the Riemannian metric on the collar to a Riemannian met-
ric on M . We have seen that we can always find ”many” perturbations
of this extension such that the the perturbed Riemannian metrices satisfy
the Morse–Smale condition and the perturbed Riemannian metrics differ
from the one we started with only on small neighbourhoods of the unstable
spheres.



Chapter 2

The Space of Trajectories

2.1 Properties of the negative gradient Flow

In the previous chapter we have introduced some notations concerning the
dynamical system given by the negative gradient flow of a Morse(–Smale)
pair (f, g). Now we continue this investigation and explain some of the prop-
erties of the negative gradient flow. We follow the presentation in [9].

Remark: situation at the boundary
We use the following result:

2.1. Lemma
Each manifold with boundary is a sub-manifold of a manifold without bound-
ary of the same dimension.

Proof:
A slightly more general fact concerning smooth manifolds with corners is
proved in [12].
With the help of Theorem (1.7.) we can outline a proof: Construct a vector
field X on a collar φ : ∂M × [0, ε[→M , (x, t) 7→ φ(x, t) that coincides with
∂
∂t on ∂M × [0, ε/4] and vanishes on ∂M × [ε/2, ε]. X can be extended to
M by setting it 0 outside the collar. Then we consider the flow Φ generated
by this vector field and observe that M is diffeomorphically mapped into
the interior of M and so we obtain a manifold without boundary M \ ∂M
that contains Φ(M) as a sub-manifold and because M ∼= Φ(M) the claim
follows.

2

We call a smooth manifold M̃ without boundary that contains the original
manifold M with boundary ∂M as a sub-manifold a smooth extension of
M . Given a Morse pair (f, g) on M we can extend f to a smooth function

28
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f̃ of M̃ because M is a closed subset of M̃ . Then there is a smooth ex-
tension of M and a smooth extension of f such that no critical points lie
in M̃ \M . Indeed, let M be a smooth extension on M and f a smooth
extension of f to M . Observe that f is Morse on M . First assume that
x ∈ ∂M is no critical point. But then we have dfx = dfx 6= 0 and so there is
an open neighbourhood Ux of x in M such that df 6= 0 on Ux and without
loss of generality Ux can be assumed to be a chart neighbourhood of x. If
x ∈ ∂M is a critical point we can find a Morse chart of f in M and then x
is the only critical point in the chart neighbourhood Ux. Now we can define
M̃ := M ∪

(⋃
x∈∂M Ux

)
⊂ M and observe that this is an smooth extension

of M . Furthermore we define f̃ to be the restriction of f to M̃ . It is obvi-
ous that f̃ is a smooth extension of f such that all critical points of f̃ are
contained in M .
Another consequence is that flow lines with points inM are totally contained
in M : we have seen that flow lines with points on the boundary stay in the
boundary because the gradient vector field is tangential to the boundary.
Additionally, unstable manifolds with points on the boundary are trapped
in the boundary and unstable manifolds containing points in in the interior
of M are totally contained in the interior of M .
All in all we can use the existence of such a smooth extension M̃ to deal
with the dynamical system associated to (f, g) as if M would be a manifold
without boundary. So in the following we can assume without loss of gen-
erality that M is a compact manifold without boundary.

2.2. Lemma
Let γx(·) be a flow line of the negative gradient flow associated to a Morse
pair (f, g). Then

γx(+∞) := lim
t→+∞

γx(t)

γx(−∞) := lim
t→−∞

γx(t)

exist and these limits are critical points of f .

Proof:
First we show that gradg(f) converges to 0 along every flow line γx(t) for
t→ +∞. Define

f+∞ := lim
t→+∞

f(γx(t)) > −∞

because M is compact, so f has a minimum and is bounded from below by
it. Furthermore, as f decreases along flow lines as proved in Lemma (1.11.),
we have

f(x) = f(γx(0)) ≥ f(γx(t)) ≥ f+∞
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and d
dtf(γx(t)) = −||γ′x(t)||2 — see the proof of Lemma (1.11.) — implies∫ ∞

0
||γ′x(t)||2dt =

∫ ∞

0
− d

dt
f(γx(t))dt = f(x)− f+∞ <∞.

Since γ′x(t) = −gradg(f(γx(t))) we obtain∫ ∞

0
||gradg(f(γx(t)))||2dt <∞

and consequently

lim
t→+∞

gradg(f(γx(t))) = 0

and similar the claim is proved for t→ −∞.
Compactness of M implies that we can find (tn)n∈N ∈ R with limn→∞ tn =
+∞ such that γx(tn) converges to some critical point p of f . It remains to
show that limt→+∞ x(t) exists and that

lim
t→+∞

γx(t) = p

holds. This follows directly from the local form of the stable manifolds pro-
vided that (f, g) is a Morse pair: The explicit behaviour of the negative
gradient vector field around p, see (1.10), implies that there is a neighbour-
hood U of the critical point p such that any flow line in that neighbourhood
containing p as an accumulation point of some sequence γx(tn), tn → +∞,
is contained in the stable manifold of p.
The same argument works if we consider the case with t→ −∞.

2

Remark: decomposition of the manifold by the stable/unstable manifolds
The last lemma ensures that the stable respectively unstable manifolds really
decompose the manifold M , i.e. for every point x the limits

lim
t→+∞

γx(t) =: q respectively lim
t→−∞

γx(t) =: p

exist and consequently x ∈W+(q) and x ∈W−(p).
Furthermore it is clear that different unstable manifolds must not intersect
because if they would, the points in their intersection would have two dif-
ferent critical points as the limit of the flow line for t → −∞. Obviously,
the same argument holds for stable manifolds. Next we introduce the space
of trajectories between two critical points:
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2.3. Definition Space of Trajectories
Given a Morse pair (f, g) and let p and q be two of its critical points. For
p 6= q we set

M(p, q) := W−(p) ∩W+(q)

M(p, q) is the space of trajectories from p to q.

Remark: uniform convergence
As M is a compact Riemannian manifold, we have a metric on M coming
from the geodesic distance between points and this metric also induces the
topology of the manifold. Because M is metrisable, it makes sense to speak
of ”uniform convergence” of mappings from a metrical space into M , in par-
ticular uniform convergence of a family of trajectories is defined.

Remark: convenient topologies on the space of trajectories
By arguments used before, every point lies in a space of trajectories between
two critical pointsM(p, q). Clearly, when a point x lies inM(p, q), so does
the whole trajectory γx(·) as both W−(p) and W+(q) are flow-invariant and
hence their intersection is too.
The most obvious way to equip M(p, q) with a topology is to consider the
subspace topology it inherits from M . Another possibility is to embed
M(p, q) into C(R,M) — the space of continuous functions from R to M
— via

Γ :M(p, q)→ C(R,M), x 7→ γx(·).

This map is injective: given two maps in Γ(C(R,M)) we can apply

ev0 : Γ(C(R,M))→M(p, q), γx(·) 7→ γx(0) = x

and so we see that γx(·) = γy(·) implies x = y. We equip C(R,M) with
the topology of uniform convergence and denote this topological space by
C0(R,M). M(p, q) obtains the subspace topology of this embedding. To
show that these two topologies coincide, we prove:

2.4. Lemma
Let (xn)n∈N a convergent sequence of points in M(p, q) with limit z ∈
M(p, q). Then γxn(·) converges uniformly to γz(·).

Proof:
As solutions of the flow equation depend smoothly on initial values, γx(t)
depends smoothly on x. Hence γxn(t) and γ′xn

(t) are convergent for every
t ∈ R.
Being solutions of a flow equation, they are locally uniformly convergent.
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There we can perform the following calculation:

( lim
n→∞

γxn(t))′ = lim
n→∞

γ′xn
(t) = lim

n→∞
−gradg(f) ◦ γxn(t)

= −gradg(f) ◦ lim
n→∞

γxn(t)

and because of

lim
n→∞

γxn(0) = lim
n→∞

xn = z = γz(0)

the uniqueness of solutions of ODEs with given initial values implies

lim
n→∞

γxn(t) = γz(t)

and this convergence is uniform on compact subsets of R.
To get uniform convergence everywhere on R, we must look at the situation
near the critical points p and q. We look at the situation near p, the situation
near q is totally analogous. As convergence of points implies the convergence
of the associated points on the level-hyper surfaces, for instance on S−f(p)−d(p)
in a convenient chart (U, u). To show uniform convergence there, we use the
explicit form of the trajectories near critical points, given by (1.10): Denote
the series of convergent points on S−f(p)−d(p) by (xn)n∈N and its limit by x.
The trajectories through this points are given by

γxn(t) = xne
2t and γx(t) = xe2t

and we are only interested in the domain where t < 0. There we get

||γxn(t)− γx(t)|| = ||xn − x||e2t ≤ ||xn − x||

and hence uniform convergence.

2

2.5. Proposition
The two topologies on M(p, q) mentioned above are equivalent.

Proof:
First we consider Γ : M(p, q) → C0(R,M), x 7→ γx(·). Let (xn)n∈N be a
convergent sequence in M(p, q) with xn → x ∈ M(p, q). By Lemma (2.4.)
γxn(·)→ γx(·) uniformly in C0(R,M). Hence the map we considered is con-
tinuous.
In the other direction we can look at ev0 : Γ(M(p, q)) →M(p, q), γx(·) 7→
γx(0) = x. Assume γxn(·) → γx(·) in C0(R,M). But uniform convergence
implies pointwise convergent and hence γxn(0) → γx(0) and consequently
xn → x inM(p, q), so ev0 is continuous too.
Furthermore ev0 and Γ are inverse to each other as maps between M(p, q)
and Γ(M(p, q)).
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2

Next we prove two lemmas we will use to show thatM(p, q) is a sub-manifold
of M , provided that (f, g) is a Morse–Smale pair.

2.6. Lemma
Given X2 ⊂ X1 ⊂ X with X a smooth manifold of dimension n, X1 a sub-
manifold of X of dimension n1 and X2 a sub-manifold of X1 of dimension
n2.
Then X2 is a sub-manifold of X of dimension n2.

Proof:
For arbitrary x ∈ X2 ⊂ X1 there is a sub-manifold chart (U, u) for X1 in X
centred at x, i.e.

u : U −→ u(U) ⊂ Rn, such that u(X1 ∩ U) = u(U) ∩ (Rn1 × 0)

and because u is a local diffeomorphism on U , u(X2 ∩ U) is a sub-manifold
of u(X1 ∩U) and hence there is a sub-manifold chart (V, v) of u(X2 ∩U) in
u(X1 ∩ U) centred at u(x):

v : V −→ v(V ) ⊂ Rn1 , such that v(u(X2 ∩ U) ∩ V ) = v(V ) ∩ (Rn2 × 0)

There is an open neighbourhood W of u(x) in u(U)∩ (Rn1×0) and an ε > 0
such that W×]− ε, ε[⊂ u(U) with W ⊂ v−1(V ) and

ψ : W −→ ψ(W ), ψ := v × id

and ψ is a diffeomorphism on W . Consider

ψ ◦ u : u−1(W×]− ε, ε[) −→ ψ(W×]− ε, ε[)

and this map satisfies

ψ ◦ u(X2 ∩ u−1(W×]− ε, ε[)) = ψ ◦ u((W×]− ε, ε[) ∩ (Rn2 × 0))
= ψ(W×]− ε, ε[) ∩ (Rn2 × 0)

and hence (u−1(W×]−ε, ε[), ψ◦u) is a sub-manifold chart ofX2 inX centred
at x.

2

2.7. Lemma
Given i : M −→ N an embedding of a smooth manifold into another smooth
manifold. Let f : P −→ N be a smooth map from a smooth manifold P to
N that is transversal to i.
Then f−1(i(M)) is a sub-manifold of P .
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Proof:
A poof of this Lemma can be found in [13], for instance.
We outline the idea of a proof: i(M) is a sub-manifold of N , hence, locally
it can be written as the pre-image of 0 of a smooth vector-valued function g
where 0 can be assumed to be a regular value of 0. But then, locally we have
f−1(i(M)) = f−1(g−1(0)) = (g ◦ f)−1(0). Because of our the transversality-
assumption we can apply the implicit function theorem and hence f−1(i(M))
describes a sub-manifold of P .

2

2.8. Corollary
Given two sub-manifolds X1, X2 of a smooth manifold X that intersect
transversal. Then their intersection X1 ∩ X2 is a sub-manifold of X of
dimension dimX1 + dimX2 − dimX.

Proof:
Consider the maps i1 : X1 ↪→ X and i2 : X2 ↪→ X and these maps are
transversal because X1 and X2 are transversal. Now we can apply Lemma
(2.6.) and so X1 ∩X2 = i−1

1 (i2(X)) is a sub-manifold of X1 and by Lemma
(2.7.) it is also a sub-manifold of X.

2

2.9. Proposition
Let p 6= q be two critical points of a Morse–Smale pair (f, g). If M(p, q) is
non-empty, it is a manifold of dimension ind(p)− ind(q). M(p, q) does not
contain any critical points.

Proof:
This follows from Corollary (2.8.) because the Morse–Smale condition as-
sures the transversality of W−(p) and W+(q).
Because p 6= q there cannot be critical points in M(p, q), otherwise assume
that x is a critical point in M(p, q). But then p = limt−→−∞ γx(t) = x =
limt−→+∞ γx(t) = q and hence we would have p = q.

2

Remark: canonical parametrisation
Often, a parametrisation of the flow lines different from the one obtained
by solving the flow equation (1.8), is more useful. A canonical way to para-
metrise the flow lines can be constructed with the help of the Morse function
f . Usually we will denote the flow lines that come along with the parametri-
sation from solving the flow equation by γ and the ones that are canonically
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parametrised by σ.
So, let σ(t) be a reparametrisation of γx(t) with x ∈M(p, q) and set

f(p) =: b > a := f(q)

the inequality follows from the fact that f decreases along the flow lines.
We require that

f(σ(t)) = a+ b− t for a < t < b.

To prove existence of such a parametrisation, we show that σ(t) satisfies a
flow-equation at non-critical points by performing the following calculations:

−1 =
d

dt
(a+ b− t) =

d

dt
(f(σ(t))) = dfσ(t)(σ

′(t))

= g(gradg(f)(σ(t)), σ′(t))

and we know that σ′(t) points in the direction of γ′(t) at the same points,
as the former is assumed to be a reparametrisation of the latter, hence
σ′(t) = λgradg(f) at every point (λ is a smooth function C∞(M ; R)). If we
plug this into the previous equality we obtain

λ = − 1
||gradg(f)||2

and consequently

σ′(t) = − gradg(f)
||gradg(f)||2

◦ σ(t) (2.1)

and so existence is obvious. Observe that Lemma (1.11.) remains true and
that the Morse function f still decreases along σ(·).

Remark: canonical parametrisation near critical points
Given a point z0 in the unstable manifold near the critical point p, see (1.11)
and (1.12) for the explicit description of this situation. The trajectory start-
ing at z0 is given by (1.10). We now want to calculate the reparametrisation
of γx0 that is solution of

f(γz0(φ(t))) = −t for t > 0

hence, a shifted version of the canonical parametrisation. f has the form
−||y||2 − ||x||2 in the convenient chart and so one obtains

f(γz0(φ(t))) = f(z0e2φ(t)) = −||z0||2e4φ(t) = −t =⇒

φ(t) =
1
4

ln(
t

||z0||2
) =⇒
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σ(t) = γz0(φ(t)) =
z0
||z0||

√
t. (2.2)

Observe that one can extend σ(·) continuously from ]a, b[ with a := f(q) and
b := f(p) to [a, b] and that this unique continuation is not smooth. Unlike
in the usual parametrisation, the associated critical points of the flow line
are arrived at in finite time.

Remark: the space of parametrised trajectories
So far we have considered spaces of trajectories where we have distinguished
between points lying on the same trajectory, or - what is equivalent - we have
distinguished between trajectories even if the are just reparametrisation of
one another. In the next section we investigate the space of unparametrised
trajectories.

2.2 The Space of unparametrised Trajectories

Remark: the R-action onM(p, q)
There is a natural R-action on the spaceM(p, q) for arbitrary critical points
p 6= q, given by:

R×M(p, q) −→M(p, q), (t, x) 7→ γx(t). (2.3)

If one identifiesM(p, q) with the subspace Γ(M(p, q)) of C(R,M) this action
takes the form (t, γx(·)) 7→ γx(· + t), hence a reparametrisation via a shift
in the argument. Clearly this is an action and we can consider the quotient
space:

2.10. Definition the Space of unparametrised Trajectories
We denote the space of orbits of this action by

T (p, q) :=M(p, q)/R

and call it the space of all unparametrised trajectories from p to q.

Next we intend to equip T (p, q) with a topology. Beforehand we prove:

2.11. Proposition
Let (f, g) be a Morse–Smale pair and assume p and q are critical points of
f . For arbitrary f(q) < c < f(p), M(p, q) ∩ f−1(c) is a sub-manifold of
M . If d is another value with f(q) < d < f(p) then M(p, q) ∩ f−1(d) is
diffeomorphic to M(p, q) ∩ f−1(c).
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Proof:
Because there are only finitely many critical points, there are only finitely
many critical values and hence we can find a regular value e with f(q) <
e < f(p). By regularity of e, f−1(e) is a sub-manifold of M and it intersects
M(p, q) transversally, soM(p, q)∩ f−1(e) is a sub-manifold of M by Corol-
lary (2.8.).
Now let d be an arbitrary value a := f(q) < d < f(q) =: b. We show
that M(p, q) ∩ f−1(d) is diffeomorphic to M(p, q) ∩ f−1(e): Define a map
τe,d : M(p, q) ∩ f−1(e) −→ M(p, q) ∩ f−1(d) by x 7→ Φe−d(x), where Φ
denotes the flow of the vector field −gradg(f)

||gradg(f)||2 . This map is smooth with
smooth inverse x 7→ Φd−e(x), so τe,d is a diffeomorphism. Consequently
M(p, q) ∩ f−1(d) is a sub-manifold for arbitrary f(q) < d < f(p) and
all such sub-manifolds are diffeomorphic as they are all diffeomorphic to
M(p, q) ∩ f−1(e).

