
3.2 Sard’s theorem

The fundamental idea which allows us to prove that transversality is a
generic condition is a the theorem of Sard showing that critical values of
a smooth map f : M ≠æ N (i.e. points q œ N for which the map f and
the inclusion ÿ : q Òæ N fail to be transverse maps) are rare. The following
proof is taken from Milnor, based on Pontryagin.

The meaning of “rare” will be that the set of critical values is of mea-
sure zero, which means, in Rm, that for any ‘ > 0 we can find a sequence of
balls in Rm, containing f(C) in their union, with total volume less than
‘. Some easy facts about sets of measure zero: the countable union of
measure zero sets is of measure zero, the complement of a set of measure
zero is dense.

We begin with an elementary lemma describing the behaviour of measure-
zero sets under di�erentiable maps.
Lemma 3.15. Let Im = [0, 1]m be the unit cube, and f : Im ≠æ Rn a
C1 map. If m < n then f(Im) has measure zero. If m = n and A µ Im

has measure zero, then f(A) has measure zero.

Proof. If f œ C1, its derivative is bounded on Im, so for all x, y œ Im we
have

||f(y) ≠ f(x)|| Æ M ||y ≠ x||, (58)
for a constant3 M > 0 depending only on f . So, the image of a ball
of radius r in Im is contained in a ball of radius Mr, which has volume
proportional to rn.

If A µ Im has measure zero, then for each ‘ we have a countable
covering of A by balls of radius rk with total volume cm

q
k

rm
k < ‘. We

deduce that f(Ai) is covered by balls of radius Mrk with total volume
Mncn

q
k

rn
k ; since n Ø m this goes to zero as ‘ æ 0. We conclude that

f(A) is of measure zero.
If m < n then f defines a C1 map Im◊In≠m ≠æ Rn by pre-composing

with the projection map to Im. Since Im ◊ {0} µ Im ◊ In≠m clearly has
measure zero, its image must also.

Remark 3.16. If we considered the case n < m, the resulting sum of
volumes may be larger in Rn. For example, the projection map R2 ≠æ R
given by (x, y) ‘æ x clearly takes the set of measure zero y = 0 to one of
positive measure.

A subset A µ M of a manifold is said to have measure zero when its
image in each chart of an atlas has measure zero. Lemma 3.15, together
with the fact that a manifold is second countable, implies that the prop-
erty is independent of the choice of atlas, and that it is preserved under
equidimensional maps:
Corollary 3.17. Let f : M æ N be a C1 map of manifolds where
dim M = dim N . Then the image f(A) of a set A µ M of measure
zero also has measure zero.

3

This is called a Lipschitz constant.
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Corollary 3.18 (Baby Sard). Let f : M æ N be a C1 of manifolds where
dim M < dim N . Then f(M) (i.e. the set of critical values) has measure
zero in N .
Remark 3.19. Note that this implies that space-filling curves are not
C1.

Now we investigate the measure of the critical values of a map f :
M æ N where dim M = dim N . The set of critical points need not have
measure zero, but we shall see that

The variation of f is constrained along its critical locus

since this is where Df drops rank. In fact, the set of

critical values has measure zero.

Theorem 3.20 (Equidimensional Sard). Let f : M æ N be a C1 map of
n-manifolds, and let C µ M be the set of critical points. Then f(C) has
measure zero.

Proof. It su�ces to show result for the unit cube mapping to Euclidean
space (using second countability, we can cover M by countable collection
of charts (Ui, Ïi)iœI with the property that (Ï≠1

i (In))iœI covers M . Since
a countable union of measure zero sets is measure zero, we obtain the
result). Let f : In ≠æ Rn a C1 map, and let M be the Lipschitz constant
for f on In, i.e.

||f(x) ≠ f(y)|| Æ M |x ≠ y|, ’x, y œ In. (59)

Let c be a critical point, so that the image of Df(c) is a proper subspace
of Rn. Choose a hyperplane containing this subspace, translate it to f(c),
and call it H. Then

d(f(x), H) Æ ||f(x) ≠ f lin

c (x)||, (60)

where f lin

c (x) = f(c)+Dcf(x≠c) is the linear approximation to f at c. By
the definition of the derivative, for each c œ C, we have that ’‘ > 0, ÷” > 0
such that

||f(x) ≠ f lin

c (x)|| < ‘||x ≠ c|| for all x s.t. ||x ≠ c|| < ”.

Because f is C1 and C is compact, we conclude that ’‘ > 0, ÷” > 0 such
that the inequality above holds for all c œ C.

Now we apply this: if c œ C and ||x ≠ c|| Æ ”, then f(x) is within
a distance ‘” from H and within a distance M‘ of f(c), so lies within a
paralellepiped of volume

(2‘”)(2M”)n≠1. (61)

Now subdivide In into hn cubes of edge length h≠1 with h su�ciently
large that h≠1

Ô
n < ”. Apply the argument for each small cube, in which

||x ≠ c|| Æ h≠1

Ô
n < ”. The number of cubes containing critical points is

at most hn, so this gives a total volume for f(C) less than

(2‘h≠1

Ô
n)(2Mh≠1

Ô
n)n≠1(hn). (62)

Since ‘ can be chosen arbitrarily small, f(C) has measure zero.
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The argument above will not work for dim N < dim M ; we need more
control on the function f . In particular, one can find a C1 function I2 ≠æ
R which fails to have critical values of measure zero. (Hint: find a C1

function f : R æ R with critical values containing the Cantor set C µ
[0, 1]. Compose f◊f with the sum R◊R æ R and note that C+C = [0, 2].)
As a result, Sard’s theorem in general requires more di�erentiability of f .
Theorem 3.21 (Big Sard’s theorem). Let f : M ≠æ N be a Ck map
of manifolds of dimension m, n, respectively. Let C be the set of critical
points. Then f(C) has measure zero if k > m

n
≠ 1.

