3 Transversality

We continue to use the constant rank theorem to produce more manifolds, except now these will be cut out only *locally* by functions. Globally, they are cut out by intersecting with another submanifold. You should think that intersecting with a submanifold locally imposes a number of constraints equal to its codimension.

The problem is that the intersection of submanifolds need not be a submanifold; this is why the condition of transversality is so important it guarantees that intersections are smooth.

Two subspaces $K, L \subset V$ of a vector space V are *transverse* when K + L = V, i.e. every vector in V may be written as a (possibly nonunique) linear combination of vectors in K and L. In this situation one can easily see that dim $V = \dim K + \dim L - \dim K \cap L$, or equivalently

$$\operatorname{codim}(K \cap L) = \operatorname{codim} K + \operatorname{codim} L. \tag{49}$$

We may apply this to submanifolds as follows:

Definition 3.1. Let $K, L \subset M$ be regular submanifolds such that every point $p \in K \cap L$ satisfies

$$T_p K + T_p L = T_p M. ag{50}$$

Then K, L are said to be *transverse* submanifolds and we write $K \oplus L$.

Proposition 3.2. If $K, L \subset M$ are transverse submanifolds, then $K \cap L$ is either empty, or a submanifold of codimension $\operatorname{codim} K + \operatorname{codim} L$.

Proof. Let $p \in K \cap L$. Then there is a neighbourhood U of p for which $K \cap U = f^{-1}(0)$ for 0 a regular value of a function $f: U \longrightarrow \mathbb{R}^{\operatorname{codim} K}$ and $L \cap U = g^{-1}(0)$ for 0 a regular value of a function $g: L \cap U \longrightarrow \mathbb{R}^{\operatorname{codim} L}$.

Then p must be a regular point for $(f,g): L \cap M \cap U \longrightarrow \mathbb{R}^{\operatorname{codim} K + \operatorname{codim} L}$ since the kernel of its derivative is the intersection ker $Df(p) \cap \ker Dg(p)$, which is exactly $T_pK \cap T_pL$, which has codimension $\operatorname{codim} K + \operatorname{codim} L$ by the transversality assumption, implying D(f,g)(p) is surjective. Therefore $(f,g)|_{\tilde{U}}^{-1}(0,0) = f^{-1}(0) \cap g^{-1}(0) = K \cap L \cap \tilde{U}$ is a submanifold. \Box

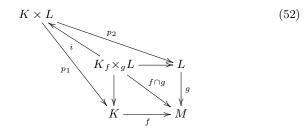
Example 3.3 (Exotic spheres). Consider the following intersections in $\mathbb{C}^5 \setminus 0$:

$$S_k^7 = \{z_1^2 + z_2^2 + z_3^2 + z_4^3 + z_5^{6k-1} = 0\} \cap \{|z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 + |z_5|^2 = 1\}.$$
(51)

This is a transverse intersection, and for k = 1, ..., 28 the intersection is a smooth manifold homeomorphic to S^7 . These exotic 7-spheres were constructed by Brieskorn and represent each of the 28 diffeomorphism classes on S^7 .

We may choose to phrase the previous transversality result in a slightly different way, in terms of the embedding maps k, l for K, L in M. Specifically, we say the maps k, l are transverse in the sense that $\forall a \in K, b \in L$ such that k(a) = l(b) = p, we have $\operatorname{im}(Dk(a)) + \operatorname{im}(Dl(b)) = T_p M$. The advantage of this approach is that it makes sense for any maps, not necessarily embeddings. **Definition 3.4.** Two maps $f: K \longrightarrow M$, $g: L \longrightarrow M$ of manifolds are called *transverse* when $\operatorname{im}(Df(a)) + \operatorname{im}(Dg(b)) = T_pM$ for all a, b, p such that f(a) = g(b) = p.

