
2 The derivative

The derivative of a smooth map is an absolutely central topic in di�erential
geometry. To make sense of the derivative, however, we must introduce
the notion of tangent vector and, further, the space of all tangent vectors,
known as the tangent bundle. In this section, we describe the tangent
bundle intrinsically, without reference to any embedding of the manifold
in a vector space.

2.1 The tangent bundle

The tangent bundle of an n-manifold M is a 2n-manifold, called T M ,
naturally constructed in terms of M . As a set, it is fairly easy to describe,
as simply the disjoint union of all tangent spaces. However we must
explain precisely what we mean by the tangent space TpM to p œ M .
Definition 2.1. Let (U, Ï), (V, Â) be coordinate charts around p œ M .
Let u œ TÏ(p)

Ï(U) and v œ TÂ(p)

Â(V ). Then the triples (U, Ï, u), (V, Â, v)
are called equivalent when D(Â ¶ Ï≠1)(Ï(p)) : u ‘æ v. The chain rule
for derivatives Rn ≠æ Rn guarantees that this is indeed an equivalence
relation.

The set of equivalence classes of such triples is called the tangent space
to p of M , denoted TpM . It is a real vector space of dimension dim M ,
since both TÏ(p)

Ï(U) and TÂ(p)

Â(V ) are, and D(Â ¶ Ï≠1) is a linear iso-
morphism.

As a set, the tangent bundle is defined by

T M =
h

pœM

TpM, (29)

and it is equipped with a natural surjective map fi : T M ≠æ M , which is
simply fi(X) = x for X œ TxM .

We now give it a manifold structure in a natural way.
Proposition 2.2. For an n-manifold M , the set T M has a natural
topology and smooth structure which make it a 2n-manifold, and make
fi : T M ≠æ M a smooth map.

Proof. Any chart (U, Ï) for M defines a bijection

T Ï(U) ≥= U ◊ Rn ≠æ fi≠1(U) (30)

via (p, v) ‘æ (U, Ï, v). Using this, we induce a smooth manifold structure
on fi≠1(U), and view the inverse of this map as a chart (fi≠1(U), �) to
Ï(U) ◊ Rn.

given another chart (V, Â), we obtain another chart (fi≠1(V ), �) and
we may compare them via

� ¶ �≠1 : Ï(U fl V ) ◊ Rn ≠æ Â(U fl V ) ◊ Rn, (31)

which is given by (p, u) ‘æ ((Â ¶ Ï≠1)(p), D(Â ¶ Ï≠1)pu), which is smooth.
Therefore we obtain a topology and smooth structure on all of T M (by
defining W to be open when W fl fi≠1(U) is open for every U in an atlas
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for M ; all that remains is to verify the Hausdor� property, which holds
since points x, y are either in the same chart (in which case it is obvious)
or they can be separated by the given type of charts.

Remark 2.3. This is a more constructive way of looking at the tangent
bundle: We choose a countable, locally finite atlas {(Ui, Ïi)} for M and
glue together Ui ◊ Rn to Uj ◊ Rn via an equivalence

(x, u) ≥ (y, v) … y = Ïj ¶ Ï≠1

i (x) and v = D(Ïj ¶ Ï≠1

i )xu, (32)

and verify the conditions of the general gluing construction 1.14. The
choice of a di�erent atlas yields a canonically di�eomorphic manifold.

2.2 The derivative

A description of the tangent bundle is not complete without defining the
derivative of a general smooth map of manifolds f : M ≠æ N . Such a map
may be defined locally in charts (Ui, Ïi) for M and (V–, Â–) for N as a
collection of vector-valued functions Â–¶f¶Ï≠1

i = fi– : Ïi(Ui) ≠æ Â–(V–)
which satisfy

(Â— ¶ Â≠1

– ) ¶ fi– = fj— ¶ (Ïj ¶ Ï≠1

i ). (33)
Di�erentiating, we obtain

D(Â— ¶ Â≠1

– ) ¶ Dfi– = Dfj— ¶ D(Ïj ¶ Ï≠1

i ). (34)

Equation 34 shows that Dfi– and Dfj— glue together to define a map
T M ≠æ T N . This map is called the derivative of f and is denoted
Df : T M ≠æ T N . Sometimes it is called the “push-forward” of vectors
and is denoted fú. The map fits into the commutative diagram

T M
Df //

fi

✏✏

T N

fi

✏✏
M

f
// N

(35)

Each fiber fi≠1(x) = TxM µ T M is a vector space, and the map Df :
TxM ≠æ Tf(x)

N is a linear map. In fact, (f, Df) defines a homomorphism
of vector bundles from T M to T N .