2

Remark: convenient topologies on T (p, q)
There are different ways to topologise T (p, q) but they will be seen to be
equivalent. First, we observe that the natural R-action on M(p, q) is con-
tinuous. Consequently, we can equip T (p, q) with the quotient topology
induced by

P :M(p, q) −→ T (p, q) =M(p, q)/R, x 7→ [x]

where [x] denotes the equivalence class of x. Hence, open sets in T (p, q) are
those sets that have an open pre-image inM(p, q) under P . An immediate
consequence is that maps from T (p, q) into any other topological space are
continuous if and only if the map obtained by composition with P is a con-
tinuous map from M(p, q) into this space.
Next, we can use the canonical parametrisation of trajectories to obtain
a topology on T (p, q). If γx(·) and γy(·) are two trajectories of the nega-
tive gradient flow such that their images in M coincide — hence they are
just reparametrised versions of one another — the corresponding canonical
parametrised trajectories coincide. Hence, σ(·) does not depend on x but
only on [x]. For points in different equivalence classes, the corresponding
canonically parametrised trajectories are different, and so there is a bijection
between all canonically parametrised trajectories from p to q and T (p, q).
Let a := f(q) and b := f(p) and by construction canonically parametrised
trajectories are elements of C([a, b],M). So, by equipping C([a, b],M) with
a topology, T (p, q) inherits the subspace-topology. We have observed that
M has a metric and so we can equip C([a, b],M) with the topology com-
ing from uniform convergence and this topological space will be denoted by
C0([a, b],M).
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The third way to topologise T (p, q) uses the bijection between T (p, q) and
M(p, q) ∩ f−1(c), a < c < b. Every trajectory from p to q intersects
M(p, q) ∩ f−1(c) exactly once as was proved in Lemma (1.11.). So we use
the topology onM(p, q)∩ f−1(c) to equip T (p, q) with a topology. Observe
that this topology does not depend on the particular value a < c < b one
chooses as all level-hyper surfaces in M(p, q) are diffeomorphic, see Propo-
sition (2.11.). So, one can even use the bijection to obtain a differentiable
structure on T (p, q).
Next we will proof that:

2.12. Proposition
All the topologies on T (p, q) described before are equivalent.

Proof:
That the topologies coming from C0([a, b],M) and fromM(p, q)∩f−1(c) are
equivalent is similar to the proof of Lemma (2.4.): If σn(·) converge uniformly
to σ(·), they do so pointwise. Hence σn(a+b−c) converges to σ(a+b−c) and
by definition σn(a+b−c) and σ(a+b−c) are lying inM(p, q)∩f−1(c). In the
other direction, if points converge in M(p, q) ∩ f−1(c), the canonical para-
metrised trajectories through them converge pointwise. Like in the proof of
Lemma (2.4.) outside convenient charts of the critical points, the canonical
parametrised trajectories satisfy a flow equation and uniform convergence
follows from this. Near critical points we use the explicit behaviour of the
canonical parametrised trajectories — see (2.2) — to demonstrate uniform
convergence.
To prove the equivalence of the topology coming fromM(p, q)∩ f−1(c) and
the one induced by P :M(p, q) −→M(p, q)/R =: T (p, q) we construct two
continuous maps between these spaces that are inverse to each other:
First consider

M(p, q) ∩ f−1(c)
ι
↪→M(p, q) P−→ T (p, q).

This is a composition of continuous maps and hence continuous. On the
other hand one considers

M(p, q) −→M(p, q) ∩ f−1(c), x 7→ Φf(x)−c(x)

with Φ the flow induced by −gradg(f)
||gradg(f)||2 , hence it is smooth and in particular

continuous. Furthermore this map is invariant under the R-action. So it
induces a continuous map

Λ : T (p, q)→M(p, q) ∩ f−1(c),

that is inverse to P ◦ ι :M(p, q) ∩ f−1(c)→ T (p, q).

2
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Remark: more about the R-action on M(p, q)
One way to obtain a differentiable structure on T (p, q) works via the bijec-
tion between T (p, q) andM(p, q) ∩ f−1(c) for f(q) < c < f(p).
Another way to equip T (p, q) with a differentiable structure is by analysing
the properties of the R-action on M(p, q) and apply general results about
the space of orbits of actions of Lie-groups on manifolds. Observe that
no problems with the boundary can arise, as we can apply the procedure
explained before to make the situation take place in the setting of mani-
folds without boundary, and by considering only the part that is of interest
(which is invariant under the R-action), so all assumptions can be taken for
granted. The action is smooth, as R×M(p, q) −→M(p, q), (t, x) 7→ γx(t)
is smooth. Moreover, this action is free, as no critical points are contained
in M(p, q). Another important property of a smooth action on topological
spaces is defined next:

2.13. Definition proper actions
A smooth action G×M −→M is called proper if the map

G×M −→M ×M, (g, x) 7→ (g · x, x)

is proper.

2.14. Lemma
A smooth action G×M −→M is proper if and only if for all (xn)n∈N ⊂M ,
(gn)n∈N ⊂ G for which xn → x and gn · xn → y, there is a convergent sub-
sequent of (gn)n∈N.

Proof:
The proof is straight-forward and can be found in the lecture notes [14].

2

2.15. Proposition
Given a smooth proper free action of a Lie-Group on a smooth manifold the
space of orbits admits a unique smooth structure such that the projection
P : M −→M/G is a surjective submersion.

Remark: on the proof
In [14] it is shown that in the presence of a single orbit type one can construct
charts from normal slices for proper actions. If the action under considera-
tion is free, there is just one orbit type given by e where e ∈ G is the neutral
element.

2.16. Proposition
The R-action on M(p, q) given by

R×M(p, q) −→M(p, q), (t, x) 7→ γx(t)
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is proper.

Proof:
We use Lemma (2.14) and assume (xn)n∈N ⊂ M(p, q), (tn)n∈N ⊂ R for
which xn → x ∈M(p, q) and γxn(tn)→ y ∈M(p, q).
Assume that the sequence (tn)n∈N is not contained in a compact subset of
R. Then it must be unbounded and after selecting a subsequence we can
assume without loss of generality that tn → ∞. By Lemma (2.6) we know
that γxn(·) converges uniformly to γx(·) and hence for arbitrary ε

d(γxn(t), γx(t)) < ε

holds for all t and n sufficiently large. But γx(tn) → q, and γxn(tn) → y,
hence y = q This is a contradiction to our assumption that y is not a critical
point.

2

2.17. Corollary
The orbit space T (p, q) admits a unique smooth structure such that the pro-
jection P :M(p, q)→ T (p, q) is a surjective submersion.

Proof:
The action has been proved to be proper and free, so one can apply Propo-
sition (2.16.) to the R-action on M(p, q).

2

Remark: the differentiable structure on T (p, q)
One can easily check that the two ways to equip T (p, q) with a differentiable
structure are equivalent. On one hand, we consider the map given by

M(p, q) ∩ f−1(c)
ι
↪→M(p, q) P−→ T (p, q)

again and as ι and P are smooth, this map is smooth too. On the other
hand consider the map

Λ : T (p, q) −→ C0([a, b],M) −→M(p, q) ∩ f−1(c)

can be composed with P and we obtain

M(p, q) P−→ T (p, q) Λ−→M(p, q) ∩ f−1(c)

and in the next lemma we show that the fact that P is a surjective submer-
sion implies that Λ ◦ P is smooth iff Λ is smooth and smoothness of Λ ◦ P
follows from the fact that this map is equal to x 7→ Φf(x)−c(x), where Φ is
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again the flow generated by −gradg(f)
||gradg(f)||2 . Moreover Λ and P ◦ ι are inverse to

each other and so they are even diffeomorphisms.

2.18. Lemma
Given a surjective submersion p : M −→M ′. Then a map φ : M ′ −→ N is
smooth if and only if φ ◦ p : M −→ N is smooth.

Proof:
That the composition of smooth maps is smooth is clear, so we only need to
prove the other direction of this equivalence. On the other hand one obtains
smooth local sections σ : U →M , U an open subset in M ′ with the help of
the implicit function theorem. Hence f = f ◦ (p ◦σ) = (f ◦ p) ◦σ in an open
neighbourhood of an arbitrary point of M ′ and consequently smoothness of
f ◦ p implies smoothness of f .

2

Remark: dimension of T (p, q)
In the last section we have deduced that

dim(M(p, q)) = ind(p)− ind(q)

and consequently we obtain

dim(T (p, q)) = ind(p)− ind(q)− 1

Consider the special case where ind(p) − ind(q) = 1. Then the space of
unparametrised trajectories from p to q is zero-dimensional (assumed that
it is non-empty). Later we will prove that in this case T (p, q) is compact
and hence it is a finite collection of points, so there are only a finite number
of trajectories between these points. Next we will introduce the space of
(unparametrised) broken trajectories:

2.19. Definition the Space of (unparametrised) broken Trajectories
Given a Morse–Smale pair (f, g) on M , let p and q be two critical points of
f . Define the space of k-times broken trajectories from p to q as

T̂k(p, q) :=
⊔

p=:y0,y1,...,yk,yk+1:=q

T (y0, y1)× T (y1, y2)× . . .× T (yk, yk+1).

The space of broken trajectories from p to q is

T̂ (p, q) :=
⊔
k≥0

T̂k(p, q).
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Remark: a topology on the space of broken trajectories
The way of interpreting T (p, q) as a subspace of C0([a, b],M) with f(p) =:
b > a := f(q) can be applied to T̂ (p, q) as well: An element of T̂ (p, q)
is a collection of canonically parametrised trajectories such that successive
trajectories fit together at the critical point where the one trajectory ends
and the new one starts. Because the canonical parametrised trajectories are
parametrised with the function f the can be fit together at the critical values
and one obtains a continuous function from τ : [a, b]→M that satisfies:
1.) τ(a) = p, τ(b) = q.
2.) f(τ(t)) = a+ b− t
3.) for t ∈]a, b[ such that τ(t) 6∈ Cr(f) the derivative τ ′(t) exists and

τ ′(t) = − gradg(f)
||gradg(f)||2

◦ τ(t)

holds.
One the other hand, each τ(·) ∈ C([a, b],M) that satisfies 1.), 2.) and 3.)
can be interpreted as a broken trajectories from p to q: By 1.) τ(·) starts at
p and ends at q. By 2.) only finitely many critical points lie in the image of
τ(·) and we order these decreasing with f , p =: y0, y1, . . . , yk, yk+1 := q. On
]f(yi), f(yi−1)[, i = 1, . . . , k + 1, τ(·) satisfies the flow equation and hence
is an unbroken canonical parametrised trajectory from yi−1 to yi. By con-
tinuity of τ(·) the unbroken canonical parametrised trajectory from yi−1 to
yi and the one from yi to yi+1 fit together at yi and by 2.) τ(t) = yi is only
satisfied for t = a+ b− f(yi).
So the broken trajectories from p to q can be identified with the subspace
of C([a, b],M) described by the conditions 1.), 2.) and 3.). Again we con-
sider the topology of uniform convergence on C([a, b],M) and equip T̂ (p, q)
with the subspace topology it inherits from C0([a, b],M). Observe that the
subspace-topology on T̂k(p, q) ⊂ T̂ (p, q) coincides with the topology that
T̂k(p, q) inherits from using the definition as a product of (unbroken) canon-
ical parametrised trajectories: Uniform convergence of the different unbro-
ken trajectories implies uniform convergence of the whole broken trajectory
and vice versa. In particular the map

T (p, q) ↪→ T̂ (p, q)

induces a homeomorphism

T (p, q)
∼=→ T̂0(p, q).

Hence, the unbroken trajectories build a subspace of the broken ones and we
will prove that T̂ (p, q) equipped with the subspace-topology coming from
C0([a, b],M) is compact. Hence, the topological closure of T (p, q) lies in
T̂ (p, q) and in the next section it will follow that it is exactly the closure.
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We state the Theorem of Arzela-Ascoli as we will use it to prove the com-
pactness of T̂ (p, q):

2.20 Theorem Arzela-Ascoli
Let S be a compact metrical topological space and T a metrical space. A
subset A of C(S, T ) is compact with respect to uniform convergence if and
only if it is bounded, closed and equicontinuous, i.e. for every s0 ∈ S and
every ε > 0 there is an δ > 0 such that d(f(s), f(s0)) < ε for all s ∈ S such
that d(s, s0) < δ for every f ∈ A.

Proof:
The proof of this theorem can be found in most text books about functional
analysis.

2

2.21. Theorem Compactness of the Space of broken Trajectories
Given a Morse–Smale pair on M and two critical points p and q. Then
T̂ (p, q) is compact.

Proof:
We verify the three conditions in order to apply the Theorem of Arzela-
Ascoli to T̂ (p, q):

claim a) T̂ (p, q) is bounded
M is compact and so the metric on M being induced by the Riemannian
metric on M is bounded by the Theorem of Hopf–Rinov. Hence C0([a, b],M)
is bounded and so is T̂ (p, q).

claim b) T̂ (p, q) is closed
Given a sequence of broken canonical parametrised trajectories (σn(·))n∈N ⊂
T̂ (p, q) that converges in C0([a, b],M). We denote the limit by σ(·) and show
that it must lie in T̂ (p, q). It is clear that σ(·) starts at p and ends at q
because uniform convergence implies pointwise convergence and hence

σ(a) = lim
n→∞

σn(a) = lim
n→∞

p = p

and similar one shows that σ(b) = q. Furthermore σ(·) is continuous as the
limit of continuous maps under uniform convergence. As f(σn(t)) = a+b−t
holds for all n ∈ N one obtains

f(σ(t)) = f( lim
n→∞

σn(t)) = lim
n→∞

f(σn(t)) = a+ b− t

and so σ(·) is again parametrised by f and there can be only a finite number
of critical points on σ(·). If σ(s) is not a critical point of f then we can
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assume without loss of generality that all σn(s) are regular points too. Near
σ(s) one has σn(·)→ σ(·) uniformly. Furthermore

lim
n→∞

σ′n(s) = lim
n→∞

−gradg(f)
||gradg(f)||2

◦ σn(s)

=
−gradg(f)
||gradg(f)||2

◦ lim
n→∞

σn(s)

=
−gradg(f)
||gradg(f)||2

◦ σ(s)

but as σn(·) → σ(·) local uniformly and σ′n(s) converges for s in an neigh-
bourhood of t one obtains that σ′(t) exists and that it is equal to

lim
n→∞

σ′n(t) = −gradg(f)/||gradg(f)||2 ◦ σ(t).

Hence
σ′(t) =

−gradg(f)
||gradg(f)||2

◦ σ(t)

for all t such that σ(t) is not a critical point of f . So the claim follows.

claim c) T̂ (p, q) is equicontinuous:
First we prove the statement for points that are not critical. There we can
make the following estimate:

d(σ(s), σ(s0)) ≤
∫ s

s0

||σ′(t)||dt ≤
∫ s

s0

|| gradg(f)
||gradg(f)||2

◦ σ(t)||dt ≤

C · |s− s0|

where C is the maximum of 1
||gradg(f)|| in a closed neighbourhood of σ(s0)

not containing a critical point.
At critical points we make use of the explicit form of the trajectories we have
computed in (2.2): all broken trajectories that arrive at the critical point
and go through it have the following representation in a convenient chart:

σ(t) =
x−
||x−||

√
t for t ∈ [0, d]

where x− ∈ S−f(p)−d(p) and similar for elements on S+
f(p)+d(p).

Furthermore we must look at trajectories ”near” broken trajectories in a
neighbourhood of a critical point. We use a convenient chart and compute
the canonically parametrised (possibly broken) trajectories to be given by

σ(t) =

 x

||x||

√√
t2 + 4||x||2||y||2 − t2

2
,
y

||y||

√√
t2 + 4||x||2||y||2 + t2

2


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where the trajectory passes through (x, y) ∈ Rn−k×Rk. Broken trajectories
are given by

σ(t) =

{
( x
||x||
√
−t, 0) for t < 0

(0, y
||y||
√
t) for t > 0

and from this equicontinuous continuity follows directly.

2

2.3 Compactification of the Space of unparametrised
Trajectories

We follow the treatment presented in [3], [4] and [5]. Beforehand we need
to introduce manifolds with corners. The main source is [12] where much
more material about this kind of manifolds is presented.

2.22. Definition the positive quadrant, corners
The positive quadrant of dimension n, Qn ⊂ Rn, is the subspace

Qn := {x = (x1, . . . , xn) ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0}.

If x = (x1, . . . , xn) ∈ Qn satisfies xi = 0 for exactly m i’s with 0 ≤ i ≤ n
then we call x a corner of index m.

2.23. Definition smooth manifolds with corners and basic terminology
A smooth manifold with corners X of dimension n is a topological (second
countable and Hausdorff) space together with an atlas of charts φα : Uα −→
Qn, α ∈ A where the family (Uα)α∈A forms an open cover of X, Qn denotes
the positive quadrant in Rn and φα is a homeomorphism onto its image for
every α ∈ A (using the initial topology given by ι : Qn ↪→ Rn). Furthermore
the transition functions φβ ◦φ−1

α : φα(Uα ∩Uβ) −→ φβ(Uα ∩Uβ) are smooth
maps, i.e. they can be extended to smooth maps between open neighbour-
hoods of φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ) (in the standard topology of Rn).
A point x ∈ X is called a corner of index k if there is chart for x such that
the image of x is a corner of index k. As diffeomorphisms map corners of
given index into corners of the same index, corners and their indices are
well-defined.
The set of all corners of a fixed index k is called the k-boundary, ∂kX, and
the boundary is the union of all k-boundaries for 0 ≤ k ≤ n. By inner
points we denote points not lying on the boundary of X.

Remark: the definition of manifolds with corners
We observe that boundaries come along with a natural grading, given by the
boundaries of a fixed index. Furthermore, every k-boundary lies in the topo-
logical closure of a l-boundary for 0 ≤ l ≤ k, what can be easily seen from
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the definition. We define ∂≥kX :=
⋃

j≥k ∂jX and we have ∂X = ∂≥1X. The
boundary of a manifold is closed and inherits the structure of a topological
manifold. The pair (X, ∂X) is a topological manifold with boundary.
We will make use of the next lemma for recognising manifolds with corners
later on:

2.24. Lemma
Let P be a manifold with corners, and S respectively O smooth manifolds.
Suppose that p : P −→ O is a smooth mapping and s : S −→ O and em-
bedding that are transversal to each other. (This means that p restricted to
every k-boundary of P is transversal to s.)
Then p−1(s(S)) is a smooth manifold with corners and it admits a unique
smooth structure such that the inclusion i : p−1(s(S)) ↪→ P is an immersion.

Proof:
The proof that p−1(s(S)) is a smooth submanifold of P is similar to the one
of Lemma (2.7.). Locally, p−1(s(S)) can be written as g−(0) where g is a
smooth vector-valued function with regular value 0. But then (p ◦ g)−1(0)
is a submanifold of P transversal to every k-boundary.
That p−1(s(S)) admits an unique smooth structure such that the inclusion
is an immersion follows from the universal property that for every smooth
manifold with corners Z a mapping f : Z → p−1(s(S)) is smooth if and only
if i ◦ f : Z → P is smooth. A detailed proof of this statement can be found
in [13], for instance.

2

Remark: some useful notations
Given a Morse–Smale pair (f, g), there is also only a finite number of critical
values of f , as there are only finitely many critical points. We order them
by increasing value:

c1 < c2 < . . . < cs.

Obviously, we can find an ε > 0 such that ci + ε < ci+1 − ε for all i =
1, . . . , s− 1. We set

Cr(i) := Cr(f) ∩ f−1(ci), c+i := ci + ε and c−i := ci − ε

and

Mi := f−1(ci), M+
i := f−1(c+i ), M−

i := f−1(c−i ).

Observe that M+
i and M−

i are smooth sub-manifolds of co-dimension 1
because c+i and c+i are regular values of f . Mi is not a manifold, but

Ṁi := Mi\Cr(i)
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is a smooth sub-manifold of co-dimension 1: we have just removed the crit-
ical points and away from these there are always open neighbourhoods that
are diffeomorphic to open neighbourhoods on M+

i where the diffeomorphism
is induced by −gradg(f)

||gradg(f)||2 . Furthermore, let x ∈ Cr(i) and define

S+(x) := W+(x) ∩M+
i , S−(x) := W−(x) ∩M−

i

which are just special stable respectively unstable spheres of x, furthermore
set

Sx := S+(x)× S−(x)

and it will be convenient to write

S+
i :=

⋃
x∈Cr(i)

S+(x), S−i :=
⋃

x∈Cr(i)

S−(x), Si :=
⋃

x∈Cr(i)

Sx.

