
1.2 Smooth manifolds

Given coordinate charts (Ui, Ïi) and (Uj , Ïj) on a topological manifold,
we can compare them along the intersection Uij = Ui fl Uj , by forming
the “gluing map”

Ïj ¶ Ï≠1

i |Ïi(Uij )

: Ïi(Uij) ≠æ Ïj(Uij). (12)

This is a homeomorphism, since it is a composition of homeomorphisms.
In this sense, topological manifolds are glued together by homeomor-
phisms.

This means that a given function on the manifold may happen to be
di�erentiable in one chart but not in another, if the gluing map between
the charts is not smooth – there is no way to make sense of calculus on
topological manifolds. This is why we introduce smooth manifolds, where
the gluing maps are smooth.
Remark 1.17 (Aside on smooth maps of vector spaces). Let U µ V be
an open set in a finite-dimensional vector space, and let f : U ≠æ W be a
function with values in another vector space W . We say f is di�erentiable
at p œ U if there is a linear map Df(p) : V ≠æ W which approximates f
near p, meaning that

lim
xæ0

x”=0

||f(p + x) ≠ f(p) ≠ Df(p)(x)||
||x|| = 0. (13)

Notice that Df(p) is uniquely characterized by the above property.
We have implicitly chosen inner products, and hence norms, on V and

W in the above definition, though the di�erentiability of f is independent
of this choice, since all norms are equivalent in finite dimensions. This is
no longer true for infinite-dimensional vector spaces, where the norm or
topology must be clearly specified and Df(p) is required to be a continuous
linear map. Most of what we do in this course can be developed in the
setting of Banach spaces, i.e. complete normed vector spaces.

A basis for V has a corresponding dual basis (x
1

, . . . , xn) of linear
functions on V , and we call these “coordinates”. Similarly, let (y

1

, . . . , ym)
be coordinates on W . Then the vector-valued function f has m scalar
components fj = yj ¶ f , and then the linear map Df(p) may be written,
relative to the chosen bases for V, W , as an m ◊ n matrix, called the
Jacobian matrix of f at p.

Df(p) =

Q

ca

ˆf1
ˆx1

· · · ˆf1
ˆxn

...
...

ˆfm
ˆx1

· · · ˆfm
ˆxn

R

db (14)

We say that f is di�erentiable in U when it is di�erentiable at all p œ U ,
and we say it is continuously di�erentiable when

Df : U ≠æ Hom(V, W ) (15)

is continuous. The vector space of continuously di�erentiable functions
on U with values in W is called C1(U, W ).
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Notice that the first derivative Df is itself a map from U to a vector
space Hom(V, W ), so if its derivative exists, we obtain a map

D2f : U ≠æ Hom(V, Hom(V, W )), (16)

and so on. The vector space of k times continuously di�erentiable func-
tions on U with values in W is called Ck(U, W ). We are most interested
in CŒ or “smooth” maps, all of whose derivatives exist; the space of these
is denoted CŒ(U, W ), and so we have

CŒ(U, W ) =
‹

k

Ck(U, W ). (17)

Note: for a C2 function, D2f actually has values in a smaller subspace
of V ú¢V ú¢W , namely in Sym2(V ú)¢W , since “mixed partials are equal”.
Definition 1.18. A smooth manifold is a topological manifold equipped
with an equivalence class of smooth atlases, as explained next.
Definition 1.19. An atlas A = {(Ui, Ïi)} for a topological manifold is
called smooth when all gluing maps

Ïj ¶ Ï≠1

i |Ïi(Uij )

: Ïi(Uij) ≠æ Ïj(Uij) (18)

are smooth maps, i.e. lie in CŒ(Ïi(Uij),Rn). Two atlases A, AÕ are
equivalent if A fi AÕ is itself a smooth atlas.
Remark 1.20. Note that the gluing maps Ïj ¶ Ï≠1

i are not necessarily
defined on all of Rn. They only need be smooth on the open subset
Ïi(Ui fl Uj) µ Rn.
Remark 1.21. Instead of requiring an atlas to be smooth, we could ask
for it to be Ck, or real-analytic, or even holomorphic (this makes sense for
a 2n-dimensional topological manifold when we identify R2n ≥= Cn). This
is how we define Ck, real-analytic, and complex manifolds, respectively.