The usual chain rule for derivatives then implies that if f ¶ g = h
as maps of manifolds, then Df ¶ Dg = Dh. As a result, we obtain the
following category-theoretic statement.
Proposition 2.4. The mapping T which assigns to a manifold M its
tangent bundle T M , and which assigns to a map f : M ≠æ N its deriva-
tive Df : T M ≠æ T N , is a functor from the category of manifolds and
smooth maps to itself1.

For this reason, the derivative map Df is sometimes called the “tan-
gent mapping” T f .

1

We can also say that it is a functor from manifolds to the category of smooth vector

bundles.
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2.3 Vector fields

A vector field on an open subset U µ V of a vector space V is what
we usually call a vector-valued function, i.e. a function X : U æ V .
If (x

1

, . . . , xn) is a basis for V ú, hence a coordinate system for V , then
the constant vector fields dual to this basis are usually denoted in the
following way: 1

ˆ
ˆx

1

, . . . ,
ˆ

ˆxn

2
. (36)

The reason for this notation is that we may identify a vector v with the
operator of directional derivative in the direction v. We will see later that
vector fields may be viewed as derivations on functions. A derivation is
a linear map D from smooth functions to R satisfying the Leibniz rule
D(fg) = fDg + gDf .

The tangent bundle allows us to make sense of the notion of vector
field in a global way. Locally, in a chart (Ui, Ïi), we would say that a
vector field Xi is simply a vector-valued function on Ui, i.e. a function
Xi : Ï(Ui) ≠æ Rn. Of course if we had another vector field Xj on (Uj , Ïj),
then the two would agree as vector fields on the overlap Ui fl Uj when
D(Ïj ¶ Ï≠1

i ) : Xi ‘æ Xj . So, if we specify a collection {Xi œ CŒ(Ui,Rn)}
which glue together on overlaps, it defines a global vector field.
Definition 2.5. A smooth vector field on the manifold M is a smooth
map X : M ≠æ T M such that fi ¶ X = idM . In words, it is a smooth
assignment of a unique tangent vector to each point in M .

Such maps X are also called cross-sections or simply sections of the
tangent bundle T M , and the set of all such sections is denoted CŒ(M, T M)
or, better, �Œ(M, T M), to distinguish them from all smooth maps M ≠æ
T M . The space vector fields is also sometimes denoted by X(M).
Example 2.6. From a computational point of view, given an atlas (Ũi, Ïi)
for M , let Ui = Ïi(Ũi) µ Rn and let Ïij = Ïj ¶ Ï≠1

i . Then a global vec-
tor field X œ �Œ(M, T M) is specified by a collection of vector-valued
functions

Xi : Ui ≠æ Rn, (37)
such that

DÏij(Xi(x)) = Xj(Ïij(x)) (38)
for all x œ Ïi(Ũi fl Ũj). For example, if S1 = U

0

Û U
1

/ ≥, with U
0

= R
and U

1

= R, with x œ U
0

\{0} ≥ y œ U
1

\{0} whenever y = x≠1, then
Ï

01

: x ‘æ x≠1 and DÏ
01

(x) : v ‘æ ≠x≠2v. Then if we define (letting x be
the standard coordinate along R)

X
0

= ˆ
ˆx

X
1

= ≠y2

ˆ
ˆy

,

we see that this defines a global vector field, which does not vanish in U
0

but vanishes to order 2 at a single point in U
1

. Find the local expression in
these charts for the rotational vector field on S1 given in polar coordinates
by ˆ

ˆ◊
.
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Remark 2.7. While a vector v œ TpM is mapped to a vector (Df)p(v) œ
Tf(p)

N by the derivative of a map f œ CŒ(M, N), there is no way, in
general, to transport a vector field X on M to a vector field on N . If f is
invertible, then of course Df ¶X ¶f≠1 : N æ T N defines a vector field on
N , which can be called fúX, but if f is not invertible this approach fails.
Definition 2.8. We say that X œ X(M) and Y œ X(N) are f–related,
for f œ CŒ(M, N), when the following diagram commutes

T M
Df // T N

M

X

OO

f
// N

Y

OO .

(39)
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