Ṁ+
i := M+

i \S
+
i and Ṁ−

i := M−
i \S

−
i

are manifolds too: Near a critical point consider the situation in a convenient
chart where the stable respectively unstable manifolds are of the form (1.13)
and (1.14). But now we see that S+

i is just a closed subset, and hence Ṁ+
i :=

M+
i \S

+
i is an open subset inM+

i which is a sub-manifold as remarked before.
Consequently Ṁ+

i is itself a sub-manifold. The same argument holds for Ṁ−
i

with the obvious adaptations.
Next we define diffeomorphisms:

ψi : M−
i −→M+

i−1, x 7→ Φci−ci−1−2ε(x)

where Φci−ci−1−2ε(·) is the diffeomorphism generated by the flow of −gradg(f)
||gradg(f)||2

at the time when the flow lines intersect M+
i−1. This is a diffeomorphism, as

no critical values lie in [ci−1 + ε, ci − ε].
Additionally, we have

ϕ+
i : Ṁ+

i −→ Ṁi, x 7→ Φ+ε(x)
ϕ−i : Ṁ−

i −→ Ṁi, x 7→ Φ−ε(x)

and Φ is again the flow generated by −gradg(f)
||gradg(f)||2 but this time problems

would occur on points lying on S+
i as points on S+

i would be mapped to the
critical point under the flow and the flow equation would break down. But
away from this points no problems occur. The same holds for ϕ−i .
One can extend ϕ+

i to M+
i by mapping points on S+

i to the associated
critical points on whose stable manifold the point is lying. This extension is
the unique continuous extension of ϕ+

i . That this works can be checked in
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one of the convenient charts for the critical point. Consider a critical point
z ∈ Cr(i) and assume ε > 0 to be small enough such that S+(z) = ((x, 0) ∈
Rn−k × 0 : ||x|| = ε) is totally contained in this chart, it will do no harm
to assume ε = 1. Next we have to work out the expression for ϕ+

i in this
chart: let x = (x+, y+) be a point in Ṁ+

i on M+
i in the convenient chart,

y+ lies in the unstable part and x+ in the stable part, see (1.11) and (1.12).
Without loss of generality we can assume that f(z) = 0. We have already
computed that the solution of the negative gradient flow is given by

x+(t) = x+e−2t, y+(t) = y+e2t

see (1.10). And we search the point where this trajectory intersects Mi :=
{−||y||2 + ||x||2} = f(z) = 0. By substituting x+(t) and y+(t) into the local
expression for f we can conclude that t = 1

4 ln( ||x
+||

||y+|| ) and hence:

ϕ+
i : (x+, y+) 7→ (x+

√
||y+||
||x+||

, y+

√
||x+||
||y+||

) (2.4)

in the convenient chart centred at z. We remark that no problems with the
denominators can occur, as y+ 6= 0 because otherwise (x+, y+) ∈ S+(z),
and by ||x+||2 = 1 + ||y+||2, x+ is also non-vanishing.
But from this local expression it is evident that ϕ+

i can be extended to the
whole of M+

i by setting ϕ+
i equal to 0 ∈ Rn on S+(z) in all convenient

charts centred at critical points in Cr(i) (assumed that the index of the
critical points is not 0). By letting y+ approach 0 we see that ϕ+

i (x+, y+)
approaches (0, 0) = 0 ∈ Rn too and so this extension is continuous. Unique-
ness follows from the observation that all points in S+(x) can be approached
by a sequence of points in Ṁ+

i by choosing a sequence of points in Rn−k,
(x+

n )n∈N, converging to x+, with ||x+
n || > 1 and finding (y+

n )n∈N near 0 such
that −||y+

n ||2 + ||x+
n ||2 = 1 is satisfied for all n ∈ N. By regularity of the

condition −||y+
n ||2 + ||x+

n ||2 = 1 this is alway possible.
Up to obvious changes, this works for ϕ−i as well, as can be seen easily (as-
sumed that the index of the critical point is not n = dim(M)).

2.25. Definition model space for the space of broken trajectories
With the help of the terminology developed in the last remark we define

Pi := {(u, v) ∈M+
i ×M

−
i : ϕ+

i (u) = ϕ−i (v)}. (2.5)

Remark:
This set represents all unparametrised trajectories, possibly broken, at a
critical point with critical value ci, from M+

i to M−
i .
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There are two obvious functions on Pi, the projections on the first respec-
tively second factor:

p+
i : Pi −→M+

i , p−i : Pi −→M−
i

A priori, it is only clear that Pi is a closed subset of M−
i ×M

+
i . The next

proposition clarifies the structure of Pi:

2.26. Proposition
Pi ⊂ M+

i × M−
i is a smooth sub-manifold with boundary. Especially the

following holds:
1.) p+

i : Pi\∂Pi −→ Ṁ+ respectively p−i : Pi\∂Pi −→ Ṁ− are diffeomor-
phisms.
2.) ∂Pi is diffeomorphic to Si under the restriction of p−i ×p

+
i on ∂Pi, p+

i re-
spectively p+

i restricted to ∂Pi are the projections on S−i respectively on S+
i .

Proof:
Consider

Ṁ+
i × Ṁ

−
i → Ṁi × Ṁi, (u, v) 7→ (ϕ+

i (u), ϕ−i (v)).

This map is submersive because away from the stable and unstable spheres
ϕ+

i and ϕ−i are diffeomorphisms. The pre-image of 4Ṁi
:= {(u, u) ∈ Ṁi ×

Ṁi : u ∈ Ṁi} under ϕ+
i × ϕ

−
i is Pi \ (S+

i × S
−
i ). Hence Pi \ (S+

i × S
−
i ) is a

sub-manifold of M+
i ×M

−
i .

Now we assume v lies on S−(z). Again, we choose ε > 0 so small, that
S+(z) is totally contained in a convenient chart centred at z, and then we
assume without loss of generality that this ε is 1. v is mapped to 0 in the
chart, and so we search for u ∈M+

i such that ϕ+
i (u) = 0 and one sees that

this are exactly the points in S+(z). The argument works the other way
round too, so, if one point is contained in the stable manifold, the other one
must be contained in the unstable manifold and vice versa.
Now consider the smooth mapping

ζ : S+(z)× S−(z)× [0, ε[−→M+
i ×M

−
i

(θ+, θ−, t) 7→ (
√

1 + t2θ+, tθ−, tθ+,
√

1 + t2θ−)

we check that ζ maps into Pi, i.e. ϕ+
i ◦ pr1,2 ◦ ζ = ϕ−i ◦ pr3,4 ◦ ζ where pr1,2

denote the projection of the first two components and pr3,4 the projection of
the third and the fourth. We first check equality for points in Pi \ (S+(z)×
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S−(z)):

ϕ+
i ◦ pr1,2(ζ(θ+, θ−, t)) = ϕ+

i (
√

1 + t2θ+, tθ−)

=

√1 + t2θ+

√
t||θ−||√√

1 + t2||θ+||
, tθ−

√√
1 + t2||θ+||√
t||θ−||


=

(
(
√
t
√

1 + t2)θ+, (
√
t
√

1 + t2)θ−
)

ϕ−i ◦ pr3,4(ζ(θ+, θ−, t)) = ϕ−i (tθ+,
√

1 + t2θ−)

=

tθ+

√√
1 + t2||θ−||√
t||θ+||

,
√

1 + t2θ−
√
t||θ+||√√

1 + t2||θ−||


=

(
(
√
t
√

1 + t2)θ+, (
√
t
√

1 + t2)θ−
)

and by continuous extension of this formulas equality follows for all points
of Pi. Moreover ζ can be smoothly extended to a map S+(z) × S−(z)×] −
δ, ε[→ M+

i × M−
i with δ > 0 such that the extension is injective: given

(θ+, θ−, t) and (ω+, ω−, s) in S+(z)×S−(z)×]−δ, ε[ such that ζ(θ+, θ−, t) =
ζ(ω+, ω−, s). By projection to first respectively forth component one obtains
θ+ = ω+ and θ− = ω−. By projecting to the second component t = s follows.
Furthermore the tangential mapping of ζ is given by the matrix

√
1 + t2 0 t√

1+t2
θ+

0 t θ−

t 0 θ+

0
√

1 + t2 t√
1+t2

θ−


and so the extension of ζ is immersive.
Consequently ζ must be the parametrisation of a collar of a part of the
boundary and hence ∂Pi = S+(z)× S−(z) near the critical point z.

Now the two claims follow directly by pasting together the results we have
obtained for one neighbourhood of a critical point for all critical points with
the same critical value.

2

2.27. Theorem the smooth structure of T̂ (p, q)
Given a Morse–Smale pair (f, g) and critical points p and q, T̂ (p, q) admits
a canonical smooth structure of a manifold with corners such that the map

T̂k(p, q) ↪→ T̂ (p, q)
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induces a diffeomorphism

T̂k(p, q)
∼=→ ∂kT̂ (p, q). (2.6)

Proof:
We set f(p) = cr+1 and f(q) = cr−k−1 and remark that T̂ (p, q) is only
non-empty provided k ≥ 0, because f decreases along the flow lines. Define

P := Pr,r−k := Pr × P(r−1) × . . .× Pr−k

and as a product of manifolds with boundaries, this is a smooth manifold
with corners. P can be interpreted as the space that represents pieces of
broken trajectories that need not fit together. Additionally we have:

O :=
r−k∏

r

(M+
i ×M

−
i )

S := S−p ×M−
r × . . .×M−

r−k+1 × S
+
q

that are smooth manifolds. Next we define smooth maps

ωi : M−
i −→M−

i ×M
+
i−1, x 7→ (x, ψi(x))

p̃i : Pi −→M+
i ×M

−
i , y 7→ (p+

i (y), p−i (y))

and
α : S−p −→M+

k

denotes the restriction of ψr+1 : M−
r+1 −→M+

r to S−p and

β : S+
q −→M−

r−k

is the restriction of ψ−1
r−k : M+

r−k−1 −→M−
r−k to S+

q .
We can put these maps together:

s := α× ωr × . . .× ωr−k−1 × β : S −→ O

p := p̃r × . . .× p̃r−k : P −→ O

and observe that there is a bijection between p−1(s((S)) and T̂ (p, q):

T̂ (p, q)→ p−1(s(S))

which is given by evaluating broken trajectories at the levels M+
r , M−

r ,...,
M+

r−k, M
−
r−k. This map is continuous because convergence of broken tra-

jectories in T̂ (p, q) means uniform convergence and this implies pointwise
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convergence in the level-hypersurfaces. That this map is bijective follows
easily from the definition of p−1(s(S)). Assume a point in O that lies in
the image of s, then each pair of successive components of this point are
associated to one canonical parametrised trajectory. That a point lies in
the pre-image of p implies that the different parts of the broken trajectory
fit together. Hence one can find exactly one broken trajectory from p to q
that is mapped to a given point in p−1(s(S)). So, the map is bijective and
continuous and we know that T̂ (p, q) is compact, consequently this map is
a homeomorphism.
s : S −→ O is an embedding and next we will see that p and s are transver-
sal. Consider the diagram (diag 1):

S−p

α

��

M−
r

ψr

""EE
EE

EE
EE

id

}}{{
{{

{{
{{

. . .

id

}}{{
{{

{{
{{

{

M+
r M−

r M+
r−1 M−

r−1
. . .

Pr

p−r

>>||||||||p+r

``BBBBBBBB
Pr−1

p+r−1

ccFFFFFFFF p−r−1

;;xxxxxxxx
. . .

. . . M−
r−k+1

ψr−k+1

$$HH
HH

HH
HH

H
id

||yy
yy

yy
yy

yy
S+
q

β

��
. . . M+

r−k M−
r−k

. . . Pr−k

p+r−k

ccFFFFFFFF p−r−k

;;xxxxxxxx

Choose a point in ∂lP and consider Pi for i = r, . . . , r − k arbitrary. Then
l of the components of the chosen point lie in Si and the other k − l lie
in Pi \ Si. Assume the case where the component lies in S〉. The map
p+

i × p
−
i : Pi → M+

i ×M
−
i restricted to S〉 equals the product map of the

identities on S+
i and on S−i , respectively. But then we can change the dia-

gram by replacing the part

M−
i+1

ψi+1

""DD
DD

DD
DD

id

||xxxxxxxx
M−
i

id

}}{{
{{

{{
{{ ψ+

i

""DD
DD

DD
DD

M−
i+1 M+

i M−
i M+

i−1

Pi

p+i

``AAAAAAAA p−i

>>}}}}}}}}
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by

S+
i

��

S−i

��
M+
i+1 M−

i+1 M+
i−1 M−

i−1

Pi+1

p−i+1

<<xxxxxxxxp+i+1

bbFFFFFFFF
Pi−1

p+i−1

bbFFFFFFFF p−i−1

<<xxxxxxxx

because transversality of the two small diagrams would imply transversality
of the diagram we started with. Consequently, in this case we can ”split”
the diagram in two smaller ones. In the other case one observes that we can
replace the map p+

i ×p
−
i : Pi \Si → Ṁ+

i ×Ṁ
−
i by the map Φ2ε : Ṁ+

i → Ṁ−
i

where Φ is the flow of the vector field − gradg(f)
||gradg(f)||2 . Because we restrict this

map to Ṁ+
i no problems occur. Consequently we can replace

M−
i+1

ψi+1

""DD
DD

DD
DD

M−
i

id

}}{{
{{

{{
{{ ψi

""DD
DD

DD
DD

M+
i M−

i M−
i−1

Pi

p+i

``AAAAAAAA p−i

>>}}}}}}}}

with

M−
i+1

""FFFFFFFF

M+
i−1

where the map M−
i+1 → M+

i−1 is given by Φci+1−ci−1−2ε. At i = r and
i = r − k small adaptions are made but nothing essential changes.
All in all we observe that the diagram can be reduced to smaller diagrams
step-by-step and in the end we get diagrams of the form S+

i → S−j or

S−i → S+
j where the maps are given by the flow of − gradg(f)

||gradg(f)||2 . Conse-
quently, it suffices that all unstable spheres are transversal to the stable
ones and in the proof of Theorem (1.23.) this has been shown to be equiv-
alent to the Morse–Smale condition.
Consequently we can apply Lemma (2.24.) and obtain that T̂ (p, q) possesses
a canonical structure of a smooth manifold with corners. The k-boundary
∂kT̂ (p, q) is given by ∂kP ∩ p−1(s(S)) and this corresponds exactly to the
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k-times broken trajectories. We have identified T̂ (p, q) and p−1(s(S)) as
topological spaces and in the last chapter we have seen that the topology of
T̂k(p, q) as a subspace of T̂ (p, q) coincides with the product topology if we
regard T̂k(p, q) as the product⊔

p=:y0,y1,...,yk,yk+1:=q

T (y0, y1)× T (y1, y2)× . . .× T (yk, yk+1).

We have to show that the smooth structure on T̂k(p, q) obtained from this
two description also coincide. So, consider

T := T (p =: y0, y1)× . . .× T (yk, yk+1 := q) ⊂ T̂k(p, q) ⊂ T̂ (p, q).

From the way (diag 1) splits up and collapses one sees that the induced
smooth structure of T is the one obtained by identifying T (yi, yi+1) with the
space of trajectories from yi to yi+1 intersected with a level-hypersurface,
and then equipping T with the corresponding product structure.

2

2.4 Compactification of the unstable Manifolds

In this section we intend to compactify the unstable manifolds of critical
points. In many respects the treatment will resemble the treatment in the
previous section. Again we follow [3], [4] respectively [5].

Remark: another interpretation of unstable manifolds
In section 2 of this chapter we interpreted the space of unparametrised tra-
jectories between two critical points as a subspace of the continuous func-
tions from some compact interval to the manifold. We intend to do the the
same for the unstable manifolds.
Let (f, g) be a Morse–Smale pair on M and let p be a critical point of f .
Set b := f(p) and e := min f . x denotes an arbitrary point in W−(p). Then
we can consider the unique canonical parametrised trajectory that starts at
p and goes through x. It shall be parametrised such that σ(t) = b− t, hence
we start at t = 0. When this trajectory arrives at x at t = b− f(x) it shall
become stationary, i.e. σ(t) = x for all t ∈ [b − f(x), b − e]. On the other
hand, assume we have a map τ ∈ C([0, b− e],M) such that
1.) τ(0) = p
2.) there is exactly an c ∈ [0, b− e] such that
2.a) τ(t) 6∈ Cr(f) for t ∈]0, c]
2.b) τ ′(t) exists for t ∈]0, c[ and τ ′(t) = − gradg(f)

|| gradg(f)||2 ◦ τ(t) holds,
2.c) f(τ(t)) = b− t for t ∈ [0, c],
2.d) τ(t) = τ(c) for t ∈ [c, b− e]
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Then this map corresponds to a unique point in W−(p), namely τ(c) =
τ(b− e). So there is a one-to-one correspondence between points on W−(p)
and the subspace of C([0, b− e],M) which is described by the conditions 1.),
2.). We equip C([0, b − e],M) with the topology induced by uniform con-
vergence and so W−(p) inherits a topology as a subset of C0([0, b − e],M).
Next we prove:

2.28. Proposition
The topology that W−(p) inherits from C0([0, b − e],M) coincides with the
topology on W−(p) induced by the embedding W−(p) ↪→M .

Proof:
Let (τn(·))n∈N be a subset in C0([0, b − e],M) such that every element sat-
isfies conditions 1.), 2.) and that converges uniformly to τ(·) that satisfies
the three conditions too. But uniform convergence implies pointwise con-
vergence, consequently

τn(b− e)→ τ(b− e).

Hence uniform convergence of the maps implies pointwise convergence of the
points in W−(p).
On the other hand, let (xn)n∈N be a convergent subset in W−(p) with limit
x ∈W−(p). We must show that the corresponding maps converge uniformly.
But this is similar to the first part of the proof of Proposition (2.12.). Denote
the maps corresponding to xn by τn(·) and the one corresponding to x by
τ(·). Let cn ∈ [0, b − e] denote the value characterised in condition 2.) for
the map τn(·), respectively c for the map τ(·). By condition 2.c) we have
f(τn(cn)) = b− cn and f(τ(c)) = b− c. But this implies

lim
n→∞

b− cn = lim
n→∞

f(τn(cn)) = f( lim
n→∞

xn) = f(x) = b− c

so limn→∞ cn = c.
For t > c exists N ∈ N such that cn < t for all n ≥ N . Hence for n
sufficiently large all the maps are constant for such a t and from this uni-
form convergence follows. For t < c we can find N such that cn > t for
all n ≥ N and consequently for n large enough the flow equation stated in
2.b) is satisfied. Now uniform convergence follows as in the proof of Propo-
sition (2.12.). It remains to check locally uniform convergence for t = c.
Because of τ(t) 6∈ Cr(f) there is an open neighbourhood of τ(t) that does
not contain critical points. We can continue the trajectories through xn

n ∈ N respectively through x from some time. One uses the fact that the
canonically parametrised trajectories intersect the function-hyperlevels per-
pendicular (Lemma (1.11.)) to estimate the distance between a canonically
parametrised trajectory and a trajectory that has become stationary. If
follows that τn(·) converges locally uniformly to τ(·) near t = c too.
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2

2.29. Definition Ŵ−(p)
Given a Morse–Smale pair (f, g) on M . Let p be a critical point of f . Define

Ŵ−
k (p) :=

⊔
p=:y0,y1,...,yk

T (y0, y1)× . . .× T (yk−1, yk)×W−(yk)

and
Ŵ−(p) :=

⊔
k≥0

Ŵ−
k (p).