Proposition 3.5. If $f : K \longrightarrow M$, $g : L \longrightarrow M$ are transverse smooth maps, then $K_f \times_g L = \{(a, b) \in K \times L : f(a) = g(b)\}$ is naturally a smooth manifold equipped with commuting maps



where i is the inclusion and $f \cap g : (a, b) \mapsto f(a) = g(b)$.

The manifold $K_f \times_g L$ of the previous proposition is called the *fiber* product of K with L over M, and is a generalization of the intersection product. It is often denoted simply by $K \times_M L$, when the maps to M are clear.

Proof. Consider the graphs $\Gamma_f \subset K \times M$ and $\Gamma_g \subset L \times M$. To impose f(k) = g(l), we can take an intersection with the diagonal submanifold

$$\Delta = \{ (k, m, l, m) \in K \times M \times L \times M \}.$$
(53)

Step 1. We show that the intersection $\Gamma = (\Gamma_f \times \Gamma_g) \cap \Delta$ is transverse. Let f(k) = g(l) = m so that $x = (k, m, l, m) \in \Gamma$, and note that

$$T_x(\Gamma_f \times \Gamma_g) = \{((v, Df(v)), (w, Dg(w))), v \in T_k K, w \in T_l L\}$$
(54)

whereas we also have

$$T_x(\Delta) = \{ ((v,m), (w,m)) : v \in T_k K, w \in T_l L, m \in T_p M \}$$
(55)

By transversality of f, g, any tangent vector $m_i \in T_p M$ may be written as $Df(v_i) + Dg(w_i)$ for some (v_i, w_i) , i = 1, 2. In particular, we may decompose a general tangent vector to $M \times M$ as

$$(m_1, m_2) = (Df(v_2), Df(v_2)) + (Dg(w_1), Dg(w_1)) + (Df(v_1 - v_2), Dg(w_2 - w_1)),$$
(56)

leading directly to the transversality of the spaces (54), (55). This shows that Γ is a submanifold of $K \times M \times L \times M$.

Step 2. The projection map $\pi : K \times M \times L \times M \to K \times L$ takes Γ bijectively to $K_f \times_g L$. Since (54) is a graph, it follows that $\pi|_{\Gamma} : \Gamma \to K \times L$ is an injective immersion. Since the projection π is an open map, it also follows that $\pi|_{\Gamma}$ is a homeomorphism onto its image, hence is an embedding. This shows that $K_f \times_g L$ is a submanifold of $K \times L$.

Example 3.6. If $K_1 = M \times Z_1$ and $K_2 = M \times Z_2$, we may view both K_i as "fibering" over M with fibers Z_i . If p_i are the projections to M, then $K_1 \times_M K_2 = M \times Z_1 \times Z_2$, hence the name "fiber product".

Example 3.7. Let $L \subset M$ be a submanifold and let $f : K \to M$ be "transverse to L" in the sense that f is transverse to the embedding $\iota_L : L \to M$. This means that for each pair (k, l) such that f(k) = l, we have $Df(T_kK) + T_lL = T_lM$. Under this condition, the theorem implies that

$$f^{-1}(L) = \{k \in K : f(k) \in L\}$$

is a smooth submanifold of K (Why?) This is a generalization of the regular value theorem.

Example 3.8. Consider the Hopf map $p: S^3 \longrightarrow S^2$ given by composing the embedding $S^3 \subset \mathbb{C}^2 \setminus \{0\}$ with the projection $\pi: \mathbb{C}^2 \setminus \{0\} \longrightarrow \mathbb{C}P^1 \cong S^2$. Then for any point $q \in S^2$, $p^{-1}(q) \cong S^1$. Since p is a submersion, it is obviously transverse to itself, hence we may form the fiber product

$$S^3 \times_{S^2} S^3$$

which is a smooth 4-manifold equipped with a map $p \cap p$ to S^2 with fibers $(p \cap p)^{-1}(q) \cong S^1 \times S^1$.

These are our first examples of nontrivial fiber bundles, which we shall explore later.