We may now verify that all the examples from §1.1 are actually smooth
manifolds:
Example 1.22 (Spheres). The charts for the n-sphere given in Exam-
ple 1.5 form a smooth atlas, since

ÏN ¶ Ï≠1

S : z̨ ‘æ 1≠x0
1+x0

z̨ = (1≠x0)

2

|x̨|2 z̨ = |z̨|≠2z̨ (19)

is a smooth map Rn \ {0} æ Rn \ {0}, as required.
The Cartesian product of smooth manifolds inherits a natural smooth

structure from taking the Cartesian product of smooth atlases. Hence the
n-torus, for example, equipped with the atlas we described in Example 1.4,
is smooth. Example 1.2 is clearly defining a smooth manifold, since the
restriction of a smooth map to an open set is always smooth.
Example 1.23 (Projective spaces). The charts for projective spaces given
in Example 1.8 form a smooth atlas, since

Ï
1

¶ Ï≠1

0

(z
1

, . . . , zn) = (z≠1

1

, z≠1

1

z
2

, . . . , z≠1

1

zn), (20)

which is smooth on Rn\{z
1

= 0}, as required, and similarly for all Ïi, Ïj .
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The two remaining examples were constructed by gluing: the con-
nected sum in Example 1.9 is clearly smooth since „ is a smooth map,
and any topological manifold from Example 1.14 will be endowed with a
natural smooth atlas as long as the gluing maps Ïij are chosen to be CŒ.

1.3 Manifolds with boundary

Manifolds with boundary relate manifolds of di�erent dimension. Since
manifolds are not defined as subsets of another topological space, the
notion of boundary is not the usual one from point set topology. To
introduce boundaries, we change the local model for manifolds to

Hn = {(x
1

, . . . , xn) œ Rn : xn Ø 0}, (21)

with the induced topology from Rn.
Definition 1.24. A topological manifold with boundary M is a second
countable Hausdor� topological space which is locally homeomorphic to
Hn. Its boundary ˆM is the (n ≠ 1) manifold consisting of all points
mapped to xn = 0 by a chart, and its interior Int M is the set of points
mapped to xn > 0 by some chart. It follows that M = ˆM Û Int M .

A smooth structure on such a manifold with boundary is an equivalence
class of smooth atlases, with smoothness as defined below.
Definition 1.25. Let V, W be finite-dimensional vector spaces, as before.
A function f : A ≠æ W from an arbitrary subset A µ V is smooth when
it admits a smooth extension to an open neighbourhood Up µ W of every
point p œ A.
Example 1.26. The function f(x, y) = y is smooth on H2 but f(x, y) =Ô

y is not, since its derivatives do not extend to y Æ 0.
Remark 1.27. If M is an n-manifold with boundary, then Int M is a
usual n-manifold (without boundary). Also, ˆM is an n ≠ 1-manifold
without boundary. This is sometimes phrased as the equation

ˆ2 = 0. (22)

Example 1.28 (Möbius strip). Consider the quotient of R ◊ [0, 1] by
the identification (x, y) ≥ (x + 1, 1 ≠ y). The result E is a manifold with
boundary. It is also a fiber bundle over S1, via the map fi : [(x, y)] ‘æ e2fiix.
The boundary, ˆE, is isomorphic to S1, so this provides us with our
first example of a non-trivial fiber bundle, since the trivial fiber bundle
S1 ◊ [0, 1] has disconnected boundary.

1.4 Cobordism

Compact (n+1)-Manifolds with boundary provide us with a natural equiv-
alence relation on compact n-manifolds, called cobordism.
Definition 1.29. Compact n-manifolds M

1

, M
2

are cobordant when there
exists N , a compact n+1-manifold with boundary, such that ˆN is isomor-
phic to the disjoint union M

1

Û M
2

. All manifolds cobordant to M form
the cobordism class of M . We say that M is null-cobordant if M = ˆN
for N a compact n + 1–manifold with boundary.

9



Remark 1.30. It is important to assume compactness, otherwise all man-
ifolds are null-cobordant, by taking Cartesian product with the noncom-
pact manifold with boundary [0, 1).