Furthermore we define a map

îp : Ŵ−(p)→M

by setting îp := pr : Ŵ−
k (p)→ M on Ŵ−

k (p) with pr being the projection of
the last factor.

Remark: topology on Ŵ−(p)
Ŵ−(p) can be interpretated as a subspace of C0([0, b−e],M): It corresponds
to the subspace of functions τ(·) that satisfy:
1.) τ(0) = p
2.) there exists exactly one c ∈ [0, b− e] such that
2.a) τ ′(t) exists for t ∈]0, c[ if τ(t) 6∈ Cr(f) and for such t we have

τ ′(t) =
− gradg(f)
|| gradg(f)||2

◦ τ(t),

2.b) f(τ(t)) = b− t for t ∈ [0, c]
2.c) τ(t) = τ(c) for t ∈ [c, b− e].
τ(c) is contained in W−(q) for some q ∈ Cr(f) and τ(·) describes a broken
trajectory from p to q. So this subspace of C0([0, b − e],M) is in bijec-
tion with Ŵ−(p) and the topology of Ŵ−

k (p) ⊂ Ŵ−(p) coincides with the
topology coming from the definition of Ŵ−

k (p) as
⊔

p=:y0,y1,...,yk
T (y0, y1) ×

. . .×T (yk−1, yk)×W−(yk): indeed, uniform convergence of all the unbroken
pieces implies uniform convergence of the map τ ∈ C0([0, b− e],M) and vice
versa. In particular W−(p) ↪→ Ŵ−(p) induces a homeomorphism

W−(p)
∼=→ Ŵ−

0 (p).

Observe that the function îp : Ŵ−(p) → M is continuous: If we have a
sequence of maps satisfying condition 1.), 2.), uniform convergence implies
pointwise convergence and îp coincides with the map τ(·) 7→ τ(b − e) if we
interpret points in Ŵ−(p) as elements of C0([0, b− e],M).
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2.30. Theorem Ŵ−(p) is compact
Given a Morse–Smale pair (f, g) on M and a critical point p of f . Then
Ŵ−(p) is compact.

Proof:
We proceed similar as we have done in the proof of Theorem (2.21.) and
verify all the conditions in order the apply the Theorem of Arzela–Ascoli
(Theorem (2.20.).

claim a) Ŵ−(p) is bounded:
See the proof of Theorem (2.21.).

claim b) Ŵ−(p) is closed:
Let (τn(·))n∈N be a sequence of maps in C0([0, b − e],M) satisfying condi-
tions 1.), 2.) stated in the last remark. Suppose that these maps converge
uniformly to τ(·) ∈ C0([0, b − e],M). We have to show that τ(·) satisfies
the 3 conditions. The first condition follows easily as uniform convergence
implies pointwise convergence and so τ(0) = limn→∞ τn(0) = limn→∞ p = p.
Define cn to be the values in [0, b − e] as described in condition 2.) for the
map τn(·). Furthermore set xn := τn(cn). Uniform convergence of (τn(·))n∈N
implies that (xn)n∈N is a Cauchy-sequence. By compactness of M there is a
limit of (xn)n∈N, called x ∈ M . By compactness of [0, b− e] there is a con-
vergent subsequence of (cn)n∈N, so without loss of generality we can assume
that (cn)n∈N is convergent and by uniform convergence

τ( lim
n→∞

cn) = lim
n→∞

τ(cn) = lim
n→∞

τn(cn) = lim
n→∞

xn = x

and we set c := limn→∞ cn. Additionally

lim
n→∞

f(τn(cn)) = f(x)

and together with f(τn(cn)) = b− cn this implies f(x) = b− c.
Assume t ∈ [0, c[. Because of cn → c we can find an N ∈ N such that t < cn
for all n ≥ N . But then we can proceed as in the proof of Theorem (2.21.).
For t ∈]c, b − e] there is an N ∈ N such that t > cn for n ≥ N and conse-
quently

τ(t) = lim
n→∞

τn(t) = lim
n→∞

(τn(cn)) = x = τ(c)

. It remains to investigate the case t = c. If τ(c) is not a critical point one
can derive locally uniform convergence as was done at the end of the proof
of Proposition (2.28.). If τ(c) is a critical point one uses a convenient chart
and the explicit form of the canonically parametrised trajectories to show
uniform convergence — see the proof of Theorem (2.21.).
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claim c) Ŵ−(p) is equicontinuous:
For the interval where the maps represent broken trajectories, this is done as
in the proof of Theorem (2.21.). For the other part the maps get stationary
and the claim is trivial.

2

Remark: some useful notations
Additionally to the notation that was introduced in the last section, we set

M(i) := f−1(]ci−1, ci+1[)

and this is an open sub-manifold of M . Furthermore

W+
i (x) := W+(x) ∩M(i),

W−
i (x) := W−(x) ∩M(i),

SWi(x) := S+(x)×W−
i (x)

for x ∈ Cr(i) and these are smooth sub-manifolds too. We will use

W+(i) :=
⋃

x∈Cr(i)

W+(x),

W−(i) :=
⋃

x∈Cr(i)

W−(x),

SW (i) :=
⋃

x∈Cr(i)

S+(x)×W−
i (x).

Next we define maps

ϕ(i) : M(i) \
(
W−(i) ∪W+(i)

)
→ Ṁi, x 7→ Φf(x)−ci

(x)

where Φ denotes the diffeomorphism induced by the flow of − gradg(f)

|| gradg(f)||2 again.
ϕ(i) can be extended continuously to M(i) (assuming that the critical point
under consideration has index not equal to dim(M)) by setting ϕ(i)(x) =
limt→+∞ γx(t) for x ∈ W+(i) and ϕ(i) = limt→−∞ γx(t) for x ∈ W−(i) and
this extension is continuous. One can verify that this extension is continuous
and that it is unique, similar as was done for ϕ+

i respectively ϕ−i in the last
section. Again we consider the situation in a convenient chart near a critical
point in Cr(i) and use the explicit form of the flow lines there. One obtains
that ϕ(i) is given by

ϕ(i) : (x, y) 7→ (x

√
||y||
||x||

, y

√
||x||
||y||

).
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2.31. Definition
Using the notations from the last remark we set

Q(i) := {(u, v) ∈M+
i ×M(i) : ϕ+

i (u) = ϕ(i)(v) and

Φf(v)−c+i
(v) = u for v ∈M(i) \W−(i)}

where Φ denotes the flow induced by − gradg(f)

|| gradg(f)||2 . We denote the two canon-

ical projections from Q(i) to M+
i respectively to M(i) by

li : Q(i)→M+
i and ri : Q(i)→M(i).

2.32. Proposition
Q(i) ⊂ M+

i ×M(i) is a smooth sub-manifold with boundary ∂Q(i) diffeo-
morphic to SW (i) ⊂M+

i ×M(i). Especially

1. ri : Q(i) \ ∂Q(i)→M(i) \W−(i) is a diffeomorphism and
li restricted to Q(i)\(S+

i ×M(i)) respectively to (Q(i)\∂Q(i))∩(S+
i ×

M(i)) is a smooth bundle with fibre an open segment.

2. The restriction of li × ri to ∂Q(i) is a diffeomorphism to SW (i), i.e.
li respectively ri restricted to ∂Q(i) are the projections onto S+

i and
W−(i).

hold.

Proof:
That Q(i) \ SW (i) is a sub-manifold of M+

i ×M(i) can be seen as follows:
Consider

id×Φf(·)−c+i
: M+

i × (M(i) \W−(i))→M+
i ×M

+
i

and observe that this map is submersive and one obtains that

Q(i) \ SW (i) = (id×Φf(·)−c+i
)−1(4M+

i
)

is a sub-manifold of M+
i × (M(i) \W−(i)) and consequently a sub-manifold

of M+
i ×M(i), too.

We set R := S+
i ×W−(i).

ri : Q(i) \R −→M(i) \W−(i)
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is a smooth mapping with smooth inverse

M(i) \W−(i) −→ Q(i) \R, v 7→ (Φf(v)−c+i
(v), v)

and hence it is a diffeomorphisms.

li : Q(i) \ (S+
i ×M(i))→ Ṁ+

i

is smooth and the bundle structure is described by

U×]c+i − ci+1, c
+
i − ci−1[→ Q(i) \ (S+

i ×M(i)), (u, t) 7→ (u,Φt(u))

where U is a chart neighbourhood of u in Ṁ+
i . The fibre over u is given

by Φ]c+i −ci+1,c+i −ci−1[(x). Geometrically this is quite obvious: the points in

the fibre over a point on Ṁ+
i are exactly all points y on the canonical para-

metrised trajectory going through u such that ci−1 < f(y) < ci+1.

li : (Q(i) \R) ∩ (S+
i ×M(i))→ S+

i

is a smooth mapping and the bundle structure is described by

U×]c+i − ci+1, c
+
i − ci[→ (Q(i) \R) ∩ (S+

i ×M(i)), (u, t) 7→ (u,Φt(u))

where U is an open neighbourhood of u in S+
i . The fibre consists of all

points y on the canonical parametrised trajectory through u such that
ci < f(y) < ci+1.

For x ∈ Cr(i) consider a convenient chart and the smooth mapping

η : S+(x)×W−
i (x)× [0, ε[−→ Q(i)

(θ, y, t) 7→ (
√

1 + t2||y||2θ, ty, t
√

1 + t2||y||2θ, y)

and observe that η really maps into Q(i) because one can easily check that
it maps into M+

i ×M(i) and ϕ+
i ◦ pr1,2 ◦ η = ϕ(i) ◦ pr3,4 ◦ η. For points in

Q(i) \R we get

ϕ+
i ◦ pr1,2(η(θ, y, t)) = ϕ+

i (
√

1 + t2||y||2θ, ty)

= . . . = (
√
t
√

1 + t2||y||2||y||θ,
√
t
√

1 + t2||y||2 y

||y||
)

where we skipped steps of the calculation that are totally analogous to the
ones made in the proof of Proposition (2.26.). Then we calculate

ϕ(i) ◦ pr3,4(η(θ, y, t)) = ϕ(i)(t
√

1 + t2||y||2θ, y)

= . . . = (
√
t
√

1 + t2||y||2||y||θ,
√
t
√

1 + t2||y||2 y

||y||
)
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and hence equality on Q(i)\R and by continuous extension of this formulas
the result follows for all points of Q(i) as before. Furthermore observe that
the second condition for points in Q(i) is satisfied: This condition has to be
checked only for points (u, v) ∈ M+

i ×M(i) with v ∈ W+(i) \W−(i) (so v
is contained in one of the stable manifolds but no critical point). But then
y = 0 and t 6= 0 and v = (tθ, 0), u = (θ, 0) and clearly v is mapped to u
under Φf(·)−c+i

.

We can extend η smoothly to a map S+(x)×W−
i (x)×]− δ, ε[→M+

i ×M(i)
for δ > 0 and η restricted to S+(x)×W−

i (x)×{0} maps to S+(x)×W−
i (x).

The extended η is injective because if (θ, y, t) and (ω, z, s) are such that
η(θ, y, t) = η(ω, z, s) one obtains y = z by projecting the last factor. Then
t = s and consequently θ = ω. Additionally η is immersive: The tangential
mapping is given by the matrix

√
1 + t2||y||2 t2||y||√

1+t2||y||2
θ t||y||2√

1+t2||y||2
θ

0 t y

t
√

1 + t2||y||2 t3||y||√
1+t2||y||2

θ 1+t2||y||(1+||y||)√
1+t2||y||2

θ

0 1 0


and so the extension is immersive.
Consequently η must be the parametrisation of a collar of part of the bound-
ary and hence ∂Q(i) = S+

i (x)×W−(x) in the convenient chart for x.

Now the two claims follow directly by pasting together the results we have
obtained for one neighbourhood of a critical point for all critical points with
the same critical value.

2

2.33. Theorem the smooth structure of Ŵ−(p)
Given a Morse–Smale pair (f, g) on M and critical points p of f the set
Ŵ−(p) admits a canonical smooth structure of a manifold with corners such
that the map

Ŵ−
k (p) ↪→ Ŵ−(p)

induces a diffeomorphism

Ŵ−
k (p)

∼=→ ∂kŴ
−(p)

and such that
îp : Ŵ−(p)→M

is a smooth extension of the inclusion W−(p) ↪→M .
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Proof:
Assume p ∈ Crr+1(f) and define X(r − k) := (̂ip)−1(M(r − k)) with
M(k) := f−1(]ck−1, ck+1[) as before.
The first step of the proof is to equip all the X(r − k) with a topology and
the structure of a smooth manifold with corners such that îp : X(r− k) −→
M(r− k) is smooth. We proceed as in the proof of Theorem (2.27.) and set

P := Pr × Pr−1 × . . .× Pr−k+1 ×Q(r − k)
O := (M+

r ×M−
r )× . . .× (M+

r−k+1 ×M
−
r−k+1)×M

+
r−k

S := S−p ×M−
r × . . .×M−

r−k+1

p := p̃r × . . .× p̃r−k+1 × lr−k

s := α× ωr × . . .× ωr−k+1

where p : P −→ O and s : S −→ O. P is a smooth manifold with corners
and S and O are smooth manifolds. Again we can consider the correspond-
ing diagram

S−p

α

��

M−
r

ψr

""EE
EE

EE
EE

id

}}{{
{{

{{
{{

. . .

id

}}{{
{{

{{
{{

{

M+
r M−

r M+
r−1 M−

r−1
. . .

Pr

p−r

>>||||||||p+r

``BBBBBBBB
Pr−1

p−r−1

;;xxxxxxxxp+r−1

ccFFFFFFFF
. . .

. . . M−
r−k+1

ψr−k+1

$$HH
HH

HH
HH

H
id

||yy
yy

yy
yy

yy

. . . M+
r−k

. . . Q(r − k)
lr−k

ddJJJJJJJJJ

and observe that transversality of p and s is equivalent to the Morse–Smale
condition, because the diagram can again be reduced to smaller ones — see
the proof of Theorem (2.27.). So we can apply Lemma (2.24.) and obtain a
structure of a smooth manifolds with corners on p−1(s(S)).
Next we check that îp : X(r−k)→M(r−k) is smooth: in local coordinates
a point in X(r − k) can be represented as

(x+
r , x

−
r , . . . , x

+
r−k+1, x

−
r−k+1, x

+
r−k, y

−
r−k) 7→ y−r−k
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where (x+
i , x

−
i ) are contained in Pi for i = r, . . . , r−k+1 and (x+

r−k, y
−
r−k) ∈

Qr−k and the map îp is simply given by projecting out the last component.

The second step is to show that the topology and the structure of a smooth
manifold with corners induced by X(m) and X(m′) on X(m) ∩ X(m′) is
the same for various m and m′. Observe that X(m) and X(m′) only inter-
sect if |m − m′| ≤ 1. So it suffices to investigate the case m = r − l and
m′ = r − l − 1.
In local charts in X(r − k) we have

(x+
r , x

−
r , . . . , x

+
r−l+1, x

−
r−l+1, x

+
r−l, y

−
r−l)

and as before: (x+
i , x

−
i ) ∈ Pi for i = r, . . . , r− l+ 1 and (x+

r−l, y
−
r−l) ∈ Qr−k,

in particular y−r−l ∈M(r − l). In X(r − k − 1) one gets

(u+
r , u

−
r , . . . , u

+
r−l+1, u

−
r−l+1, u

+
r−l, u

−
r−l, u

+
r−l−1, v

−
r−l−1)

with (u+
i , u

−
i ) ∈ Pi for i = r, . . . , r − l and (u+

r−l−1, v
−
r−l−1) ∈ Qr−l−1, es-

pecially vr−l−1 ∈ M(r − l − 1). We have M(r − l) ∩ M(r − l − 1) =
f−1(]cr−l−1, cr−l[) and this set contains no critical points. If we apply
îp we obtain y−r−l respectively v−r−l−1 and consequently y−r−l = v−r−l−1 ∈
M(r− l)∩M(r− l−1). Now we present smooth coordinate transformations
on X(r − l) ∩X(r − l − 1):

(x+
r , x

−
r , . . . , x

+
r−l+1, x

−
r−l+1, x

+
r−l, y

−
r−l) 7→

(x+
r , x

−
r , . . . , x

+
r−l+1, x

−
r−l+1, x

+
r−l,Φcr−l−ε−f(y−r−l)

(y−r−l),Φcr−l−1+ε−f(y−r−l)
(y−r−l), y

−
r−l)

where Φ denotes the flow of − gradg(f)

|| gradg(f)||2 . In the other direction we have

(u+
r , u

−
r , . . . , u

+
r−l+1, u

−
r−l+1, u

+
r−l, u

−
r−l, u

+
r−l−1, v

−
r−l−1) 7→

(u+
r , u

−
r , . . . , u

+
r−l+1, u

−
r−l+1, u

+
r−l, v

−
r−l−1)

and one can easily check that these are inverse to each other.

Consequently, we obtain a topological space X with the structure of a
smooth manifold with corners. There is a bijection between Ŵ−(p) and
X which is given by interpreting Ŵ−(p) as a subspace of C0([0, b− e]) and
evaluating τ(·) ∈ Ŵ−(p) at the different level hypersurfaces and at b − e.
Similar as was done in the proof of Theorem (2.27.), one observes that this
gives a continuous bijection between Ŵ−(p) and X. By compactness of
Ŵ−(p) (Theorem 2.30.) this map is even a homeomorphism and hence we
can identify Ŵ−(p) and X as topological spaces and we equip Ŵ−(p) with
the structure of a smooth manifold with corners coming from X.
With the help of the right charts one sees that the k-boundary is given by

∂kŴ
−(p) =

⊔
p=:y0,y1,...,yk

T (y0, y1)× . . .× T (yk−1, yk)×W−(yk).
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Similar as was done in the proof of Theorem (2.27.) for the broken trajecto-
ries, one checks that the smooth structures of Ŵ−

k (p) — once as
⊔

p=:y0,y1,...,yk
T (y0, y1)×

. . .× T (yk−1, yk)×W−(yk) and once as a subset of Ŵ−(p) — coincide.

2

2.5 Orientations

In order to develop the Morse–Smale complex with integer coefficients in the
next chapter we have to introduce orientations of the unstable manifolds and
the space of unparametrised trajectories and need to understand how these
orientations fit together.

