
3.6 Partitions of unity and Whitney embedding

Partitions of unity allow us to go from local to global, i.e. to build a
global object on a manifold by building it on each open set of a cover,
smoothly tapering each local piece so it is compactly supported in each
open set, and then taking a sum over open sets. This is a very flexible
operation which uses the properties of smooth functions—it will not work
for complex manifolds, for example. Our main example of such a passage
from local to global is to build a global map from a manifold to RN which
is an embedding, a result first proved by Whitney.
Definition 3.44. A collection of subsets {U–} of the topological space
M is called locally finite when each point x œ M has a neighbourhood V
intersecting only finitely many of the U–.
Definition 3.45. A covering {V–} is a refinement of the covering {U—}
when each V– is contained in some U— .
Lemma 3.46. Any open covering {A–} of a topological manifold has a
countable, locally finite refinement {(Ui, Ïi)} by coordinate charts such
that Ïi(Ui) = B(0, 3) and {Vi = Ï≠1

i (B(0, 1))} is still a covering of M .
We will call such a cover a regular covering. In particular, any topolog-
ical manifold is paracompact (i.e. every open cover has a locally finite
refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around
any point x œ M , we can translate and rescale to find a covering of M
by a refinement of the type desired, and choose a finite subcover, which
is obviously locally finite.

For a general manifold, we note that by second countability of M ,
there is a countable basis of coordinate neighbourhoods and each of these
charts is a countable union of open sets Pi with Pi compact. Hence M
has a countable basis {Pi} such that Pi is compact.

Using these, we may define an increasing sequence of compact sets
which exhausts M : let K

1

= P
1

, and

Ki+1

= P
1

fi · · · fi Pr,

where r > 1 is the first integer with Ki µ P
1

fi · · · fi Pr.
Now note that M is the union of ring-shaped sets Ki\K¶

i≠1

, each
of which is compact. If p œ A–, then p œ Ki+1

\K¶
i for some i. Now

choose a coordinate neighbourhood (Up,–, Ïp,–) with Up,– µ Ki+2

\K¶
i≠1

and Ïp,–(Up,–) = B(0, 3) and define Vp,– = Ï≠1(B(0, 1)).
Letting p, – vary, these neighbourhoods cover the compact set Ki+1

\K¶
i

without leaving the band Ki+2

\K¶
i≠1

. Choose a finite subcover Vi,k for
each i. Then (Ui,k, Ïi,k) is the desired locally finite refinement.

Definition 3.47. A smooth partition of unity is a collection of smooth
non-negative functions {f– : M ≠æ R} such that

i) {suppf– = f≠1

– (R\{0})} is locally finite,
ii)

q
–

f–(x) = 1 ’x œ M , hence the name.
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A partition of unity is subordinate to an open cover {Ui} when ’–, suppf– µ
Ui for some i.
Theorem 3.48. Given a regular covering {(Ui, Ïi)} of a manifold, there
exists a partition of unity {fi} subordinate to it with fi > 0 on Vi and
suppfi µ Ï≠1

i (B(0, 2)).

Proof. A bump function is a smooth non-negative real-valued function g̃
on Rn with g̃(x) = 1 for ||x|| Æ 1 and g̃(x) = 0 for ||x|| Ø 2. For instance,
take

g̃(x) = h(2 ≠ ||x||)
h(2 ≠ ||x||) + h(||x|| + 1) ,

for h(t) given by e≠1/t for t > 0 and 0 for t < 0.
Having this bump function, we can produce non-negative bump func-

tions on the manifold gi = g̃¶Ïi which have support suppgi µ Ï≠1

i (B(0, 2))
and take the value +1 on Vi. Finally we define our partition of unity via

fi = giq
j

gj
, i = 1, 2, . . . .

We now investigate the embedding of arbitrary smooth manifolds as
regular submanifolds of Rk.
Theorem 3.49 (Compact Whitney embedding in RN ). Any compact
manifold may be embedded in RN for su�ciently large N .

Proof. Let {(Ui ∏ Vi, Ïi)}k
i=1

be a finite regular covering, which exists by
compactness. Choose a partition of unity {f

1

, . . . , fk} as in Theorem 3.48
and define the following “zoom-in” maps M ≠æ Rdim M :

Ï̃i(x) =
;

fi(x)Ïi(x) x œ Ui,

0 x /œ Ui.