Let �n be the set of cobordism classes of compact n-manifolds, includ-
ing the empty set ? as a compact n-manifold. Using the disjoint union
operation [M

1

] + [M
2

] = [M
1

Û M
2

], we see that �n is an abelian group
with identity [?]. The additive inverse of [M ] is actually [M ] itself:
Proposition 1.31. The cobordism ring is 2-torsion, i.e. x + x = 0 ’x.

Proof. For any manifold M , the manifold with boundary M ◊ [0, 1] has
boundary M Û M . Hence [M ] + [M ] = [?] = 0, as required.

The direct sum �• = ünØ0

�n is then endowed with another operation,

[M
1

] · [M
2

] = [M
1

◊ M
2

], (23)

rendering �• into a commutative ring, called the cobordism ring. It has
a multiplicative unit [ú], the class of the 0-manifold consisting of a single
point. It is also graded by dimension.
Example 1.32. The n-sphere Sn is null-cobordant (i.e. cobordant to ?),
since ˆBn+1

(0, 1) ≥= Sn, where Bn+1

(0, 1) denotes the unit ball in Rn+1.
Example 1.33. Any oriented compact 2-manifold is null-cobordant: we
may embed it in R3 and the “inside” is a 3-manifold with boundary.

We now state an amazing theorem of Thom, which is a complete de-
scription of the cobordism ring of smooth compact n-manifolds.
Theorem 1.34. The cobordism ring is a (countably generated) polynomial
ring over F

2

with generators in every dimension n ”= 2k ≠ 1, i.e.

�• = F
2

[x
2

, x
4

, x
5

, x
6

, x
8

, . . .]. (24)

This theorem implies that there are 3 cobordism classes in dimension
4, namely x2

2

, x
4

, and x2

2

+ x
4

. Can you find 4-manifolds representing
these classes? Can you find connected representatives?
Remark 1.35. Thom showed that for k even we can take xk = [RP k].
Dold showed that the family of manifolds

P (m, n) = (Sm ◊ CP n)/((x, y) ≥ (≠x, ȳ)),

and showed that for k = 2r(2s + 1) ≠ 1, we can take xk = [P (2r ≠ 1, s2r)].
Remark 1.36. Two manifolds are cobordant if and only if their Stiefel-
Whitney characteristic numbers are the same. These numbers are built
out of the Stiefel-Whitney classes, which are topological invariants asso-
ciated to the tangent bundle of a manifold.
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1.5 Smooth maps

For topological manifolds M, N of dimension m, n, the natural notion of
morphism from M to N is that of a continuous map. A continuous map
with continuous inverse is then a homeomorphism from M to N , which
is the natural notion of equivalence for topological manifolds. Since the
composition of continuous maps is continuous, we obtain a “category” of
topological manifolds and continuous maps.

A category is a collection of objects C (in our case, topological mani-
folds) and a collection of arrows A (in our case, continuous maps). Each
arrow goes from an object (the source) to another object (the target),
meaning that there are “source” and “target” maps from A to C:

A
s
((

t

66 C (25)

Also, a category has an identity arrow for each object, given by a map
id : C ≠æ A (in our case, the identity map of any manifold to itself).
Furthermore, there is an associative composition operation on arrows.

Conventionally, we write the set of arrows from X to X as Hom(X, Y ),
i.e.

Hom(X, Y ) = {a œ A : s(a) = X and t(a) = Y }. (26)
Then the associative composition of arrows mentioned above becomes a
map

Hom(X, Y ) ◊ Hom(Y, Z) æ Hom(X, Z). (27)
We have described the category of topological manifolds; we now describe
the category of smooth manifolds by defining the notion of a smooth map.
Definition 1.37. A map f : M æ N is called smooth when for each chart
(U, Ï) for M and each chart (V, Â) for N , the composition Â ¶ f ¶ Ï≠1 is
a smooth map, i.e. Â ¶ f ¶ Ï≠1 œ CŒ(Ï(U),Rn).

The set of smooth maps (i.e. morphisms) from M to N is denoted
CŒ(M, N). A smooth map with a smooth inverse is called a di�eomor-
phism.
Proposition 1.38. If g : L æ M and f : M æ N are smooth maps, then
so is the composition f ¶ g.