Remark: conventions
In Proposition (1.14.) it was shown that W−(p) ∼= Rind(x) for all p ∈ Cr(f).
Hence the unstable manifolds are orientable and we choose orientations θp

for all of them. In a convenient chart we can identify TpM/TpW
+(p) with

TpW
−(p) with the help of the Riemannian metric g of the Morse–Smale pair

(f, g). Because W+(p) is contractible, the bundle TM/TW+(p) — where
TM is restricted to W+(p) — can be identified with W+(p) × TpW

−(p).
Consequently all the stable manifolds obtain a co-orientation (hence the
quotient bundle of TM modulo TW+(p) is oriented).
Next we want to define orientations on M(p, q) := W−(p) ∩W+(q). We
will make use of the following convention: Given a short exact sequence of
vector bundles

0→ E → F → G→ 0

then the orientation of Ex followed by the orientation of Gx yields an orien-
tation of Fx. Hence, if orientations on two of the three vector bundles are
given an orientation on the third vector bundle is induced.
We can apply this to the short exact sequence

0→ Tz(W−(p) ∩W+(q))
i
↪→ TzW

−(p)
p→ TzM/TzW

+(q)→ 0

with z ∈ M(p, q), i the map induced by the inclusion W−(p) ∩W+(q) →
W−(p) and p the composition of the inclusion TzW

−(p) ↪→ TzM and the
projection TzM → TzM/TzW

+(q). That p is surjective follow from the
transversality of W−(p) and W+(q). So we obtain orientations for M(p, q)
for all p 6= q ∈ Cr(f) (convention 1.)).
Now we can define orientations on all spaces of unparametrised trajectories.
One way to equip T (p, q) with a differentiable structure was to identify it
withM(p, q)∩f−1(c) where f(p) =: b > c > a := f(q). f−1(c) is co-oriented
and M(p, q) is oriented, so we can orient T (p, q) such that − gradg(f) fol-
lowed by the orientation T (p, q) yields the orientation ofM(p, q) (convention
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2.)).

Because W−(p) is the interior of the smooth manifold with corners Ŵ−(p),
the orientation θp induces an orientation of ∂1Ŵ

−(p). Here we follow the
convention that a outward pointing vector followed by an oriented bases
of the tangential space of the boundary should coincide with the orienta-
tion on the whole manifold. On the other hand we have seen in Theorem
(2.33.) that ∂1Ŵ

−(p) =
⊔

q∈Cr(f) T (p, q)×W−(q) and so the orientations of
T (p, q) and W−(q) define an orientation on ∂1Ŵ

−(p) too. The orientation
on a product is given be an oriented base of the first factor followed by an
oriented base of the second factor. The next Proposition states that these
two orientations coincide:

2.34. Proposition
The orientation on ∂1Ŵ

−(p) induced by the orientation θp of W−(p) is the
same as the orientation that ∂1Ŵ

−(p) inherits from

∂1Ŵ
−(p) =

⊔
q∈Cr(f)

T (p, q)×W−(q).

Proof:
We choose a convenient chart for q ∈ Crk(f) and analyse the local situation.
In the convenient chart we have the splitting into a stable and an unstable
part, Rn−k respectively Rk. The Morse function f has the form

f : Rn−k × Rk → R, (x, y) 7→ −||y||2 + ||x||2

and the action of the negative gradient flow is given by (x, y) 7→ s · (x, y) =
(e−2sx, e2sy), see (1.10). Define

Q := Sn−k−1 × Rk × [0,∞[

and maps

l : Q→ f−1(1) ⊂ Rn−k × Rk, (θ, y, t)→ (
√

1 + t2θ, ty),

r : Q→ Rn−k × Rk, (θ, y, t) 7→ (t
√

1 + t2||y||2θ, y)

which are just local expressions for Q(i) and the maps li and ri we defined
in section 4 of this chapter. We parametrise the 1-level by

ϕ : Sn−k−1 × Rk → f−1(1), (θ, y) 7→ (
√

1 + ||y||2θ, y).

Furthermore we set

l̃ := ϕ−1 ◦ l : Q→ Sn−k−1 × Rk, (θ, y, t) 7→ (θ, ty).
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Define N := W−(p)∩ f−1(1) ⊂ Sn−k−1 ×Rk ∼= f−1(1) — this is a subman-
ifold transversal to Sn−k−1 × {0} of dimension l − 1. Define

T := N ∩ (Sn−k−1 × {0}),

a manifold of dimension l − k − 1 and

Ŵ := l̃−1(N) ⊂ Q,

a manifold of dimension l − k and observe that this are just local represen-
tations of the spaces T (p, q) and Ŵ−(p). Note that

∂Ŵ = Ŵ ∩ ∂Q = T × Rk × {0} ⊂ Sn−k−1 × Rk × [0,∞[.

We define the following projections:

p1 : Sn−k−1 × Rk → Sn−k−1,

p2 : Sn−k−1 × Rk → Rk,

π1 : Q = Sn−k−1 × Rk × [0,∞[→ Sn−k−1,

π2 : Q = Sn−k−1 × Rk × [0,∞[→ Rk,

π3 : Q = Sn−k−1 × Rk × [0,∞[→ [0,∞[.

Let ωp ∈ Ωl(W−(p)) be a volume form that gives rise to the orientation on
W−(p) ⊂ Rn−k × Rn and ωq ∈ Ωk(Rk) shall represent the orientation on
W−(q) = Rk. We can extend ωp to a l-form ω̃p on Rn−k ×Rk. Furthermore
we orient N such that − gradg(f) followed by orientation of N yields the
orientation of W−(p). This orientation is represented by µ ∈ Ωl−1(N) which
can be extended to a (l − 1)-form µ̃ on Sn−k−1 × Rk.
Furthermore T — the local model for T (p, q) — is oriented such that
− gradg(f) followed by the orientation of T yields the orientation ofM(p, q)
and this space is oriented by convention 2.). Let τ ∈ Ωl−k−1(T ) be a volume
form that gives rise to the described orientation on T . We extend it to a
(l− k− 1)-form τ̃ on Sn−k. By convention 1.), 2.) and the definition of µ̃ it
follows that p∗1τ̃ ∧ p∗2ω̃q represents the same orientation as µ̃ on N . Hence

p∗1τ̃ ∧ p∗2ω̃q = λµ̃ (2.7)

on N for a smooth function λ : Sn−k−1 × Rk → R with λ ≡ 1 on T .
On Ŵ \ ∂Ŵ

∂

∂s
π3(s · (θ, y, t)) =

∂

∂s
e−2st = −2e−2st < 0

holds, so the orientation on Ŵ \∂Ŵ can be described by −dπ3∧ l̃∗p∗2µ̃. This
follows from the definition of µ̃ and the fact that π3 decreases along the flow
lines. With the help of (2.7.) we obtain that

−dπ3 ∧ l̃∗p∗1τ̃ ∧ l̃∗p∗2ω̃q (2.8)
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describes the orientation of Ŵ (near ∂Ŵ ). On the other hand we see that
−dπ3 represents the outward pointing vector on Ŵ and by our conventions
for the product orientation it follows that

−dπ3 ∧ π∗1 τ̃ ∧ π∗2ω̃q (2.9)

gives the orientation on Ŵ− that it inherits from the boundary. So we
have to compare the two differential forms (2.8) and (2.9). We compute
(p1 ◦ l̃)(θ, y, t) = θ = π1(θ, y, t) and (p2 ◦ l̃)(θ, y, t) = ty = tπ2(θ, y, t). It
follows that

−dπ3 ∧ l̃∗p∗1τ̃ ∧ l̃∗p∗2ω̃q = −dπ3 ∧ π∗1 τ̃ ∧ λ′π∗2ω̃q

where λ′ > 0 on Ŵ \ ∂Ŵ near ∂Ŵ . So the two orientations on Ŵ coincide.

2

2.35. Proposition
The orientation of ∂1T̂ (p, q) induced by T (p, q) coincides with the orienta-
tion of ∂1T̂ (p, q) that it inherits from

∂1T̂ (p, q) =
⊔

z∈Cr(f)

T (p, z)× T (z, q)

up to the factor (−1)ind(p)−ind(z).

Proof:
Like in the proof of Proposition (2.34.), let z ∈ Cr(f) of index k and fix a
convenient chart for z. Define

P := Sn−k−1 × Sk−1 × [0,∞[

and maps

p+ : P → f−1(1) ⊂ Rn−k × Rk, (θ+, θ−, t) 7→ (
√

1 + t2θ+, tθ−),

p− : P → f−1(−1) ⊂ Rn−k × Rk, (θ+, θ−, t) 7→ (tθ+,
√

1 + t2θ−).

Again, P and these maps are local versions of Pi and p+
i respectively p−i ,

see section 3 of this chapter. Next we parametrise the 1-level by

ϕ+ : Sn−k−1 × Rk → f−1(1), (θ+, y) 7→ (
√

1 + ||y||2θ+, y)

and the −1-level by

ϕ− : Rn−k × Sk−1 → f−1(−1), (x, θ−) 7→ (x,
√

1 + ||x||2θ−).
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Furthermore we define

ϕ̃+ := ϕ−1
+ ◦ p+ : P → Sn−k−1 × Rk, (θ+, θ−, t) 7→ (θ+, tθ−),

ϕ̃− := ϕ−1
− ◦ p− : P → Rn−k × Sk−1, (θ+, θ−, t) 7→ (tθ+, θ−),

a lot of projections

p1 : Sn−k−1 × Rk → Sn−k−1,

p2 : Sn−k−1 × Rk → Rk,

π1 : P = Sn−k−1 × Sk−1 × [0,∞[→ Sn−k−1,

π2 : P = Sn−k−1 × Sk−1 × [0,∞[→ Sk−1,

π3 : P = Sn−k−1 × Sk−1 × [0,∞[→ [0,∞[,

and two inclusions
i1 : Sk−1 ↪→ Rk,

i2 : Sn−k−1 × Rk ↪→ Rn−k × Rk.

Choose an orientation of Rk ∼= W−(z) and let ωz ∈ Ωk(Rk) be a volume
form that induces this orientation.
We denote a volume form that gives rise to the orientation of W−(p) by
ωp ∈ Ωl−(W−(p)) and extend ωp to a l−-form on Rn−k × Rk. Set N− :=
W−(p) ∩ f−1(1) ⊂ Sn−k−1 × Rk. This is a submanifold transversal to
Sn−k−1 × {0} of dimension l− − 1. We orient N− as in the proof of Propo-
sition (2.34.), let µ− ∈ Ωl−−1(N−) be a volume form that gives rise to this
orientation. Now define T − := N− ∩ (Sn−k−1 × {0}), this is a submani-
fold of dimension l− − k − 1 and inherits an orientation as was described
in the proof of Proposition (2.34.). Let τ− ∈ Ωl−−k−1(T ) be a volume
form that induces this orientation, choose an extension of τ−, denoted by
τ̃− ∈ Ωl−−k−1(Sn−k−1). By definition of the orientation of T − the relation

p∗1τ̃
− ∧ p∗2ωz = λ1µ̃

− ∈ Ωl−−1(N−) (2.10)

for a smooth functions λ1 : N− → R with λ1 ≡ 1 on T − holds.
Additionally, let N+ := W+(q)∩f−1(−1) ⊂ Rn−k×Sk−1. This is a subman-
ifold transversal to {0} × Sk−1 of dimension l+ − 1. Let ωq ∈ Ωn−l+(W+(q)
be a form that gives rise to the co-orientation on W+(q) and extend it to a
(n− l+)-form ω̃q on Rn−k ×Rk. We can co-orientate N+ with the the form
i∗2ω̃q. Next we define T + := N+ ∩ ({0}×Sk−1) and this is a submanifold of
dimension l+ + k− 2−n. T + is a local model for T (z, q) and by convention
1.), 2.) and the definition of the co-orientation of µ̃+ it is oriented. Let
τ+ ∈ Ωl+−k−n−(T +) be a volume form for this orientation and extend it to
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a form τ̃+ on Sk−1.
Next we define

T̃ := ϕ̃−1
+ (N−) ∩ ϕ̃−1

− (N+) ⊂ P
and observe that

∂T̃ = T̃ ∩ ∂P = T − × T + × {0} ⊂ Sn−k−1 × Sk−1 × [0,∞[.

T̃ is an oriented submanifold of dimension l++l−−n−2, let τ ∈ Ωl++l−−n−1(T̃ )
be a volume form that gives rise to this orientation. τ̃ ∈ Ωl++l−−n−2(P ) de-
notes a smooth extension of τ . The relation that τ̃ must satisfy — see
convention 1.), 2.) and the definitions of µ̃− and µ̃+ — is

τ̃ ∧ (ϕ̃−)∗µ̃+ = λ2(ϕ̃+)∗µ̃−. (2.11)

We calculate
∂

∂s
π3(s · (θ+, θ−, t)) =

∂

∂s
e−2st = −2e−2st < 0

and consequently the orientation of T̃ it inherits from the orientation of the
boundary is represented by −dπ3 ∧ π∗1 τ̃− ∧ π∗2 τ̃+. We want to understand
how these two orientations fit together and hence, we have to calculate

−dπ3 ∧ π∗1 τ̃− ∧ π∗2 τ̃+ ∧ (ϕ̃−)∗µ̃+. (2.12)

Convention 1.) and 2.) and the definition of µ̃+ imply that

dπ3 ∧ π∗2 τ̃+ ∧ (ϕ̃−)∗µ̃+

induces the same orientation as π∗2i
∗
1ωz and so

−dπ3 ∧ π∗1 τ̃− ∧ π∗2 τ̃+ ∧ (ϕ̃−)∗µ̃+

describes the same orientation as

(−1)l−−kπ∗1 τ̃
− ∧ π∗2i∗1ωz.

Next we have to understand the orientation that is given by π∗1 τ̃
− ∧ π∗2i∗1ωz.

If we apply (ϕ̃+)∗ to (2.10.) and make use of

(p1 ◦ ϕ̃+)(θ+, θ−, t) = θ+ = π1(θ+, θ−, t)

and
(p2 ◦ ϕ̃+)(θ+, θ−, t) = tθ− = t(i1 ◦ π2)(θ+, θ−, t)

we obtain that

π∗1 τ̃
− ∧ λ3π

∗
2i
∗
1ωz = (ϕ̃+)∗p∗1τ̃

− ∧ (ϕ̃+)∗p∗2ωz

= λ1(ϕ̃+)∗µ̃−.

So, the two orientations given by τ̃ and −dπ3 ∧ π∗1 τ̃− ∧ π∗2 τ̃+ coincide up to
the factor (−1)l−−k.

2



Chapter 3

Morse Homology

3.1 Morse Homology

3.1. Definition Ck(f ; Z), C∗(f ; Z)
Given a Morse–Smale pair (f, g) on a smooth compact manifold M with
boundary. We define

Ck(f ; Z) := Z[Crk(f)]
C∗(f ; Z) := Z[Cr(f)].

So, Ck(f ; Z) is the free Z-module generated by Crk(f) and C∗(f ; Z) is the
free Z-module generated by Cr(f).

Remark: the definition of Ck(f ; Z) and C∗(f ; Z)
By non-degeneracy of critical points, one knows that if we consider compact
manifolds, there are only finitely many critical points and so all these mod-
ules are finitely generated.
Clearly C∗(f ; Z) possesses a natural Z-grading, as indicated by *: C∗(f ; Z) :=⊕

k∈ZCk(f ; Z) and it is obvious that Ck(f ; Z) = 0 for k < 0 and for
k > dimM . So we obtain a finite sequence of freely-generated modules
for every Morse–Smale pair (f, g) on a compact manifold M .
Instead of looking at critical points on the whole manifold, we can restrict
ourselves to critical points on the boundary or on any other sub-manifold.
As critical points on the boundary are critical points on the whole man-
ifold, C∗(f∂M ; Z) — the complex of critical points where ∂M is consid-
ered as a manifold in its own right — can be regarded as a sub-module of
C∗(f ; Z). Because the indices must not shift we can consider the inclusions
Ck(f∂M ; Z) ↪→ Ck(f ; Z).

As usually, we can define the dual complexes Ck(f ; Z) and C∗(f ; Z) by
considering homomorphisms Ck(f ; Z) → Z respectively C∗(f ; Z) → Z. As
Ck(f ; Z) and C∗(f ; Z) are freely generated and we know a base, homeo-

70
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morphisms can be identified with maps from elements of the base, i.e. the
critical points, to Z:

Ck(f ; Z) ∼= Maps(Crk(f); Z).

We can also form the modules generated by the critical points over Abelian
groups different from Z by setting

Ck(f ;G) := Ck(f ; Z)⊗G,

Ck(f ;G) := Hom(Ck(f ; Z), G).

Remark: the differential
Given a Morse–Smale pair (f, g), we fix orientations of W−(x) for every
x ∈ Cr(f). In section 5 of the last chapter we have seen that by orienting
all unstable manifolds, orientations on T (x, y) are defined too. Consider

Ik : Crk(f)× Crk−1(f)→ Z, (p, q) 7→ Ik(p, q)

where Ik is defined as follows: If T (p, q) = ∅ we set Ik(p, q) = 0. If T (p, q) 6=
∅, T (p, q) is zero-dimensional and compact and consequently it consists of
a finite collection of oriented points γ ∈ T (p, q). We define n(γ) to be the
sign given by the orientation of γ and set

Ik(p, q) :=
∑

γ∈T (p,q)

n(γ).

3.2. Definition the differential
The differential ∂k : Ck(f ; Z)→ Ck−1(f ; Z) is defined by setting

∂k(x) :=
∑

ind(y)=k−1

Ik(x, y) · y

on the generators and extending this Z-linearly to the whole module.

3.3. Proposition
(C∗(f ; Z), ∂∗) is a graded differential complex.

Proof:
What remains to show is that ∂k−1 ◦ ∂k = 0: let x ∈ Crk(f) be arbitrary,
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then

∂k−1(∂k(x)) = ∂k−1

 ∑
ind(y)=k−1

Ik(x, y) · y


=

∑
ind(y)=k−1

Ik(x, y) · ∂k−1(y)

=
∑

ind(y)=k−1

Ik(x, y)

 ∑
ind(z)=k−2

Ik−1(y, z) · z


=

∑
ind(z)=k−2

 ∑
ind(y)=k−1

Ik(x, y)Ik−1(y, z)

 · z
so ∂k−1 ◦ ∂k = 0 if ∑

ind(y)=k−1

Ik(x, y)Ik−1(y, z)

vanishes for all x ∈ Crk(f) and z ∈ Crk−2(f).

∑
ind(y)=k−1

Ik(x, y)Ik−1(y, z) =
∑

ind(y)=k−1

 ∑
γ∈T (x,y)

n(γ)
∑

σ∈T (y,z)

n(σ)


=

∑
ind(y)=k−1

 ∑
(γ,σ)∈T (x,y)×T (y,z)

n(γ)n(σ)


=

∑
(γ,σ)∈

F
ind(y)=k−1 T (x,y)×T (y,z)

n(γ)n(σ)

= −
∑

(γ,σ)∈∂1T̂ (x,z)

[γ × σ]

because the orientation on T (x, y)×T (y, z) is the same as the one obtained
when regarding T (x, y) × T (y, z) as a subset of ∂1T̂ (x, z) up to a factor
(−1)ind(x)−ind(y) = (−1)1 = −1, see Proposition (2.35.). As ∂1T̂ (x, z) =
∂T̂ (x, z) is 0-dimensional and compact, it is a collection of finitely many
oriented points, denoted by [γ × σ]. T̂ (x, z) is 1-dimensional, so we can
apply:

3.4. Theorem classification of 1-dimensional smooth manifolds
Any smooth, connected 1-dimensional manifold is diffeomorphic either to
the circle S1 or to some interval of real numbers.
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Proof:
A proof can be found in [11].

