3.6 Partitions of unity and Whitney embedding

Partitions of unity allow us to go from local to global, i.e. to build a global object on a manifold by building it on each open set of a cover, smoothly tapering each local piece so it is compactly supported in each open set, and then taking a sum over open sets. This is a very flexible operation which uses the properties of smooth functions—it will not work for complex manifolds, for example. Our main example of such a passage from local to global is to build a global map from a manifold to \mathbb{R}^N which is an embedding, a result first proved by Whitney.

Definition 3.44. A collection of subsets $\{U_{\alpha}\}$ of the topological space M is called *locally finite* when each point $x \in M$ has a neighbourhood V intersecting only finitely many of the U_{α} .

Definition 3.45. A covering $\{V_{\alpha}\}$ is a *refinement* of the covering $\{U_{\beta}\}$ when each V_{α} is contained in some U_{β} .

Lemma 3.46. Any open covering $\{A_{\alpha}\}$ of a topological manifold has a countable, locally finite refinement $\{(U_i, \varphi_i)\}$ by coordinate charts such that $\varphi_i(U_i) = B(0,3)$ and $\{V_i = \varphi_i^{-1}(B(0,1))\}$ is still a covering of M. We will call such a cover a regular covering. In particular, any topological manifold is paracompact (i.e. every open cover has a locally finite refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around any point $x \in M$, we can translate and rescale to find a covering of M by a refinement of the type desired, and choose a finite subcover, which is obviously locally finite.

For a general manifold, we note that by second countability of M, there is a countable basis of coordinate neighbourhoods and each of these charts is a countable union of open sets P_i with $\overline{P_i}$ compact. Hence Mhas a countable basis $\{P_i\}$ such that $\overline{P_i}$ is compact.

Using these, we may define an increasing sequence of compact sets which exhausts M: let $K_1 = \overline{P}_1$, and

$$K_{i+1} = \overline{P_1 \cup \cdots \cup P_r},$$

where r > 1 is the first integer with $K_i \subset P_1 \cup \cdots \cup P_r$.

Now note that M is the union of ring-shaped sets $K_i \setminus K_{i-1}^\circ$, each of which is compact. If $p \in A_\alpha$, then $p \in K_{i+1} \setminus K_i^\circ$ for some i. Now choose a coordinate neighbourhood $(U_{p,\alpha}, \varphi_{p,\alpha})$ with $U_{p,\alpha} \subset K_{i+2} \setminus K_{i-1}^\circ$ and $\varphi_{p,\alpha}(U_{p,\alpha}) = B(0,3)$ and define $V_{p,\alpha} = \varphi^{-1}(B(0,1))$.

Letting p, α vary, these neighbourhoods cover the compact set $K_{i+1} \setminus K_i^\circ$ without leaving the band $K_{i+2} \setminus K_{i-1}^\circ$. Choose a finite subcover $V_{i,k}$ for each *i*. Then $(U_{i,k}, \varphi_{i,k})$ is the desired locally finite refinement. \Box

Definition 3.47. A smooth partition of unity is a collection of smooth non-negative functions $\{f_{\alpha}: M \longrightarrow \mathbb{R}\}$ such that

- i) {supp $f_{\alpha} = \overline{f_{\alpha}^{-1}(\mathbb{R} \setminus \{0\})}$ is locally finite,
- ii) $\sum_{\alpha} f_{\alpha}(x) = 1 \quad \forall x \in M$, hence the name.

A partition of unity is *subordinate* to an open cover $\{U_i\}$ when $\forall \alpha$, $\operatorname{supp} f_{\alpha} \subset U_i$ for some i.

Theorem 3.48. Given a regular covering $\{(U_i, \varphi_i)\}$ of a manifold, there exists a partition of unity $\{f_i\}$ subordinate to it with $f_i > 0$ on V_i and $supp f_i \subset \varphi_i^{-1}(\overline{B(0,2)})$.