Proof. If charts Ï, ‰, Â for L, M, N are chosen near p œ L, g(p) œ M ,
and (fg)(p) œ N , then Â ¶ (f ¶ g) ¶ Ï≠1 = A ¶ B, for A = Âf‰≠1 and
B = ‰gÏ≠1 both smooth mappings Rn æ Rn. By the chain rule, A ¶ B
is di�erentiable at p, with derivative D„(p)

(A ¶ B) = (D‰(g(p))

A)(D„(p)

B)
(matrix multiplication).

Now we have a new category, the category of smooth manifolds and
smooth maps; two manifolds are considered isomorphic when they are
di�eomorphic. In fact, the definitions above carry over, word for word, to
the setting of manifolds with boundary. Hence we have defined another
category, the category of smooth manifolds with boundary.

In defining the arrows for the category of manifolds with boundary,
we may choose to consider all smooth maps, or only those smooth maps
which send the boundary to the boundary, i.e. boundary-preserving maps.
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The operation ˆ of “taking the boundary” sends a manifold with
boundary to a usual manifold. Furthermore, if Â : M æ N is a boundary-
preserving smooth map, then we can “take its boundary” by restricting
it to the boundary, i.e. ˆÂ = Â|ˆM . Since ˆ takes objects to objects and
arrows to arrows in a manner which respects compositions and identity
maps, it is called a “functor” from the category of manifolds with bound-
ary (and boundary-preserving smooth maps) to the category of smooth
manifolds.
Example 1.39. The smooth inclusion j : S1 æ C induces a smooth
inclusion j◊j of the 2-torus T 2 = S1 ◊S1 into C2. The image of j◊j does
not include zero, so we may compose with the projection fi : C2 \ {0} æ
CP 1 and the di�eomorphism CP 1 æ S2, to obtain a smooth map

fi ¶ (j ◊ j) : T 2 æ S2. (28)

Remark 1.40 (Exotic smooth structures). The topological Poincaré con-
jecture, now proven, states that any topological manifold homotopic to
the n-sphere is in fact homeomorphic to it. We have now seen how to put
a di�erentiable structure on this n-sphere. Remarkably, there are other
di�erentiable structures on the n-sphere which are not di�eomorphic to
the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and
since the connected sum operation is well-defined as a smooth manifold,
it follows that the connected sum defines a monoid structure on the set of
smooth n-spheres. In fact, Kervaire and Milnor showed that for n ”= 4, the
set of (oriented) di�eomorphism classes of smooth n-spheres forms a finite
abelian group under the connected sum operation. This is not known to
be the case in four dimensions. Kervaire and Milnor also compute the
order of this group, and the first dimension where there is more than one
smooth sphere is n = 7, in which case they show there are 28 smooth
spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Eu-
clidean spaces: any di�erentiable manifold homeomorphic to Rn for n ”= 4
must be di�eomorphic to it. On the other hand, by results of Donaldson,
Freedman, Taubes, and Kirby, we know that there are uncountably many
non-di�eomorphic smooth structures on the topological manifold R4; these
are called fake R4s.
Remark 1.41. The maps – : x ‘æ x and — : x ‘æ x3 are both homeo-
morphisms from R to R. Each one defines, by itself, a smooth atlas on R.
These two smooth atlases are not compatible (why?), so they do not de-
fine the same smooth structure on R. Nevertheless, the smooth structures
are equivalent, since there is a di�eomorphism taking one to the other.
What is it?
Example 1.42 (Lie groups). A group is a set G with an associative mul-
tiplication G ◊ G

m // G , an identity element e œ G, and an inversion
map ÿ : G ≠æ G, usually written ÿ(g) = g≠1.

If we endow G with a topology for which G is a topological manifold
and m, ÿ are continuous maps, then the resulting structure is called a
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topological group. If G is a given a smooth structure and m, ÿ are smooth
maps, the result is a Lie group.

The real line (where m is given by addition), the circle (where m is
given by complex multiplication), and their Cartesian products give simple
but important examples of Lie groups. We have also seen the general
linear group GL(n,R), which is a Lie group since matrix multiplication
and inversion are smooth maps.

Since m : G ◊ G ≠æ G is a smooth map, we may fix g œ G and
define smooth maps Lg : G ≠æ G and Rg : G ≠æ G via Lg(h) = gh and
Rg(h) = hg. These are called left multiplication and right multiplication.
Note that the group axioms imply that RgLh = LhRg.
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