2

As T̂ (x, z) is compact, it can only be a union of finitely many copies of S1 and
of closed, bounded intervals. Consequently, the sum over the orientations of
the boundary-points is zero, and so the claim follows.

2

3.5. Definition Morse homology
The homology

Hk(f ; Z) :=
ker(∂k : Ck(f ; Z)→ Ck−1(f ; Z))

im(∂k+1 : Ck+1(f ; Z)→ Ck(f ; Z))

of the differential complex (C∗(f), ∂∗) is called Morse homology.

Remark: Morse cohomology
We define the differential of (C∗(f ; Z), ∂∗) by

∂k : Ck(f ; Z)→ Ck+1(f ; Z), φ 7→ ∂kφ

where

(∂kφ)(x) :=
∑

ind(y)=k

Ik(x, y)φ(y), for x ∈ Crk+1(f)

is Z-linearly extended.
(C∗(f ; Z), ∂∗) is the complex dual to (C∗(f ; Z), ∂∗) and so it must be a
differential complex too (∂k+1 ◦ ∂k = 0).
So we can define the cohomology of the differential complex (C∗(f ; Z), ∂∗),

Hk(f ; Z) =
ker(∂k : Ck(f ; Z)→ Ck+1(f ; Z))

im(∂k−1 : Ck−1(f ; Z)→ Ck(f ; Z))

called the Morse cohomology.

Remark:
We show that for a given Morse–Smale pair (f, g) the homology is indepen-
dent from the fixed orientations next
A priori, the Morse homology depends on the chosen Morse–Smale pair (f, g)
and on the fixed orientations of all the unstable manifolds. In section 3 of
this chapter it is shown that the Morse homology is isomorphic to the singu-
lar homology for any Morse–Smale pair. Consequently the Morse homology
is independent from the specific Morse–Smale pair and the orientations.
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If we would have the aim to build a homology theory with the help of the
Morse–Smale complex that is as intrinsic as possible, this approach would
not be totally satisfying, as the isomorphism to another homology is ex-
ploited to get these results. In [16] Morse homology is developed as a full-
fledged homology theory.

3.6. Proposition
Different choices of orientations of the unstable manifolds lead to isomor-
phic differential complexes and consequently to isomorphic homologies (re-
spectively cohomologies).

Proof:
We consider two collections of orientations of all unstable manifolds (θx)x∈Cr(f)

and (θ̃x)x∈Cr(f) and define

ψ : C∗(f ; Z)→ C∗(f ; Z)

by setting x 7→ ε(x) · x, where ε(x) = +1 if θx = θ̃x and −1 if θx = −θ̃x

and extending this linearly. Obviously this is a module-automorphism.
We claim that ψ is a chain map. In the following ∼ will indicate when we
are working with the orientations θ̃x∈Cr(f). First we compute

Ĩk(x, y) =
∑

γ∈T (x,y)

ñ(γ) =
∑

γ∈T (x,y)

ε(x) · n(γ) · ε(y) = ε(x) · Ik(x, y) · ε(y)

where the last equation follows from Proposition (2.34.). Consequently

(ψ ◦ ∂̃k)(x) = ψ

 ∑
ind(y)=k−1

Ĩk(x, y) · y


=

∑
ind(y)=k−1

ε(x)Ik(x, y)ε(y) · ψ(y)

=
∑

ind(y)=k−1

ε(x)Ik(x, y)ε(y)ε(y) · y

= ε(x)
∑

ind(y)=k−1

Ik(x, y) · y

= ε(x) · ∂k(x) = ∂k(ε(x) · x) = (∂k ◦ ψ)(x)

and so ψ is an isomorphism of chain complexes.

2

3.2 Spectral Sequences

We introduce spectral sequences of filtered differential complexes, explain
convergence and state two results we will apply to the Morse–Smale complex
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in order to make contact with standard homology respectively cohomology
theories in the last two chapters. For a general introduction we refer to [20]
and [6] and we follow the approach presented in the last one.

Remark: exact couples
First of all, we introduce the purely algebraic notation of an exact couple.
An exact couple consists of two Abelian groups A, B and group homomor-
phisms i : A→ A, j : A→ B, k : B → A such that the following diagram is
exact:

A
i // A

j��~~
~~

~~
~

B

k

__@@@@@@@

and we define d : B → B by d := j ◦ k. We calculate d2 = (j ◦ k) ◦ (j ◦ k) =
j ◦ (k ◦ j) ◦ k = 0 since k ◦ j = 0 by exactness. Hence we can compute the
homology of d: H(B) := ker d/im d.
We obtain the derived couple

A′
i′ // A′

j′~~}}
}}

}}
}}

B′
k′

``AAAAAAAA

by setting A′ := i(A), B′ := H(B) and

i′ : A′ → A′, i(a) 7→ i(i(a))

j′ : A′ → B′, i(a) 7→ [j(a)]

k′ : B′ → A′, [b] 7→ k(b).

A′ and B′ are Abelian groups. j′ is well-defined because j(a) is a cycle —
d(j(a)) = ((j◦k)◦j)(a) = (j◦(k◦j))(a) = 0 — and because [j(a)] is indepen-
dent from the particular choice of a: Suppose i(a) = i(a) hence i(a− a) = 0
and by exactness of the exact couple there is b ∈ B with k(b) = a − a and
consequently j(a)− j(a) = (j ◦ k)(b) = d(b) and so [j(a)] = [j(a)].
That k′ is well-defined can be checked as follows: First we have 0 = d(b) =
(j ◦ k)(b) for [b] ∈ H(B), i.e. k(b) is in the kernel of j, hence in the image
of i and so k(b) = i(a) ∈ i(A) = A′. Pick another representative of the
homology class [b]: [b] = [b] =⇒ b − b = d(e) for some e ∈ B. But then
k′([b])− k′([b]) = k(b− b) = (k ◦ d)(e) = ((k ◦ j) ◦ k)(e) = 0.

3.7. Lemma
The derived couple of an exact couple is an exact couple.
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Proof:
A′ and B′ are again Abelian groups, i′, j′, k′ are obviously group homo-
morphisms. Next we simply demonstrate exactness at every group in the
triangle.

1.) Exactness at A′
j′→ B′ k′→ A′:

im j′ ⊂ ker k′: k′(j′(a′)) = k′(j′(i(a))) = k′(j(a)) = (k ◦ j)(a) = 0.
ker k′ ⊂ im j′: k′(b) = k(b) = 0 =⇒ b = j(a) = j′(i(a)).

2.) Exactness at B′ k′→ A′
i′→ A′:

im k′ ⊂ ker i′: i′(k′[b]) = i′(k(b)) = i(k(b)) = 0.
ker i′ ⊂ im k′: suppose i′(i(a)) = i(i(a)) = 0, hence i(a) ∈ ker i and by ex-
actness there is an b ∈ B with k(b) = i(a). Consequently k′[b] = k(b) = i(a).

3.)Exactness at A′ i′→ A′
j′→ B′:

im i′ ⊂ ker j′: (j′ ◦ i′)(i(a)) = j′(i(i(a))) = [(j ◦ i)(a)] = [0].
ker j′ ⊂ im i′: j′(i(a)) = [j(a)] = 0 =⇒ j(a) = d(b) = (j ◦ k)(b) for some
b ∈ B. Hence j(a− k(b)) = 0 and by exactness there is an c ∈ A such that
i(c) = a− k(b) =⇒ a = i(c) + k(b) =⇒ i(a) = i(i(c)) + i(k(b)) = i(i(c)) =⇒
i(a) = i′(i(c)).

2

Remark: spectral sequence of filtered complexes
Let K be a differential complex with differential operator d, i.e. K is an
Abelian group and d : K → K is a group homomorphism with d2 = 0. A
subgroup K ′ ⊂ K is a sub-complex of K if d(K ′) ⊂ K ′.
A finite filtration of a differential complex K is a sequence of sub-complexes
K0, . . . ,Kn such that

K = K0 ⊃ K1 ⊃ K2 ⊃ . . . ⊃ Kn = ∅ (3.1)

and we set Kp = K for p < 0. A differential complex K equipped with a
filtration is called a filtered complex. We call

GK :=
∞⊕

p=0

Kp/Kp+1 (3.2)

the associated graded complex. Next we set A := ⊕p∈ZKp and A is a dif-
ferential complex with differential operator d. Define i : A → A by the
inclusion Kp+1 ↪→ Kp for all p ∈ Z. B shall be the quotient defined by the
exact sequence

0→ A
i→ A

j→ B → 0 (3.3)
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and observe that B is the associated graded complex GK of K.
The sequence of sub-complexes (3.1) induces a sequence in homology

. . .
∼=←− H(K)

∼=←− H(K0)←− H(K1)←− . . .←− H(Kn) = 0

and H(K) inherits a filtration given by FpH(K) := im (H(Kp)→ H(K))
and one obtains a sequence of inclusions

H(K) = F0H(K) ⊃ F1H(K) ⊃ F2H(K) ⊃ . . . ⊃ FnH(K) = 0 (3.4)

making H(K) into a filtered complex and this filtration is called the induced
filtration on H(K).
From (3.3) we obtain an exact couple

A1 := H(A)
i1 // A1 := H(A)

j1vvnnnnnnnnnnnn

B1 := H(B)
k1

hhPPPPPPPPPPPP

and because the derived couples of exact couples are exact again we can
iterate the process of building derived couples and obtain

Ar
ir // Ar

jr~~||
||

||
||

Br

kr

``BBBBBBBB

after (r − 1) steps.
A1 is the direct sum of

. . .
∼=←− H(K)

∼=←− H(K0)←− H(K1)←− H(K2)←− . . .←− H(Kn) = 0

A2 is the direct sum of

. . .
∼=←− H(K)

∼=←− H(K0) ⊃ F1(H(K))←− i(H(K2))←− . . .←− i(H(Kn)) = 0

A3 is the direct sum of

. . .
∼=←− H(K)

∼=←− H(K0) ⊃ F1(H(K)) ⊃ F2(H(K))←− . . .←− i(i(H(Kn))) = 0

etc.
After n steps one obtains that An+1 is the direct sum of

. . .
∼=←− H(K)

∼=←− H(K0) ⊃ F1(H(K)) ⊃ F2(H(K)) ⊃ . . . ⊃ Fn(H(K)) = 0
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and hence An+1 = An+2 = . . . . It is costumery to write A∞ := An+1 in this
case and one sees that

A∞ =
n⊕

i=0

FiH(B). (3.5)

Since

An+1
in+1 // An+1

jn+1{{vvv
vv

vv
vv

Bn+1

kn+1

ccHHHHHHHHH

is an exact couple and in+1 : An+1 → An+1 is the inclusion, kn+1 is trivial.
Hence Bn+1 = Bn+2 = . . . and we write B∞ := Bn+1 and obtain

A∞
i∞ // A∞

j∞||zz
zz

zz
zz

B∞

k∞=0

bbEEEEEEEE

B∞ is the quotient of i∞, so B∞ is the associated graded complex GH(K)
of the differential complex H(K) filtered by (3.4).

Remark: some terminology
Usually, one denotes H(B) by E1 which is a differential complex with dif-
ferential operator d1 := j1 ◦ k1 and inductively defines Er+1 := H(Er) with
differential dr+1 := jr+1 ◦ kr+1. A sequence of differential groups (Er, dr) in
which each Er is the homology of Er−1 is called a spectral sequence. If Er

becomes stationary for r sufficiently large, we denote the stationary value
by E∞ and if E∞ is equal to the associated graded complex of some filtered
group G we say that the sequence converges to G.
Now we can cite two results from [20] we will make use of in the next two
sections. The statements given in [20] are slightly more general than the
versions we will use because in [20] the filtrations are not assumed to be
finite but must satisfy a weaker condition.

3.8. Theorem
Let K be a filtered differential complex with a finite filtration, see (3.1).
Then there is a convergent spectral sequence with

E1
r,t
∼= Hr+t(Kr/Kr+1) (3.6)

where the differential operator d1 of the E1-term is given by the connecting
homomorphism of the triple (Kr,Kr+1,Kr+2) and E∞ is isomorphic to the
associated graded complex of H(K) with the filtration given by (3.4).
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Proof:
We have already given the main arguments.

2

Remark: induced maps in spectral sequences
Given a chain map τ between two differential complexes K and K ′ preserv-
ing the filtration, τ induces a homomorphism τ1 between E1 and E′1 because
the spectral sequences are defined in terms of the homologies. Step–by–step,
τ induced homomorphisms τ r : Er → E′r. The induced map between E∞

and E′∞ is denoted by τ∞. If τ r is an isomorphism, so is τ s for s ≥ r.

3.9. Theorem
Let K and K ′ be differential complexes equipped with finite filtrations, see
(3.1). Given a chain map τ : K → K ′ preserving the filtrations.
If for some r ≥ 1 the induced map τ r : Er → E′r is an isomorphism, then τ
induces an isomorphism

τ∗ : H∗(K)
∼=→ H∗(K ′).

Proof:
This follows by exploiting the fact that if τ r is an isomorphism for some r,
so is τ∞. By Theorem (3.8.), τ induces an isomorphism between the asso-
ciated graded complex of H(K) respectively of H(K ′). After applying the
five lemma several times one obtains that H(K) and H(K ′) themselves are
isomorphic.

2

3.3 Isomorphism to Singular Homology

The main aim of this section is to establish the connection between Morse
homology and singular homology:

3.10. Theorem H∗(f ; Z) ∼= H∗(M ; Z)
Given a compact smooth manifold M , possibly with boundary ∂M and a
Morse–Smale pair (f, g) on M (see Definition 1.15.). Then the homology of
the Morse–Smale complex (C∗(f ; Z), ∂∗) and the one of the singular complex
(S∗(M), d) of M are isomorphic.

We start with the following proposition:
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3.11. Proposition
Given a Morse–Smale pair (f, g) and let p ∈ M be a critical point of f of
index k. Then Ŵ−(p)/∂Ŵ−(p) is homeomorphic to Sk.

Proof:
In Proposition (1.14.) we proved that W−(p) = Ŵ−(p) \ ∂Ŵ−(p) is diffeo-
morphic to Rk, and in particular homeomorphic to Euclidean space. From
the parametrisation Sk−1×]0,∞[→W−(p) we used there we obtain a para-
metrisation Sk−1×]0, 1[→ W−(p) ↪→ Ŵ−(p) → Ŵ−(p)/∂Ŵ−(p) which ex-
tends continuously to

Sk−1 × [0, 1]→ Ŵ−(p)/∂Ŵ−(p).

To see this, let U be a neighbourhood of ∂Ŵ−(p) in Ŵ−(p) and suppose
(xn)n∈N is a sequence in W−(p) with r(xn)→ 1, with r : Sk−1×[0, 1[→ [0, 1[
being the projection to the second factor. Now we have to show that xn ∈ U
for sufficiently large n ∈ N. This follows since the complement of U is
compact and hence r is bounded away from 1 on this complement.
Hence we obtain a continuous, bijective map

ΣSk−1 → Ŵ−(p)/∂Ŵ−(p)

where ΣSk−1 denotes the suspension of Sk−1 which is homeomorphic to Sk.
The compactness of Ŵ−(p) and ∂Ŵ−(p) now implies that we have found a
homeomorphism

Sk ∼=→ Ŵ−(p)/∂Ŵ−(p). (3.7)

2

3.12. Corollary
Let (f, g) be a Morse–Smale pair on M and assume p is a critical point of
f . Then

Hr(Ŵ−(p), ∂Ŵ−(p); Z) =

{
Z if r = ind(p)
0 if r 6= ind(p).

Remark: a convenient filtration of M
We intend to apply Theorem (3.8.) and hence we define a finite filtration
on M :

Mr :=
⋃

ind(x)≤r

W−(x) =
⋃

ind(x)≤r

îx(Ŵ−(x))

for all r ∈ N and Mr := ∅ for r < 0. Obviously Mr−1 ⊂ Mr for all r ∈ Z
and Mr = M for r ≥ dimM . Furthermore all Mr are compact because they
are finite unions of images of compact sets (the Ŵ−(x)’s) under continuous
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maps (the îx’s).
The filtration

∅ = M−1 ⊂M0 ⊂M1 ⊂ . . . ⊂Mn−1 ⊂Mn = M

induces a filtration on the singular complex S∗(M) given by FrS∗(M) =
S∗(Mr). Now we can apply Theorem (3.8.):

the E1-term:
E1

r,t = Hr+t(Mr,Mr−1; Z) and this can be computed with the help of Propo-
sition (3.11.). Consider the map of pairs⊔

ind(x)=k

(Ŵ−(x), ∂Ŵ−(x))
t(̂ix)→ (Mk,Mk−1)

which is continuous. This induces a bijective continuous map∨
ind(x)=k

Ŵ−(x)/∂Ŵ−(x)→Mk/Mk−1 (3.8)

where
∨

denotes the wedge, and by compactness of Ŵ−(p) this is a home-
omorphism. Hence

Hr+t(Mr,Mr−1; Z) =

{
Z[Crr(f)] for t = 0
0 for t 6= 0.

the E∞-term:
We observe that for k ≥ 2 all the differential in the Ek-terms are trivial
because the E1-term is non–trivial only in one row. Consequently, the E2-
term is concentrated in one row and because the spectral sequence does not
change after the E2-term, the E∞-term is non-trivial only in the row t = 0,
too. We want to calculate

E∞
r,0 = GH(M)r,t =

FrHr(M)
Fr−1Hr(M)

=
im(Hr(Mr)→ Hr(M))

im(Hr(Mr−1)→ Hr(M))
.

We claim that im(Hr(Mr−1) → Hr(M)) = 0. Consider the long exact
sequence

. . .→ Hr+1(Mr−k,Mr−k−1)→ Hr(Mr−k−1)→ Hr(Mr−k)→ Hr(Mr−k,Mr−k−1)→ . . .

for k > 0. We know thatHr(Mr−k,Mr−k−1) = 0 andHr+1(Mr−k,Mr−k−1) =
0, hence

Hr(Mr−k−1) ∼= Hr(Mr−k)

for k > 0. But then Hr(Mr−1) ∼= Hr(Mr−2) ∼= . . . ∼= Hr(M−1) = 0 and the
claim follows.
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Next we show that Hr(Mr) → Hr(M) is surjective. Consider the long
sequence

. . .→ Hr(Mr)→ Hr(Mr+1)→ Hr(Mr+1,Mr)

and because of Hr(Mr+1,Mr) = 0 surjectivity of the map Hr(Mr) →
Hr(Mr+1) follows. Now consider the part

. . .→ Hr+1(Mr+k+1,Mr+k)→ Hr(Mr+k)→ Hr(Mr+k+1)→ Hr(Mr+k+1,Mr+k)→ . . .

of the long exact sequence and observe that Hr+1(Mr+k+1,Mr+k) = 0 and
Hr(Mr+k+1,Mr+k) = 0 for k > 0. Hence Hr(Mr+k) ∼= Hr(Mr+k+1) and so
Hr(Mr+1) ∼= Hr(Mr+2) ∼= . . . ∼= Hr(Mn) = Hr(M) and this implies that
Hr(Mr)→ Hr(M) is indeed surjective.
So we obtain E∞

r,0 = Hr(M).