Proof. A bump function is a smooth non-negative real-valued function \tilde{g} on \mathbb{R}^n with $\tilde{g}(x) = 1$ for $||x|| \leq 1$ and $\tilde{g}(x) = 0$ for $||x|| \geq 2$. For instance, take

$$\tilde{g}(x) = \frac{h(2 - ||x||)}{h(2 - ||x||) + h(||x|| + 1)}$$

for h(t) given by $e^{-1/t}$ for t > 0 and 0 for t < 0.

Having this bump function, we can produce non-negative bump functions on the manifold $g_i = \tilde{g} \circ \varphi_i$ which have support $\operatorname{supp} g_i \subset \varphi_i^{-1}(\overline{B(0,2)})$ and take the value +1 on $\overline{V_i}$. Finally we define our partition of unity via

$$f_i = \frac{g_i}{\sum_j g_j}, \quad i = 1, 2, \dots$$

We now investigate the embedding of arbitrary smooth manifolds as regular submanifolds of \mathbb{R}^k .

Theorem 3.49 (Compact Whitney embedding in \mathbb{R}^N). Any compact manifold may be embedded in \mathbb{R}^N for sufficiently large N.

Proof. Let $\{(U_i \supset V_i, \varphi_i)\}_{i=1}^k$ be a *finite* regular covering, which exists by compactness. Choose a partition of unity $\{f_1, \ldots, f_k\}$ as in Theorem 3.48 and define the following "zoom-in" maps $M \longrightarrow \mathbb{R}^{\dim M}$:

$$\tilde{\varphi}_i(x) = \begin{cases} f_i(x)\varphi_i(x) & x \in U_i, \\ 0 & x \notin U_i. \end{cases}$$

Then define a map $\Phi: M \longrightarrow \mathbb{R}^{k(\dim M+1)}$ which zooms simultaneously into all neighbourhoods, with extra information to guarantee injectivity:

$$\Phi(x) = (\tilde{\varphi}_1(x), \dots, \tilde{\varphi}_k(x), f_1(x), \dots, f_k(x)).$$

Note that $\Phi(x) = \Phi(x')$ implies that for some $i, f_i(x) = f_i(x') \neq 0$ and hence $x, x' \in U_i$. This then implies that $\varphi_i(x) = \varphi_i(x')$, implying x = x'. Hence Φ is injective.

We now check that $D\Phi$ is injective, which will show that it is an injective immersion. At any point x the differential sends $v \in T_x M$ to the following vector in $\mathbb{R}^{\dim M} \times \cdots \times \mathbb{R}^{\dim M} \times \mathbb{R} \times \cdots \times \mathbb{R}$.

$$(Df_1(v)\varphi_1(x)+f_1(x)D\varphi_1(v),\ldots,Df_k(v)\varphi_k(x)+f_k(x)D\varphi_1(v),Df_1(v),\ldots,Df_k(v))$$

But this vector cannot be zero. Hence we see that Φ is an immersion.

But an injective immersion from a compact space must be an embedding: view Φ as a bijection onto its image. We must show that Φ^{-1} is continuous, i.e. that Φ takes closed sets to closed sets. If $K \subset M$ is closed, it is also compact and hence $\Phi(K)$ must be compact, hence closed (since the target is Hausdorff). **Theorem 3.50** (Compact Whitney embedding in \mathbb{R}^{2n+1}). Any compact *n*-manifold may be embedded in \mathbb{R}^{2n+1} .

Proof. Begin with an embedding $\Phi: M \longrightarrow \mathbb{R}^N$ and assume N > 2n + 1. We then show that by projecting onto a hyperplane it is possible to obtain an embedding to \mathbb{R}^{N-1} .

A vector $v \in S^{N-1} \subset \mathbb{R}^N$ defines a hyperplane (the orthogonal complement) and let $P_v : \mathbb{R}^N \longrightarrow \mathbb{R}^{N-1}$ be the orthogonal projection to this hyperplane. We show that the set of v for which $\Phi_v = P_v \circ \Phi$ fails to be an embedding is a set of measure zero, hence that it is possible to choose v for which Φ_v is an embedding.