Proof. As before, it su�ces to show for f : Im ≠æ Rn. We do an induction
on m – note that the theorem holds for m = 0.

Define C
1

µ C to be the set of points x for which Df(x) = 0. Define
Ci µ Ci≠1

to be the set of points x for which Djf(x) = 0 for all j Æ i. So
we have a descending sequence of closed sets:

C ∏ C
1

∏ C
2

∏ · · · ∏ Ck. (63)

We will show that f(C) has measure zero by showing
1. f(Ck) has measure zero,
2. each successive di�erence f(Ci\Ci+1

) has measure zero for i Ø 1,
3. f(C\C

1

) has measure zero.
Step 1: For x œ Ck, Taylor’s theorem gives the estimate

||f(x + t) ≠ f(x)|| Æ c||t||k+1, (64)

where c depends only on Im and f .
Subdivide Im into hm small cubes with edge h≠1; then any point in

in the small cube I
0

containing x may be written as x + t with ||t|| Æ
h≠1

Ô
m. As a result, f(I

0

) is contained by a cube of edge ah≠(k+1), with
a = 2cm(k+1)/2 independent of the small cube size. At most hm cubes are
necessary to cover Ck, and their images have total volume less than

hm(ah≠(k+1))n = anhm≠(k+1)n. (65)

Assuming that k > m
n

≠ 1, this tends to 0 as we increase the number of
cubes.
Step 2: For each x œ Ci\Ci+1

, i Ø 1, there is a i + 1th partial, say wlog
ˆi+1f

1

/ˆx
1

· · · ˆxi+1

, which is nonzero at x. Therefore the function

w(x) = ˆif
1

/ˆx
2

· · · ˆxi+1

(66)

vanishes on Ci but its partial derivative ˆw/ˆx
1

is nonvanishing near x.
Then

(w(x), x
2

, . . . , xm) (67)
forms an alternate coordinate system in a neighbourhood V around x by
the inverse function theorem (the change of coordinates is of class Ck),
and we have trapped Ci inside a hyperplane. The restriction of f to w = 0
in V is clearly critical on Ci fl V and so by induction on m we have that
f(Ci fl V ) has measure zero. Cover Ci \ Ci+1

by countably many such
neighbourhoods V .
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Step 3: Let x œ C\C
1

. Note that we won’t necessarily be able to trap
C in a hypersurface. But, since there is some partial derivative, wlog
ˆf

1

/ˆx
1

, which is nonzero at x, so defining w = f
1

, we have that

(w(x), x
2

, . . . , xm) (68)

is an alternative coordinate system in some neighbourhood V of x (the
coordinate change is a di�eomorphism of class Ck). In these coordinates,
the hyperplanes w = t in the domain are sent into hyperplanes y

1

= t in
the codomain, and so f can be described as a family of maps ft whose
domain and codomain has dimension reduced by 1. Since w = f

1

, the
derivative of f in these coordinates can be written

Df =
3

1 0
ú Dft

4
, (69)

and so a point xÕ = (t, p) in V is critical for f if and only if p is critical for
ft. Therefore, the critical values of f consist of the union of the critical
values of ft on each hyperplane y

1

= t in the codomain. Since the domain
of ft has dimension reduced by one, by induction it has critical values of
measure zero. So the critical values of f intersect each hyperplane in a set
of measure zero, and by Fubini’s theorem this means they have measure
zero. Cover C \ C

1

by countably many such neighbourhoods.

Remark 3.22. Note that f(C) is measurable, since it is the countable
union of compact subsets (the set of critical values is not necessarily closed,
but the set of critical points is closed and hence a countable union of
compact subsets, which implies the same of the critical values.)

To show the consequence of Fubini’s theorem directly, we can use the
following argument. First note that for any covering of [a, b] by intervals,
we may extract a finite subcovering of intervals whose total length is
Æ 2|b ≠ a|. To see this, first choose a minimal subcovering {I

1

, . . . , Ip},
numbered according to their left endpoints. Then the total overlap is at
most the length of [a, b]. Therefore the total length is at most 2|b ≠ a|.

Now let B µ Rn be compact, so that we may assume B µ Rn≠1 ◊[a, b].
We prove that if BflPc has measure zero in the hyperplane Pc = {xn = c},
for any constant c œ [a, b], then it has measure zero in Rn.

If BflPc has measure zero, we can find a covering by open sets Ri
c µ Pc

with total volume < ‘. For su�ciently small –c, the sets Ri
c◊[c≠–c, c+–c]

cover B fl
t

zœ[c≠–c,c+–c]

Pz (since B is compact). As we vary c, the sets
[c ≠ –c, c + –c] form a covering of [a, b], and we extract a finite subcover
{Ij} of total length Æ 2|b ≠ a|.

Let Ri
j be the set Ri

c for Ij = [c≠–c, c+–c]. Then the sets Ri
j ◊Ij form

a cover of B with total volume Æ 2‘|b ≠ a|. We can make this arbitrarily
small, so that B has measure zero.
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