Applying Theorem (3.8.) leads to

Hr(M ; Z) = E∞
r,0 = E2

r,0 =
ker(d1 : Hr(Mr,Mr−1)→ Hr−1(Mr−1,Mr−2)
im(d1 : Hr+1(Mr,Mr−1)→ Hr(Mr−1,Mr−2)

where d1 : Hr(Mr,Mr−1; Z)→ Hr−1(Mr−1,Mr−2; Z) is the differential of the
E1-term and is given by the boundary operator of the triple (Mr,Mr−1,Mr−2).
Consequently Theorem (3.10.) follows if we can show that (Hr(Mr,Mr−1; Z), d1)
and (Cr(f ; Z), ∂r) are isomorphic chain complexes because then

Hr(f ; Z) ∼= E2
r,0 = E∞

r,0 = Hr(M ; Z).

To show that these chain complexes are isomorphic is the task of the rest of
this section.

Remark: fundamental classes and manifolds with corners
Let X be an n-dimensional topological manifold. Then it is known that⊔

x∈X

Hn(X,X \ {x}; Z)→ X

is a covering space of X with fibre Z. An orientation of X is equivalent to a
continuous section in

⊔
x∈X Hn(X,X \ {x}; Z) → X that maps every point

x ∈ X to a generator of Hn(X,X \{x}; Z). For closed, oriented X there is a
unique class in Hn(X; Z) — written [X] and called the fundamental class of
X — that restricts to the distinguished generator of Hn(X,X \ {x}; Z) for
all x ∈ X. For a detailed introduction to fundamental classes of topological
manifolds, see [7] for instance.
Now assume X is a compact, oriented n-dimensional smooth manifold with
corners. As remarked before (X, ∂X) is a topological manifold with bound-
ary. Consider a connected component F ⊂ ∂1X. Then there is a canonically
compact smooth manifold with corners F̃ with interior F which satisfies a
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compatibility-condition:

3.13. Lemma
Given a compact connected smooth manifold with corners X. Consider a
connected component F of ∂1X with topological closure F ⊂ ∂X. Then
there is a smooth compact manifold with corners F̃ and a surjective map
p : F̃ → F such that
2.) p : F̃ → X is a smooth extension of the inclusion F ↪→ X.
1.) p : F̃ → F is a locally injective and a local homeomorphism.

Proof:
We start by choosing a Riemannian metric g on X which induces a Rie-
mannian metric on F . This Riemannian metric on F gives rise to a metric
dF on F (by geodesic distance) which induces a topology on F . Be aware
that this topology may differ from the one F inherits as a subset of X. We
denote the metric on X which is induced by g by dX . Now consider the
topological completion (F̃ , dF̃ ) of (F, dF ).
The inclusion iF → X is uniformly convergent (this follow from dX(i(x), i(y)) ≤
dF (x, y)) and consequently i : F ↪→ X can be extended to a (uniformly) con-
tinuous map p : F̃ → X̃ = X (because X is complete). The map p : F̃ → X
is surjective on F : given z ∈ F arbitrary. Choose a sequence in F with
i(zn)→ z in X. But (zn)n∈N is convergent in F̃ too and we denote the limit
by y. But then

p(y) = p( lim
n→∞

zn) = lim
n→∞

p(zn) = lim
n→∞

i(zn) = z.

Next we check that p : F̃ → X is locally injective. Let x be a point in F̃ .
By definition of F̃ x can be represented by (xn)n∈N, a Cauchy sequence with
respect to dF . For p(x) ∈ F there is a small open neighbourhood of p(x)
which is contained in a chart neighbourhood of p(x) in X. But if we use
a chart we see that V ∩ F consists of finitely many connected components
V1, . . . , Vs (with s ≤ n) and if V was sufficiently small, in these components
(looking at each of these components separated) the topology induced by
dF and the one induced by dX coincide. There is exactly one i ∈ {1, . . . , s}
such that there is an N ∈ N such that xn ∈ Vi for all n ≥ N . Without loss
of generality we can assume (xn)n∈N ⊂ Vi. But in Vi from zn → z ∈ F and
yn → z ∈ F it follows that dF (xn, yn) → 0. Consequently for every x ∈ F̃
there is an open neighbourhood U of x such that if (xn)n∈N, (yn)n∈N are two
Cauchy sequences in U ∩F that represent z1 and z2 with p(z1) = p(z2) then
dF (xn, yn)→ 0 and hence (xn)n∈N and (yn)n∈N represent the same point in
F̃ .
Furthermore, we can use the constructed neighbourhood U to show that p
is a local homeomorphism. We want to construct an inverse of pU : U →
pU (U). Let z ∈ pU (U), and choose a sequence (zn)n∈N) in p(U) ∩ F that
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converges to z in X. Set p−1(z) = (zn)n∈N ∈ F̃ . This is a well-defined map
which is inverse to pU and which can be checked to be continuous.
Now we can equip F̃ with a smooth structure such that p : F̃ → X is
smooth. For an arbitrary x ∈ F̃ we find an open neighbourhood U such
that p restricted to this neighbourhood is a local homeomorphism. Then we
choose a chart for p(x) ∈ X which is denoted by (A,α). We want (U,α◦pU )
to be a chart neighbourhood of x. So we have to check whether chart-
changes are smooth: Let V be another neighbourhood of a point y ∈ F̃ as
described before and (B, β) a chart for pV (y). Assume U ∩ V 6= ∅. The
coordinate change from (U,α ◦ pV ) to (V, β ◦ pV ) computes to

(β ◦ pV ) ◦ (α ◦ pU )−1 = β ◦ α−1

what is smooth by construction. Additionally, the expression for p in local
coordinates is given by

β ◦ p ◦ (α ◦ pU )−1 = β ◦ α−1

and consequently p is smooth.
To show that F̃ is compact one proceeds as follows: One checks that p is
a closed mapping and that p−1(y) consists of finitely many points for every
p ∈ F . But then p is proper and because F is compact (it is a closed
set in the compact space X), p−1(F ) = F̃ is compact too. Points in p−1(y)
are represented by Cauchy series converging to y between which the distance
goes to zero with respect to dF . It might happen that dX goes to zero but dF

does not for such two series. However, if we consider a small neighbourhood
U of y as used to demonstrate local injectivity of p we see that on every Vj

the topology induced by dX and the one induced by dF is the same, so if
dX(xn, yn) → 0 it follows that dF (xn, yn) → 0. Consequently, there are at
most s ≤ n different points in p−1(y).

2

3.14. Lemma
Given a compact smooth oriented manifold with corners X. Let F be a
connected component of ∂1X. F inherits an orientation from X as an open
subset of ∂X, hence F̃ is canonically oriented too. Let [F̃ ] ∈ Hn−1(F̃ , ∂F̃ )
be the fundamental class of F̃ . Consider
p : (F̃ , ∂F̃ )→ (∂X, ∂≥2X) and
ι∗ : H∗(∂X; Z)→ H∗(∂X, ∂≥2X; Z).
Denote the set of connected components of ∂1X by π0(∂1X).
Then ∑

F∈π0(∂1X)

p∗([F̃ ]) = ι∗([∂X]) ∈ Hn−1(∂X, ∂≥2X; Z)
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holds.

Proof:
For every point x ∈ ∂X \ ∂≥2X the identity induces an homomorphism

(lx)∗ : H∗(∂X, ∂≥2X; Z)→ H∗(∂X, ∂X \ {x}; Z).

Let x ∈ ∂X \ ∂≥2X, then there is an F ∈ π0(∂1X) such that x ∈ F̃ \ ∂F̃ .
By excision one has

Hn−1(F̃ , F̃ \ {x}; Z) = Hn−1(∂X, ∂X \ {x}; Z).

By definition, if [F̃ ] is restricted to Hn−1(F̃ , F̃ \ {x}; Z) it equals the dis-
tinguished generator of Hn−1(F̃ , F̃ \ {x}; Z) and because the orientation
of F̃ is induced by the orientation on ∂X, p∗([F̃ ]) equals the generator of
Hn−1(∂X, ∂X \ {x}; Z) if it is restricted to it. Consequently,

(lx)∗

 ∑
F∈π0(∂1X)

p∗([F̃ ])


restricts to the distinguished generator of Hn−1(∂X, ∂X \ {x}; Z) for all
x ∈ ∂X \ ∂≥2X. But on the other hand, (lx)∗(ι∗([∂X])) is also the uniquely
determined generator of Hn−1(∂X, ∂X \ {x}; Z) for every x ∈ ∂X \ ∂≥2X,
see [20]. Hence in Hn−1(∂X, ∂X \ {x}; Z) we have

(lx)∗

 ∑
F∈π0(∂1X)

p∗([F̃ ])

 = (lx)∗ (ι∗[∂X])

for all x ∈ ∂X \ ∂≥2X.
Additionally

Hn−1(∂X, ∂≥2X; Z) = Hn−1(∂X/∂≥2X, ∗; Z)

= Hn−1(
∨

F∈π0(∂1X)

F̃ /∂F̃ , ∗; Z)

=
⊕

F∈π0(∂1X)

Hn−1(F̃ /∂F̃ , ∗; Z)

=
⊕

F∈π0(∂1X)

Hn−1(F̃ , ∂F̃ ; Z)

=
⊕

F∈π0(∂1X)

Z.

Now suppose we have α ∈ Hn−1(∂X, ∂≥2X; Z) such that (lx)∗(α) = 0 ∈
Hn−1(∂X, ∂X \ {x}; Z) for all x ∈ ∂X \ ∂≥2X. By the decomposition of
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Hn−1(∂X, ∂≥2X; Z) from above, one sees that α can be written as a linear
combination of generators of Hn−1(F̃ ; ∂F̃ ; Z) with F ∈ π0(∂1X). From the
general theory we know that for x ∈ F the generator of Hn−1(F̃ , ∂F̃ ; Z)
restricts to the distinguished generator of Hn−1(∂X; ∂X \ {x}; Z). Hence, if
(lx)∗(α) = 0 for x ∈ F̃ \∂F̃ = F , then the coefficient for the generator [F̃ ] of
Hn−1(F̃ , ∂F̃ ; Z) in the linear combination of α must vanish. We can choose
an x in every F ∈ π0(∂1X) and obtain that all coefficients must vanish and
consequently α = 0.
If we apply this observations to

α =
∑

F∈π0(∂1X)

p∗([F̃ ])− ι∗([∂X])

we obtain that ∑
F∈π0(∂1X)

p∗([F̃ ]) = ι∗([∂X]).

2

Remark: the isomorphism
We define

Φr : Cr(f ; Z)→ Hr(Mr,Mr−1; Z) (3.9)

by setting Φr(x) := (̂ix)∗([Ŵ−(x)]) for x ∈ Crr(f) and extending this lin-
early to Cr(f ; Z). Φr is the composition of

Tr : Cr(f ; Z)→ Hr(
⊔

ind(x)=r

(Ŵ−(x), ∂Ŵ−(x)); Z),

Tr

 ∑
ind(x)=r

λx · x

 =
∑

ind(x)=r

λx · [Ŵ−(x)]

and

t(̂ix)∗ : Hr(
⊔

ind(x)=r

(Ŵ−(x), ∂Ŵ−(x)); Z)→ Hr(Mr,Mr−1; Z).

3.15. Proposition
The map

Φ∗ : C∗(f ; Z)→ H∗(M∗,M∗−1; Z)

defined in (3.9) is an isomorphism.

Proof:
Tr is obviously an isomorphism. Furthermore, we have seen before that
t(̂ix) induces an isomorphism in homology. Hence Φr is an isomorphism.
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2

3.16. Proposition
The map

Φ∗ : C∗(f ; Z)→ H∗(M∗,M∗−1; Z)

defined in (3.9) is a chain map, i.e. the diagram

. . . // Hr(Mr,Mr−1)
d1

// Hr−1(Mr−1,Mr−2) // . . .

. . . // Cr(f ; Z)
∂r //

Φr

OO

Cr−1(f ; Z) //

Φr−1

OO

. . .

is commutative.

Proof:
We have to show that the following large diagram is commutative:

. . . // Hr(Mr,Mr−1)
d1 // Hr−1(Mr−1,Mr−2) // . . .

Hr(
⊔

ind(x)=r(Ŵ
−(x), ∂Ŵ−(x)))

t(̂ix)∗

OO

Hr−1(
⊔

ind(y)=r−1(Ŵ
−(y), ∂Ŵ−(y)))

t(̂iy)∗

OO

. . . // Cr(f ; Z)
∂r //

Tr

OO

Cr−1(f ; Z) //

Tr−1

OO

. . .

We have a map between triples⊔
ind(x)=r

(̂ix) :
⊔

ind(x)=r

(Ŵ−(x), ∂Ŵ−(x), ∂≥2Ŵ
−(x))→ (Mr,Mr−1,Mr−2)

and this map induces the following commutative diagram

Hr(Mr,Mr−1; Z) d1
// Hr−1(Mr−1,Mr−2; Z)

Hr(
⊔

ind(x)=r(Ŵ
−(x), ∂Ŵ−(x)); Z) ∂ //

t(̂ix)∗

OO

Hr−1(
⊔

ind(x)=r(∂Ŵ
−(x), ∂≥2Ŵ

−(x)); Z)

t(̂iy)∗

OO

where

∂ : Hr(
⊔

ind(x)=r

(Ŵ−(x), ∂Ŵ−(x)); Z)→ Hr−1(
⊔

ind(x)=r

(∂Ŵ−(x), ∂≥2Ŵ
−(x)); Z)

is the boundary-operator of
⊔

ind(x)=r(Ŵ
−(x), ∂Ŵ−(x), ∂≥2Ŵ

−(x)). For
convenience sake we introduce the following abbreviations:

Ar :=
⊔

ind(x)=r

(Ŵ−(x), ∂Ŵ−(x)),



CHAPTER 3. MORSE HOMOLOGY 88

Br :=
⊔

ind(x)=r

(∂Ŵ−(x), ∂≥2Ŵ
−(x)).

To show that the large diagram is commutative it suffices to show that the
following diagram is commutative:

Hr−1(Mr−1,Mr−2; Z)

Hr(Ar; Z) ∂ // Hr−1(Br; Z)

t(̂ix)∗
55kkkkkkkkkkkkkk

Cr(f ; Z)
∂r //

Tr

OO

Cr−1(f ; Z)

Φr−1

OO

and by linearity it even suffices to assure that

(Φr ◦ ∂r−1)(z) = (t(̂ix)∗ ◦ ∂ ◦ Tr)(z)

holds for all z ∈ Crr(f).
To show this equality, we calculate the left side first:

Φr(∂r−1(z)) = Φr

 ∑
ind(y)=r−1

Ir(z, y) · y


=

∑
ind(y)=r−1

Ir(z, y)Φr−1(y)

=
∑

ind(y)=r−1

Ir(z, y)(̂iy)∗([Ŵ−(y)])

On the other hand we obtain Tr(z) = [Ŵ−(z)] and we have to calculate its
image under

∂ : Hr(
⊔

ind(x)=r

(Ŵ−(x), ∂Ŵ−(x)); Z)→ Hr−1(
⊔

ind(x)=r

(∂Ŵ−(x), ∂≥2Ŵ
−(x)); Z).

To do this, we consider the triple
⊔

ind(x)=r(Ŵ
−(x), ∂Ŵ−(x), ∅) and the map

of triples

i :
⊔

ind(x)=r

(Ŵ−(x), ∂Ŵ−(x), ∅)→
⊔

ind(x)=r

(Ŵ−(x), ∂Ŵ−(x), ∂≥2Ŵ
−(x)).

which induces a commutative diagram

Hr(
⊔

ind(x)=r(Ŵ
−(x), ∂Ŵ−(x))) ∂ //

∂ ++XXXXXXXXXXXXXXXXXXXXXX
Hr−1(

⊔
ind(x)=r(∂Ŵ

−(x), ∂≥2Ŵ
−(x)))

Hr−1(
⊔

ind(x)=r(∂Ŵ
−(x), ∅))

i∗

OO
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where ∂ denotes the boundary-operator of the triple again⊔
ind(x)=r(Ŵ

−(x), ∂Ŵ−(x), ∂≥2Ŵ
−(x)) and ∂ is the boundary-operator of

the triple
⊔

ind(x)=r(Ŵ
−(x), ∂Ŵ−(x), ∅). Hence we obtain

∂(Tr(z)) = i∗(∂(Tr(z))).

Furthermore ∂(Tr(z)) = ∂([Ŵ−(z)]) = [∂Ŵ−(z)] — the last equality is valid
because the fundamental class of a closed oriented topological manifold with
boundary is mapped to the fundamental class of the boundary by ∂ if the
orientation of the boundary is induced by the orientation of the manifold,
see [20].
By Lemma (3.14.)

i∗([∂Ŵ−(z)]) =
∑

F∈π0(∂1Ŵ−(z))

p∗([F̃ ]).

holds. From Theorem (2.30.) we know that

∂1W
−(z) =

⊔
y∈Cr(f)

T (z, y)×W−(y)

and if ind(y) < r the class of the connected component in T (z, y)×W−(y)
is mapped to zero by t(̂ix)∗ because W−(y) would have dimension smaller
than r − 1. So we are only interested in the connected components of the
form F = {γ} ×W−(y) where y ∈ Crr−1(f) and γ ∈ T (z, y) and in this
case F̃ = F which is equal to {γ} × Ŵ−(y). Now t(̂ix)∗((i∗(∂(Tr(z))))) =

= t(̂ix)∗

 ∑
ind(y)=r−1

∑
γ∈T (z,y)

(i{γ}×Ŵ−(y))∗([{γ} × Ŵ
−(y)])


= t(̂ix)∗

 ∑
ind(y)=r−1

∑
γ∈T (z,y)

n(γ)× (iŴ−(y))∗([Ŵ
−(y)])


=

∑
ind(y)=r−1

 ∑
γ∈T (z,y)

n(γ)

 t (̂ix)∗(iŴ−(y))∗([Ŵ
−(y)])

=
∑

ind(y)=r−1

Ir(z, y) · t(̂ix)∗(iŴ−(y))∗([Ŵ
−(y)])

=
∑

ind(y)=r−1

Ir(z, y)(̂iy)∗([Ŵ−(y)])

and this is equal to Φr(∂r−1(z)).

2
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Remark: Morse inequalities
Next we use Theorem (3.10.) to deduce the Morse inequalities. In the clas-
sical approach to Morse Theory these inequalities are deduced in a different
way, see [10] for instance. Thom presented the idea to use a decomposition
of the manifold obtained with the help of the negative gradient flow of an
appropriate function to deduce Morse inequalities in [21]. See [18] for a
similar treatment.

3.17. Corollary
Let (f, g) be a Morse–Smale pair on M . Set cj := |Crj(f)|, i.e. the number
of critical points with index j, bj := dimRHj(M ; R) = rankHj(M ; Z) shall
denote the j’th Betti-number. Then one has
1.) bj ≤ cj for all j = 0, . . . , n.
2.) br − br−1 + . . .± b0 ≤ cr − cr−1 + . . .± c0 for r = 0, . . . , n and
3.) bn − bn−1 + . . .± b0 = cn − cn−1 + . . .± c0 = (−1)nχ(M).