 Φ_v fails to be an embedding exactly when Φ_v is not injective or $D\Phi_v$ is not injective at some point. Let us consider the two failures separately: If v is in the image of the map $\beta_1 : (M \times M) \setminus \Delta_M \longrightarrow S^{N-1}$ given by

$$\beta_1(p_1, p_2) = \frac{\Phi(p_2) - \Phi(p_1)}{||\Phi(p_2) - \Phi(p_1)||},$$

then Φ_v will fail to be injective. Note however that β_1 maps a 2n-dimensional manifold to a N-1-manifold, and if N > 2n+1 then baby Sard's theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart (U, φ) . Φ_v will fail to be an immersion in U precisely when v coincides with a vector in the normalized image of $D(\Phi \circ \varphi^{-1})$ where

$$\Phi \circ \varphi^{-1} : \varphi(U) \subset \mathbb{R}^n \longrightarrow \mathbb{R}^N.$$

Hence we have a map (letting N(w) = ||w||)

$$\frac{D(\Phi \circ \varphi^{-1})}{N \circ D(\Phi \circ \varphi^{-1})} : U \times S^{n-1} \longrightarrow S^{N-1}.$$

The image has measure zero as long as 2n - 1 < N - 1, which is certainly true since 2n < N - 1. Taking union over countably many charts, we see that immersion fails on a set of measure zero in S^{N-1} .

Hence we see that Φ_v fails to be an embedding for a set of $v \in S^{N-1}$ of measure zero. Hence we may reduce N all the way to N = 2n + 1. \Box

Corollary 3.51. We see from the proof that if we do not require injectivity but only that the manifold be immersed in \mathbb{R}^N , then we can take N = 2n instead of 2n + 1.

We now use Whitney embedding to prove the existence of tubular neighbourhoods for submanifolds of \mathbb{R}^N , a key point in proving genericity of transversality. Tubular neighbourhoods also exist for submanifolds of any manifold, but we leave this corollary for the reader.

If $Y \subset \mathbb{R}^N$ is an embedded submanifold, the normal space at $y \in Y$ is defined by $N_y Y = \{v \in \mathbb{R}^N : v \perp T_y Y\}$. The collection of all normal spaces of all points in Y is called the normal bundle:

$$NY = \{(y, v) \in Y \times \mathbb{R}^N : v \in N_yY\}.$$

Proposition 3.52. $NY \subset \mathbb{R}^N \times \mathbb{R}^N$ is an embedded submanifold of dimension N.

Proof. Given $y \in Y$, choose coordinates $(u^1, \ldots u^N)$ in a neighbourhood $U \subset \mathbb{R}^N$ of y so that $Y \cap U = \{u^{n+1} = \cdots = u^N = 0\}$. Define $\Phi : U \times \mathbb{R}^N \longrightarrow \mathbb{R}^{N-n} \times \mathbb{R}^n$ via

$$\Phi(x,v) = (u^{n+1}(x), \dots, u^N(x), \langle v, \frac{\partial}{\partial u^1} | _x \rangle, \dots, \langle v, \frac{\partial}{\partial u^n} | _x \rangle),$$

so that $\Phi^{-1}(0)$ is precisely $NY \cap (U \times \mathbb{R}^N)$. We then show that 0 is a regular value: observe that, writing v in terms of its components $v^j \frac{\partial}{\partial x^j}$ in the standard basis for \mathbb{R}^N ,

$$\langle v, \frac{\partial}{\partial u^i} |_x \rangle = \langle v^j \frac{\partial}{\partial x^j}, \frac{\partial x^k}{\partial u^i} (u(x)) \frac{\partial}{\partial x^k} |_x \rangle = \sum_{j=1}^N v^j \frac{\partial x^j}{\partial u^i} (u(x))$$

Therefore the Jacobian of Φ is the $((N-n)+n) \times (N+N)$ matrix

$$D\Phi(x) = \begin{pmatrix} \frac{\partial u^j}{\partial x^i}(x) & 0\\ * & \frac{\partial x^j}{\partial u^i}(u(x)) \end{pmatrix}$$

The N rows of this matrix are linearly independent, proving Φ is a submersion. $\hfill \Box$

The normal bundle NY contains $Y \cong Y \times \{0\}$ as a regular submanifold, and is equipped with a smooth map $\pi : NY \longrightarrow Y$ sending $(y, v) \mapsto y$. The map π is a surjective submersion and is the bundle projection. The vector spaces $\pi^{-1}(y)$ for $y \in Y$ are called the fibers of the bundle and NYis an example of a vector bundle.

