
3 Transversality

We continue to use the constant rank theorem to produce more manifolds,
except now these will be cut out only locally by functions. Globally,
they are cut out by intersecting with another submanifold. You should
think that intersecting with a submanifold locally imposes a number of
constraints equal to its codimension.

The problem is that the intersection of submanifolds need not be a
submanifold; this is why the condition of transversality is so important -
it guarantees that intersections are smooth.

Two subspaces K, L µ V of a vector space V are transverse when
K + L = V , i.e. every vector in V may be written as a (possibly non-
unique) linear combination of vectors in K and L. In this situation one
can easily see that dim V = dim K + dim L ≠ dim K fl L, or equivalently

codim(K fl L) = codimK + codimL. (49)

We may apply this to submanifolds as follows:
Definition 3.1. Let K, L µ M be regular submanifolds such that every
point p œ K fl L satisfies

TpK + TpL = TpM. (50)

Then K, L are said to be transverse submanifolds and we write K fl| L.
Proposition 3.2. If K, L µ M are transverse submanifolds, then K fl L
is either empty, or a submanifold of codimension codimK + codimL.

Proof. Let p œ K fl L. Then there is a neighbourhood U of p for which
K fl U = f≠1(0) for 0 a regular value of a function f : U ≠æ RcodimK and
L fl U = g≠1(0) for 0 a regular value of a function g : L fl U ≠æ RcodimL.

Then p must be a regular point for (f, g) : LflMflU ≠æ RcodimK+codimL,
since the kernel of its derivative is the intersection ker Df(p) fl ker Dg(p),
which is exactly TpK flTpL, which has codimension codimK +codimL by
the transversality assumption, implying D(f, g)(p) is surjective. Therefore
(f, g)|≠1

˜U
(0, 0) = f≠1(0) fl g≠1(0) = K fl L fl Ũ is a submanifold.

Example 3.3 (Exotic spheres). Consider the following intersections in
C5\0:
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This is a transverse intersection, and for k = 1, . . . , 28 the intersection
is a smooth manifold homeomorphic to S7. These exotic 7-spheres were
constructed by Brieskorn and represent each of the 28 di�eomorphism
classes on S7.

We may choose to phrase the previous transversality result in a slightly
di�erent way, in terms of the embedding maps k, l for K, L in M . Specif-
ically, we say the maps k, l are transverse in the sense that ’a œ K, b œ L
such that k(a) = l(b) = p, we have im(Dk(a)) + im(Dl(b)) = TpM . The
advantage of this approach is that it makes sense for any maps, not nec-
essarily embeddings.
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Definition 3.4. Two maps f : K ≠æ M , g : L ≠æ M of manifolds are
called transverse when im(Df(a)) + im(Dg(b)) = TpM for all a, b, p such
that f(a) = g(b) = p.
Proposition 3.5. If f : K ≠æ M , g : L ≠æ M are transverse smooth
maps, then Kf ◊gL = {(a, b) œ K ◊ L : f(a) = g(b)} is naturally a
smooth manifold equipped with commuting maps
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where i is the inclusion and f fl g : (a, b) ‘æ f(a) = g(b).
The manifold Kf ◊gL of the previous proposition is called the fiber

product of K with L over M , and is a generalization of the intersection
product. It is often denoted simply by K ◊M L, when the maps to M are
clear.

Proof. Consider the graphs �f µ K ◊ M and �g µ L ◊ M . To impose
f(k) = g(l), we can take an intersection with the diagonal submanifold

� = {(k, m, l, m) œ K ◊ M ◊ L ◊ M}. (53)

Step 1. We show that the intersection � = (�f ◊ �g) fl � is transverse.
Let f(k) = g(l) = m so that x = (k, m, l, m) œ �, and note that

Tx(�f ◊ �g) = {((v, Df(v)), (w, Dg(w))), v œ TkK, w œ TlL} (54)

whereas we also have

Tx(�) = {((v, m), (w, m)) : v œ TkK, w œ TlL, m œ TpM} (55)

By transversality of f, g, any tangent vector mi œ TpM may be written
as Df(vi) + Dg(wi) for some (vi, wi), i = 1, 2. In particular, we may
decompose a general tangent vector to M ◊ M as
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leading directly to the transversality of the spaces (54), (55). This shows
that � is a submanifold of K ◊ M ◊ L ◊ M .
Step 2. The projection map fi : K◊M◊L◊M æ K◊L takes � bijectively
to Kf ◊gL. Since (54) is a graph, it follows that fi|

�

: � æ K ◊ L is an
injective immersion. Since the projection fi is an open map, it also follows
that fi|

�

is a homeomorphism onto its image, hence is an embedding. This
shows that Kf ◊gL is a submanifold of K ◊ L.

Example 3.6. If K
1

= M ◊ Z
1

and K
2

= M ◊ Z
2

, we may view both Ki

as “fibering” over M with fibers Zi. If pi are the projections to M , then
K
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1
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2

, hence the name “fiber product”.
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Example 3.7. Let L µ M be a submanifold and let f : K æ M be
“transverse to L” in the sense that f is transverse to the embedding ÿL :
L æ M . This means that for each pair (k, l) such that f(k) = l, we have
Df(TkK) + TlL = TlM . Under this condition, the theorem implies that

f≠1(L) = {k œ K : f(k) œ L}

is a smooth submanifold of K (Why?) This is a generalization of the
regular value theorem.
Example 3.8. Consider the Hopf map p : S3 ≠æ S2 given by composing
the embedding S3 µ C2\{0} with the projection fi : C2\{0} ≠æ CP 1 ≥=
S2. Then for any point q œ S2, p≠1(q) ≥= S1. Since p is a submersion, it
is obviously transverse to itself, hence we may form the fiber product

S3 ◊S2 S3,

which is a smooth 4-manifold equipped with a map p fl p to S2 with fibers
(p fl p)≠1(q) ≥= S1 ◊ S1.

These are our first examples of nontrivial fiber bundles, which we shall
explore later.
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