Proof:
By Theorem (3.10.) we know that

bj = dimRHj(M ; R) = dimR(Hj(M ; Z)⊗ R)
= dimR(Hj(f ; Z)⊗ R) = dimRHj(f ; R)

It is well-known that

dimRCj(f ; R) = dimR im(∂j) + dimR ker(∂j)

furthermore

dimRHj(f ; R) = dimR (ker(∂j)/im(∂j+1))
= dimR ker(∂j)− dimR im(∂j+1)

and consequently

cj = dimR im(∂j) + dimR im(∂j+1) + bj .

Hence bj ≤ cj for all j = 1, . . . , n and

dimR im(∂r+1) + br − br−1 + . . .± b0 = cr − cr−1 + . . .± c0.

But 2.) and 3.) follow directly from this.

2

3.18. Corollary
Given a Morse function on a compact manifold M . Then the number of
critical points of this function is at least |χ(M)|, where χ(M) denotes the
Euler-number of M .
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Proof:
Given a Morse function f we can find a Riemannian metric g such that (f, g)
is a Morse–Smale pair, see section 3 of the first chapter. Define cj and bj
for j = 0, . . . , n as before. We can apply Corollary (3.17.) and obtain

n∑
s=0

cs ≥
n∑

s=0

(−1)n−scs =
n∑

s=0

(−1)n−sbs = χ(M),

and
n∑

s=0

cs ≥
n∑

s=0

(−1)n−s+1cs = −
n∑

s=0

(−1)n−sbs = −χ(M).

2

3.4 Isomorphism to deRham Cohomology

The main aim of this section is

3.19. Theorem H∗(f ; R) ∼= H∗
dR(M ; R)

Given a Morse–Smale pair on a compact smooth manifold, possibly with
boundary. Then the cohomology of the Morse–Smale complex (C∗(f ; Z), ∂∗)
is isomorphic to the deRham cohomology of this manifold.

Remark: integration
We denote the space of smooth real-valued k-forms on M by Ωk(M) and
define a map

Intk : Ωk(M)→ Ck(f ; R), ω 7→ Intk(ω)

where Intk(ω) is given by x 7→
∫
Ŵ−(x)(̂ix)∗(ω) on Crk(f) and by extending

this linearly to Ck(f ; Z). Ŵ−(x) is a compact space and hence the integral is
well-defined. Furthermore W−(x) is the interior of Ŵ−(x) and differs from
Ŵ−(x) only by a set of measure zero. So we could also define Intk(x) by

x 7→
∫

W−(x)
ω.

To prove that Int∗ is a chain-map we will use the following adaptation of
Stokes Theorem:

3.20. Theorem Stokes Theorem for manifolds with corners
Let X be a compact n-dimensional oriented smooth manifold with corners.
Denote by ι1 : ∂1X ↪→ X the inclusion of the 1-boundary into X. The 1-
boundary inherits an orientation from X.
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If ω ∈ Ωn−1(X) is a smooth differential form on X, then
∫
∂1X ι∗1(ω) exists

and ∫
∂1X

ι∗1(ω) =
∫

X
dω

holds.

Proof:
We adapt the proof of the classical Stokes Theorem given in [13].
To prove existence of

∫
∂1
ι∗1ω it suffices to prove existence of

∫
F ι

∗
1ω for any

of the finitely many connected component F of ∂1X. By Lemma (3.13.) we
can extend F to F̃ which is a compact smooth manifold with corners with
interior F , so F differs from F̃ only by a set of measure zero. Looking at the
proof of Lemma (3.13) one sees that one can extend all smooth forms on X
to smooth forms on F̃ — p∗ω provides such an extension where p : F̃ →M
is the mapping defined in Lemma (3.13.). So, the integral of any smooth
form on X over F is equal to the integral of this smooth form (extended to
F̃ ) over F̃ and this last integral exists by compactness of F̃ .
Let (Uα, uα)α∈A be an oriented atlas for X and (gα)α∈A a smooth parti-
tion of unity subordinated to (Uα)α∈A. Hence we can decompose ω and dω
as ω =

∑
α∈A(fαω) and dω =

∑
α∈A d(fαω). For the integrals we obtain∫

X dω =
∑

α∈A

∫
Uα
d(fαw) and

∫
∂1X ω =

∑
α∈A

∫
Uα∩∂1X(fαω) and conse-

quently it suffices to show that∫
Uα

d(fαω) =
∫

Uα∩∂1X
(fαω)

for all α ∈ A. We will omit the indices from now on.
In the chart U where fω is supported we can write

fω =
n∑

i=1

ωkdx
1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn

where ̂ indicates that this one-form is omitted. And we have

d(fω) =
n∑

i=1

(−1)k−1 ∂ωj

∂xk
du1 ∧ . . . ∧ dun.
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Now we can calculate∫
U
d(fω) =

∫
u(U)

n∑
k=1

(−1)k−1∂ωk

∂xk
dx1 ∧ . . . ∧ dxn

=
n∑

k=1

(−1)k−1

∫
u(U)

∂ωk

∂xk
dx1 ∧ . . . ∧ dxn

=
n∑

k=1

(−1)k−1

∫
u(U)∩{xk=0}

(
−
∫ ∞

0
(−1)k−1∂ωk

∂xk
dxk

)
dx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn

=
n∑

k=1

∫
u(U)∩{xk=0}

ωk(x1, . . . , xk = 0, . . . , xn)dx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn

=
n∑

k=1

∫
u(U)∩∂1Qn

ωk(x1, . . . , xk = 0, . . . , xn)dx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn

where the last equality follows from the fact that the set {x1 > 0, . . . , xk−1 >
0, xk = 0, xk+1 > 0, . . . , xn > 0} is a subset that differs from Rn ∩ {xk = 0}
only be a set of measure 0.
On the other hand one has∫

U∩∂1X
fω =

∫
u(U)∩∂1Qn

n∑
k=1

ωkdx
1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn

=
n∑

k=1

∫
u(U)∩∂1Qn

ωkdx
1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn.

2

3.21. Proposition
The map Int∗ : Ω∗(M)→ C∗(f ; R) is a chain map, i.e. the diagram

. . . // Ωk(M) d //

Intk

��

Ωk+1(M) //

Intk+1

��

. . .

. . . // Ck(f ; R) ∂k
// Ck+1(f ; R) // . . .

is commutative.

Proof:
Let ω ∈ Ωk(M), x ∈ Crk+1(f). By linearity it suffices to prove that

(∂k ◦ Intk(ω))(x) = (Intk+1(dω))(x).

On the one hand

(∂k ◦ Intk(ω))(x) =
∑

ind(y)=k

Ik+1(x, y) Intk(ω)(y)
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and on the other hand

(Intk+1(dω))(x) =
∫

Ŵ−(x)
(̂ix)∗(dω) =

∫
Ŵ−(x)

d((̂ix)∗ω) =
∫

∂1Ŵ−(x)
(̂ix)∗ω.

From Theorem (2.33.) we know that ∂1Ŵ
−(x) is

⊔
y∈Cr(f) T (x, y)×W−(y)

and that their orientations fit, see Proposition (2.34.). The map T (x, y) ×
W−(y) ↪→ ∂1Ŵ

−(x) ↪→ Ŵ−(x) îx→ M is equal to T (x, y) × W−(y)
pr2→

W−(y)
îy→M . Ŵ−(y) differs from W−(y) only be a set of measure zero, so

we obtain

(Intk+1(dω))(x) =
∑

ind(y)≤k

∫
T (x,y)×Ŵ−(y)

(pr2)∗(̂iy)∗ω

=
∑

ind(y)=k

∫
T (x,y)×Ŵ−(y)

(pr2)∗(̂iy)∗ω

because for y with ind(y) < k, (̂iy)∗ω would be the pull-back of a k-form to
a manifold of dimension less than k and hence would vanish. Furthermore
we get∑
ind(y)=k

∫
T (x,y)×Ŵ−(y)

(pr2)∗(̂iy)∗ω =
∑

ind(y)=k

∑
γ∈T (x,y)

∫
Ŵ−(y)

n(γ)(̂iy)∗ω

=
∑

ind(y)=k

 ∑
γ∈T (x,y)

n(γ)

∫
Ŵ−(y)

(̂iy)∗ω

=
∑

ind(y)=k

Ik+1(x, y)
∫

Ŵ−(y)
(̂iy)∗ω

=
∑

ind(y)=k

Ik+1(x, y) Intk(ω)(y).

2

Remark: a filtration of M
We intend to apply Theorem (3.9.) to Intk : Ωk(M)→ Ck(f ; R).
Let c1 < c2 < . . . < cr be the different critical values of f . Choose ε > 0
small enough such that ci + ε < ci+1 − ε for all i = 1, . . . , n − 1 and define
c−i := ci−ε and c+i := ci +ε. So we obtain a finite sequence of regular values
of f with

c−1 < c+1 < c−2 < . . . < c−n < c+n

and set

M−
i := {y ∈M : f(y) ≤ c−i },

M+
i := {y ∈M : f(y) ≤ c+i }.
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We obtain a finite filtration of M :

∅ = M−
1 ⊂M

+
1 ⊂M

−
2 ⊂ . . . ⊂M

−
n ⊂M+

n = M (3.10)

This induces a filtration on Ω∗(M) by

F−
s Ω∗(M) := {ω ∈ Ω∗(M) : ω vanishes on M−

s },
F+

s Ω∗(M) := {ω ∈ Ω∗(M) : ω vanishes on M+
s }

We remark that another definition of F−
s Ω∗(M) respectively of F ∗

s Ω∗(M)
would be to require that the pull-back of the forms to M−

s respectively M+
s

should vanish. Obviously

{0} = F+
n Ω∗(M) ⊂ F−

n Ω∗(M) ⊂ F+
n−1Ω

∗(M) ⊂ . . . (3.11)
. . . ⊂ F+

1 Ω∗(M) ⊂ F−
1 Ω∗(M) = Ω∗(M). (3.12)

Furthermore, the subspaces F±
s Ω∗(M) of Ω∗(M) form a sub-complex with

respect to d. Indeed, if ω ∈ Ω∗(M) vanishes on M±
i , so does dω as can be

seen easily in charts.
Additionally, the filtration (3.10) induces a filtration on C∗(f ; R) by setting

F−
s C

∗(f ; R) := {ϕ ∈ C∗(f ; R) : ϕ(x) = 0 for all x with f(x) ≤ c−s } (3.13)
F+

s C
∗(f ; R) := {ϕ ∈ C∗(f ; R) : ϕ(x) = 0 for all x with f(x) ≤ c−s } (3.14)

and one observes that

{0} = F+
n C

∗(f ; R) ⊂ F−
n C

∗(f ; R) ⊂ F+
n−1C

∗(f ; R) ⊂ . . .
. . . ⊂ F+

1 C
∗(f ; R) ⊂ F−

1 C
∗(f ; R) = C∗(f ; R).

We verify that F±
s C

∗(f ; R) is a sub-complex of C∗(f ; R): Let ϕ ∈ F+
s C

k(f ; R)
for instance, i.e. ϕ(y) = 0 for all y with f(y) ≤ c+s . By definition (∂kϕ)(z) =∑

ind(y)=k Ik+1(z, y)ϕ(y) for z ∈ Crk+1(f). If z is a critical point with
value f(z) ≤ c+s and assume T (z, y) 6= ∅. Then y is a critical point with
f(y) < f(z) ≤ c+s simply because f decreases along flow lines. By assump-
tion ϕ(y) = 0 and consequently (∂kϕ)(z) = 0.

Next we want to show that Int∗ preserves the filtrations on Ω∗(M) and
C∗(f ; R), i.e.

Intk : F±
s Ω∗(M)→ F±

s C
∗(f ; R), ω 7→ Int∗(ω)

for any s = 1, . . . , r. To see this, let x be in Crk(f) with f(x) ≤ c±s .
But then ω ∈ F±

s Ωk(M) vanishes on M±
s and hence

∫
Ŵ−(x)(̂ix)∗(ω) van-

ishes too. Hence (Intk ω)(x) = 0 for every x ∈ M±
s and consequently

Intk ω ∈ F±
s C

∗(f ; R).



CHAPTER 3. MORSE HOMOLOGY 96

Remark: the spectral sequences
The filtrations on Ω∗(M) respectively C∗(f ; R) induce spectral sequences
E and E′ and Intk induces maps between the terms of these spectral se-
quences. First consider the spectral sequence induced by the filtration on
Ω∗(M): We know that the E1 term is given by H∗(M+

s ,M
−
s ; R) alternating

with terms of the form H∗(M−
s+1,M

+
s ; R). The terms H∗(M−

s+1,M
+
s ; R) can

be calculated with the help of the following Theorem:

3.22. Theorem
Let f be a smooth real valued function on a manifold M that permits a Rie-
mannian metric g such that gradg(f) is tangential to the boundary. Let a ≤ b
and suppose that the set f−1([a, b]) consists of all p ∈M with a ≤ f(p) ≤ b,
is compact, and contains no critical points of f .
Then Ma := {x ∈ M : f(x) ≤ a} is diffeomorphic to M b := {x ∈ M :
f(x) ≤ b}. Furthermore, Ma is a deformation retract of M b, so that the
inclusion map Ma ↪→M b is a homotopy equivalence.

Proof:
One deforms the gradient vector field so that it vanishes on Ma. This vector
field generates a family of diffeomorphisms which provide the diffeomorphism
between Ma and M b and the deformation retract. A detailed proof can be
found in [10].

2

Consequently,

H∗(M−
s+1,M

+
s ; R) = 0 (3.15)

for all s = 1, . . . , r and we observe that the differential of the E1-term must
be trivial. Concerning the terms of the form H∗(M+

s ,M
−
s ; R) we will apply

3.23. Theorem
Let f : M → R be a smooth function. Assume that there exists a Riemannian
metric g such that − gradg(f) is tangential to ∂M — in particular this holds
if f is the function of a Morse–Smale pair (f, g). Let p be a non-degenerate
critical point of index k. Setting f(p) = c, suppose that f−1([c− ε, c+ ε]) is
compact and contains no critical point of f other than p for some ε > 0.
Then, for all sufficiently small ε, the set M c+ε hat the homotopy type of
M c−ε with a k-cell attached.

This Theorem is stated in [10], where also the following is remarked: More
generally, suppose that there are m non-degenerate critical points p1, . . . , pm
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of indices k1, . . . , km. Then similar to the Theorem one can show that M c+ε

has the homotopy type of M c−ε with ek1 ∪ ek2 ∪ . . . ∪ ekm attached.
In the proof of Theorem (2.23.) as presented in [10] the following is shown:
in a Morse chart for every critical point x with f(x) = c a deformation
retraction from M c+ε to M c−ε ∪ Rind(x) can be constructed. If we assume
that this Morse chart is a convenient chart for the Morse–Smale pair that
we consider, it follows that M c+ε is a deformation retract of M c−ε∪W−(x).
Consequently ∨

x∈Cr(s)

W−(x)/W−(x)cs →M+
s /M

−
s ,

where W−(x)cs := W−(x) ∩ f−1(] − ∞, c−s ]), is a homotopy equivalence.
Hence we obtain that

Hk(M+
s ,M

−
s ; R)→ Hk(

⊔
x∈Cr(s)

(W−(x),W−(x)cs); R)

is an isomorphism.

Furthermore we will make use of the Universal Coefficient Theorem, see
[6] for instance:

3.24. Theorem Universal Coefficient Theorem
For any space X and Abelian group G
a) the homology of X with coefficients in G has an unnatural splitting

Hk(X;G) ∼= Hk(X; Z)⊗G⊕ Tor(Hk−1(X);G)

b) the cohomology of C with coefficients in G also has a spitting

Hk(X;G) ∼= Hom(Hk(X), G)⊕ Ext(Hk−1(X), G).

Now we can compute H∗(M+
s ,M

−
s ; R) with the help of Theorem (3.23.)

and Theorem (3.24.):

Hk(M+
s ,M

−
s ; R) = Hom(Hk(M+

s ,M
−
s ; Z),R)

= Hom(Hk(M−
s ∪

⋃
x∈Cr(f):f(x)=cs

eind(x),M−
s ; Z),R)

= Hom(Hk(
∨

x∈Cr(f):f(x)=cs

Sind(x), ∗; Z),R)

= Maps(Crk(f) ∩ f−1(cs),R)
=: Maps(Crk(cs),R).
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Now we can calculate the spectral sequence E′ that is induced by the filtra-
tion on C∗(f ; R). The E1-term contains entries of the form Ck(f ;M−

s+1,M
+
s )

and Ck(f ;M+
s ,M

−
s ) where Ck(f ;M−

s+1,M
+
s ) denotes maps from critical

points x with value c+s ≤ f(x) ≤ c−s+1 to R. But by construction of the
filtration of M there are no such critical points, hence

Ck(f ;M−
s+1,M

+
s ) = 0 (3.16)

and consequently the differential of the E′
1-term must be trivial. Ck(f ;M+

s ,M
−
s )

consists of maps from critical points x with c−s ≤ f(x) ≤ c+s , but cs is the
only critical value in this range. Consequently we obtain

Ck(f ;M+
s ,M

−
s ) = Maps(Crk(f) ∩ f−1(cs),R). (3.17)

Now we must prove that the map Int1 : E1 → E′
1 induced by Int∗ : Ω∗(M)→

C∗(f ; R) is an isomorphism. For the terms of the form (3.15) respectively
(3.16) this is trivial. The interesting part is

Int1 : Hk(M+
s ,M

−
s ; R)→ Maps(Crk(cs),R).

If we can show that this map is an isomorphism, we can apply Theorem
(3.9.) and would obtain Theorem (3.18.).

We compose the isomorphism

Hk(M+
s ,M

−
s ; R)→ Hk(

⊔
x∈Cr(s)

(W−(x),W−(x)cs); R)

with the isomorphism

Hk(
⊔

x∈Cr(s)

(W−(x),W−(x)cs); R)→ Maps(Crk(cs),R)

which is given by [ω] 7→ (x 7→ ([ω], [W−(x),W−(x)cs ])) where ([ω], [W−(x),W−(x)cs ])
is the pairing of the cohomology class represented by ω with the homology
class represented by the relative fundamental class [W−(x),W−(x)cs ] and
obtain an isomorphism

Hk(M+
s ,M

−
s ; R)→ Maps(Crk(cs),R).

Now we compare

Int1 : Hk(M+
s ,M

−
s ; R)→ Maps(Crk(cs),R)

with this isomorphism and see that the two maps coincide. This follows from
the fact that the result of the paring between a cohomology class which is
represented by a differential form ω and a homology class which is repre-
sented by the fundamental form of a submanifold is given by the integral of
ω over the submanifold. Consequently Int1 is an isomorphism too.
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Appendix A

CV

• Geboren in Wien, am 8. September 1982.

• 1989 - 1993 Besuch der Volksschule Bad Großpertholz.

• 1993 - 2001 Besuch des Gymnasiums / Realgymnasiums Gmünd.

• 2001 - 2002 Zivildienst im ”Sozialmedizinischem Zentrum Ost” in Wien.

• Im Sommersemester 2002 Beginn des Mathematik Studiums.
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