Then define a map � : M ≠æ Rk(dim M+1) which zooms simultaneously
into all neighbourhoods, with extra information to guarantee injectivity:

�(x) = (Ï̃
1

(x), . . . , Ï̃k(x), f
1

(x), . . . , fk(x)).

Note that �(x) = �(xÕ) implies that for some i, fi(x) = fi(xÕ) ”= 0 and
hence x, xÕ œ Ui. This then implies that Ïi(x) = Ïi(xÕ), implying x = xÕ.
Hence � is injective.

We now check that D� is injective, which will show that it is an
injective immersion. At any point x the di�erential sends v œ TxM to the
following vector in Rdim M ◊ · · · ◊ Rdim M ◊ R ◊ · · · ◊ R.

(Df
1

(v)Ï
1

(x)+f
1

(x)DÏ
1

(v), . . . , Dfk(v)Ïk(x)+fk(x)DÏ
1

(v), Df
1

(v), . . . , Dfk(v)

But this vector cannot be zero. Hence we see that � is an immersion.
But an injective immersion from a compact space must be an embed-

ding: view � as a bijection onto its image. We must show that �≠1 is
continuous, i.e. that � takes closed sets to closed sets. If K µ M is closed,
it is also compact and hence �(K) must be compact, hence closed (since
the target is Hausdor�).
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Theorem 3.50 (Compact Whitney embedding in R2n+1). Any compact
n-manifold may be embedded in R2n+1.

Proof. Begin with an embedding � : M ≠æ RN and assume N > 2n + 1.
We then show that by projecting onto a hyperplane it is possible to obtain
an embedding to RN≠1.

A vector v œ SN≠1 µ RN defines a hyperplane (the orthogonal com-
plement) and let Pv : RN ≠æ RN≠1 be the orthogonal projection to this
hyperplane. We show that the set of v for which �v = Pv ¶ � fails to be
an embedding is a set of measure zero, hence that it is possible to choose
v for which �v is an embedding.

�v fails to be an embedding exactly when �v is not injective or D�v

is not injective at some point. Let us consider the two failures separately:
If v is in the image of the map —

1

: (M ◊ M)\�M ≠æ SN≠1 given by

—
1

(p
1

, p
2

) = �(p
2

) ≠ �(p
1

)
||�(p

2

) ≠ �(p
1

)|| ,

then �v will fail to be injective. Note however that —
1

maps a 2n-
dimensional manifold to a N ≠ 1-manifold, and if N > 2n + 1 then baby
Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in
a chart (U, Ï). �v will fail to be an immersion in U precisely when v
coincides with a vector in the normalized image of D(� ¶ Ï≠1) where

� ¶ Ï≠1 : Ï(U) µ Rn ≠æ RN .

Hence we have a map (letting N(w) = ||w||)

D(� ¶ Ï≠1)
N ¶ D(� ¶ Ï≠1) : U ◊ Sn≠1 ≠æ SN≠1.

The image has measure zero as long as 2n ≠ 1 < N ≠ 1, which is certainly
true since 2n < N ≠ 1. Taking union over countably many charts, we see
that immersion fails on a set of measure zero in SN≠1.

Hence we see that �v fails to be an embedding for a set of v œ SN≠1

of measure zero. Hence we may reduce N all the way to N = 2n + 1.

Corollary 3.51. We see from the proof that if we do not require injectivity
but only that the manifold be immersed in RN , then we can take N = 2n
instead of 2n + 1.

We now use Whitney embedding to prove the existence of tubular
neighbourhoods for submanifolds of RN , a key point in proving genericity
of transversality. Tubular neighbourhoods also exist for submanifolds of
any manifold, but we leave this corollary for the reader.

If Y µ RN is an embedded submanifold, the normal space at y œ Y
is defined by NyY = {v œ RN : v‹TyY }. The collection of all normal
spaces of all points in Y is called the normal bundle:

NY = {(y, v) œ Y ◊ RN : v œ NyY }.