We may take advantage of the embedding in \mathbb{R}^N to define a smooth map $E:NY\longrightarrow\mathbb{R}^N$ via

$$E(x,v) = x + v.$$

Definition 3.53. A tubular neighbourhood of the embedded submanifold $Y \subset \mathbb{R}^N$ is a neighbourhood U of Y in \mathbb{R}^N that is the diffeomorphic image under E of an open subset $V \subset NY$ of the form

$$V = \{ (y, v) \in NY : |v| < \delta(y) \},\$$

for some positive continuous function $\delta: M \longrightarrow \mathbb{R}$.

If $U \subset \mathbb{R}^N$ is such a tubular neighbourhood of Y, then there does exist a positive continuous function $\epsilon : Y \longrightarrow \mathbb{R}$ such that $U_{\epsilon} = \{x \in \mathbb{R}^N : \exists y \in Y \text{ with } |x - y| < \epsilon(y)\}$ is contained in U. This is simply

$$\epsilon(y) = \sup\{r : B(y,r) \subset U\}$$

which is continuous since $\forall \epsilon > 0, \exists x \in U$ for which $\epsilon(y) \leq |x - y| + \epsilon$. For any other $y' \in Y$, this is $\leq |y - y'| + |x - y'| + \epsilon$. Since $|x - y'| \leq \epsilon(y')$, we have $|\epsilon(y) - \epsilon(y')| \leq |y - y'| + \epsilon$.

Theorem 3.54 (Tubular neighbourhood theorem). Every regular submanifold of \mathbb{R}^N has a tubular neighbourhood. *Proof.* First we show that E is a local diffeomorphism near $y \in Y \subset NY$. if ι is the embedding of Y in \mathbb{R}^N , and $\iota' : Y \longrightarrow NY$ is the embedding in the normal bundle, then $E \circ \iota' = \iota$, hence we have $DE \circ D\iota' = D\iota$, showing that the image of DE(y) contains T_yY . Now if ι is the embedding of N_yY in \mathbb{R}^N , and $\iota' : N_yY \longrightarrow NY$ is the embedding in the normal bundle, then $E \circ \iota' = \iota$. Hence we see that the image of DE(y) contains N_yY , and hence the image is all of $T_y\mathbb{R}^N$. Hence E is a diffeomorphism on some neighbourhood

$$V_{\delta}(y) = \{ (y', v') \in NY : |y' - y| < \delta, |v'| < \delta \}, \quad \delta > 0.$$

Now for $y \in Y$ let $r(y) = \sup\{\delta : E|_{V_{\delta}(y)}$ is a diffeomorphism} if this is ≤ 1 and let r(y) = 1 otherwise. The function r(y) is continuous, since if |y - y'| < r(y), then $V_{\delta}(y') \subset V_{r(y)}(y)$ for $\delta = r(y) - |y - y'|$. This means that $r(y') \geq \delta$, i.e. $r(y) - r(y') \leq |y - y'|$. Switching y and y', this remains true, hence $|r(y) - r(y')| \leq |y - y'|$, yielding continuity.

Finally, let $V = \{(y,v) \in NY : |v| < \frac{1}{2}r(y)\}$. We show that E is injective on V. Suppose $(y,v), (y',v') \in V$ are such that E(y,v) = E(y',v'), and suppose wlog $r(y') \leq r(y)$. Then since y + v = y' + v', we have

$$|y - y'| = |v - v'| \le |v| + |v'| \le \frac{1}{2}r(y) + \frac{1}{2}r(y') \le r(y).$$

Hence y, y' are in $V_{r(y)}(y)$, on which E is a diffeomorphism. The required tubular neighbourhood is then U = E(V).