Proposition 3.52. NY µ RN ◊ RN is an embedded submanifold of di-
mension N .
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Proof. Given y œ Y , choose coordinates (u1, . . . uN ) in a neighbourhood
U µ RN of y so that Y fl U = {un+1 = · · · = uN = 0}. Define � :
U ◊ RN ≠æ RN≠n ◊ Rn via

�(x, v) = (un+1(x), . . . , uN (x), Èv, ˆ
ˆu1 |xÍ, . . . , Èv, ˆ

ˆun |xÍ),

so that �≠1(0) is precisely NY fl (U ◊ RN ). We then show that 0 is a
regular value: observe that, writing v in terms of its components vj ˆ

ˆxj

in the standard basis for RN ,

Èv, ˆ
ˆui |xÍ = Èvj ˆ

ˆxj , ˆxk

ˆui (u(x)) ˆ
ˆxk |xÍ =

Nÿ

j=1

vj ˆxj

ˆui (u(x))

Therefore the Jacobian of � is the ((N ≠ n) + n) ◊ (N + N) matrix

D�(x) =
3

ˆuj

ˆxi (x) 0
ú ˆxj

ˆui (u(x))

4

The N rows of this matrix are linearly independent, proving � is a sub-
mersion.

The normal bundle NY contains Y ≥= Y ◊{0} as a regular submanifold,
and is equipped with a smooth map fi : NY ≠æ Y sending (y, v) ‘æ y.
The map fi is a surjective submersion and is the bundle projection. The
vector spaces fi≠1(y) for y œ Y are called the fibers of the bundle and NY
is an example of a vector bundle.

We may take advantage of the embedding in RN to define a smooth
map E : NY ≠æ RN via

E(x, v) = x + v.

Definition 3.53. A tubular neighbourhood of the embedded submanifold
Y µ RN is a neighbourhood U of Y in RN that is the di�eomorphic image
under E of an open subset V µ NY of the form

V = {(y, v) œ NY : |v| < ”(y)},

for some positive continuous function ” : M ≠æ R.
If U µ RN is such a tubular neighbourhood of Y , then there does exist

a positive continuous function ‘ : Y ≠æ R such that U‘ = {x œ RN :
÷y œ Y with |x ≠ y| < ‘(y)} is contained in U . This is simply

‘(y) = sup{r : B(y, r) µ U},

which is continuous since ’‘ > 0, ÷x œ U for which ‘(y) Æ |x ≠ y| + ‘. For
any other yÕ œ Y , this is Æ |y ≠ yÕ| + |x ≠ yÕ| + ‘. Since |x ≠ yÕ| Æ ‘(yÕ),
we have |‘(y) ≠ ‘(yÕ)| Æ |y ≠ yÕ| + ‘.
Theorem 3.54 (Tubular neighbourhood theorem). Every regular sub-
manifold of RN has a tubular neighbourhood.
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Proof. First we show that E is a local di�eomorphism near y œ Y µ NY .
if ÿ is the embedding of Y in RN , and ÿÕ : Y ≠æ NY is the embedding in
the normal bundle, then E ¶ÿÕ = ÿ, hence we have DE ¶DÿÕ = Dÿ, showing
that the image of DE(y) contains TyY . Now if ÿ is the embedding of NyY
in RN , and ÿÕ : NyY ≠æ NY is the embedding in the normal bundle,
then E ¶ ÿÕ = ÿ. Hence we see that the image of DE(y) contains NyY , and
hence the image is all of TyRN . Hence E is a di�eomorphism on some
neighbourhood

V”(y) = {(yÕ, vÕ) œ NY : |yÕ ≠ y| < ”, |vÕ| < ”}, ” > 0.

Now for y œ Y let r(y) = sup{” : E|V”(y)

is a di�eomorphism} if this is
Æ 1 and let r(y) = 1 otherwise. The function r(y) is continuous, since if
|y ≠ yÕ| < r(y), then V”(yÕ) µ Vr(y)

(y) for ” = r(y) ≠ |y ≠ yÕ|. This means
that r(yÕ) Ø ”, i.e. r(y)≠r(yÕ) Æ |y≠yÕ|. Switching y and yÕ, this remains
true, hence |r(y) ≠ r(yÕ)| Æ |y ≠ yÕ|, yielding continuity.

Finally, let V = {(y, v) œ NY : |v| < 1

2

r(y)}. We show that E
is injective on V . Suppose (y, v), (yÕ, vÕ) œ V are such that E(y, v) =
E(yÕ, vÕ), and suppose wlog r(yÕ) Æ r(y). Then since y + v = yÕ + vÕ, we
have

|y ≠ yÕ| = |v ≠ vÕ| Æ |v| + |vÕ| Æ 1

2

r(y) + 1

2

r(yÕ) Æ r(y).
Hence y, yÕ are in Vr(y)

(y), on which E is a di�eomorphism. The required
tubular neighbourhood is then U = E(V ).
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