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1 Manifolds
A manifold is a space which looks like Rn at small scales (i.e. “locally”),
but which may be very different from this at large scales (i.e. “globally”).
In other words, manifolds are made by gluing pieces of Rn together to
make a more complicated whole. We want to make this precise.

1.1 Topological manifolds
Definition 1.1. A real, n-dimensional topological manifold is a Hausdorff,
second countable topological space which is locally homeomorphic to Rn.

“Locally homeomorphic to Rn” simply means that each point p has
an open neighbourhood U for which we can find a homeomorphism ϕ :
U −→ V to an open subset V ⊂ Rn. Such a homeomorphism ϕ is called a
coordinate chart around p. A collection of charts which cover the manifold
is called an atlas.

We now give examples of topological manifolds. The simplest is, tech-
nically, the empty set. Then we have a countable set of points (with the
discrete topology), and Rn itself, but there are more:
Example 1.2 (open subsets). Any open subset U ⊂ M of a topological
manifold is also a topological manifold, where the charts are simply re-
strictions ϕ|U of charts ϕ for M . For instance, the real n × n matrices
Mat(n,R) form a vector space isomorphic to Rn

2
, and contain an open

subset
GL(n,R) = {A ∈ Mat(n,R) : detA 6= 0}, (1)

known as the general linear group, which is a topological manifold.
Example 1.3 (Circle). The circle is defined as the subspace of unit vec-
tors in R2:

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
Let N = (0, 1) be the north pole and let S = (0,−1) be the south pole
in Sn. Then we may write Sn as the union Sn = UN ∪ US , where UN =
Sn\{S} and US = Sn\{N} are equipped with coordinate charts ϕN , ϕS
into Rn, given by the “stereographic projections” from the points S,N
respectively

ϕN : (x, y) 7→ (1 + y)−1x, (2)
ϕS : (x, y) 7→ (1− y)−1x. (3)

By taking products of coordinate charts, we obtain charts for the
Cartesian product of manifolds. Hence the Cartesian product is a mani-
fold.
Example 1.4 (n-torus). S1 × · · · × S1 is a topological manifold (of di-
mension given by the number n of factors), with charts {ϕz1 ×· · ·×ϕzn :
zi ∈ S1}.

The circle is a 1-dimensional sphere; we now describe general spheres.
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Example 1.5 (Spheres). The n-sphere is defined as the subspace of unit
vectors in Rn+1:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑

x2
i = 1}.

Let N = (1, 0, . . . , 0) be the north pole and let S = (−1, 0, . . . , 0) be the
south pole in Sn. Then we may write Sn as the union Sn = UN ∪ US ,
where UN = Sn\{S} and US = Sn\{N} are equipped with coordinate
charts ϕN , ϕS into Rn, given by the “stereographic projections” from the
points S,N respectively

ϕN : (x0, ~x) 7→ (1 + x0)−1~x, (4)
ϕS : (x0, ~x) 7→ (1− x0)−1~x. (5)

Remark 1.6. We have endowed the sphere Sn with a certain topology,
but is it possible for another topological n-manifold S̃n to be homotopy
equivalent to Sn without being homeomorphic to it? Recall that homotopy
equivalence between the topological spaces M,N means the existence of
continuous maps F : M → N and G : N →M such that both F ◦G and
G ◦ F are homotopic (i.e. continuously deformable) to identity maps.

The answer is no, and this is known as the topological Poincaré con-
jecture, and is usually stated as follows: any homotopy n-sphere is home-
omorphic to the n-sphere. It was proven for n > 4 by Smale, for n = 4 by
Freedman, and for n = 3 is equivalent to the smooth Poincaré conjecture
which was proved by Hamilton-Perelman. In dimensions n = 1, 2 it is a
consequence of the classification of topological 1- and 2-manifolds.
Remark 1.7 (The Hausdorff and second countability axioms). Without
the Hausdorff assumption, we would have examples such as the following:
take the disjoint union R1tR2 of two copies of the real line, and form the
quotient by the equivalence relation

R1 \ {0} 3 x ∼ ϕ(x) ∈ R2 \ {0}, (6)

where ϕ is the identification R1 → R2. The resulting quotient topological
space is locally homeomorphic to R but the points [0 ∈ R1], [0 ∈ R2]
cannot be separated by open neighbourhoods.

Second countability is not as crucial, but will be necessary for the
proof of the Whitney embedding theorem, among other things.
Example 1.8 (Projective spaces). Let K = R or C. Then KPn is defined
to be the space of lines through {0} in Kn+1, and is called the projective
space over K of dimension n.

More precisely, let X = Kn+1\{0} and define an equivalence relation
on X via x ∼ y iff ∃λ ∈ K∗ = K\{0} such that λx = y, i.e. x, y lie on the
same line through the origin. Then

KPn = X/ ∼,

and it is equipped with the quotient topology.
The projection map π : X −→ KPn is an open map, since if U ⊂ X is

open, then tU is also open ∀t ∈ K∗, implying that ∪t∈K∗tU = π−1(π(U))
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is open, implying π(U) is open. This immediately shows, by the way, that
KPn is second countable.

To show KPn is Hausdorff (which we must do, since Hausdorff is pre-
served by subspaces and products, but not quotients), we show that the
graph of the equivalence relation is closed in X ×X. Since π, and hence
π × π are open, this implies that the diagonal is closed in KPn × KPn,
which is equivalent to the Hausdorff property. The graph in question is
by definition

Γ∼ = {(x, y) ∈ X ×X : x ∼ y},
and we notice that Γ∼ is actually the common zero set of the following
continuous functions

fij(x, y) = (xiyj − xjyi) i 6= j,

implying at once that it is a closed subset.
An atlas for KPn is given by the open sets Ui = π(Ũi), where

Ũi = {(x0, . . . , xn) ∈ X : xi 6= 0},

and these are equipped with charts to Kn given by

ϕi([x0, . . . , xn]) = x−1
i (x0, . . . , xi−1, xi+1, . . . , xn), (7)

which are indeed invertible by (y1, . . . , yn) 7→ (y1, . . . , yi, 1, yi+1, . . . , yn).
Sometimes one finds it useful to simply use the “coordinates” (x0, . . . , xn)

for KPn, with the understanding that the xi are well-defined only up to
overall rescaling. This is called using “projective coordinates” and in this
case a point in KPn is denoted by [x0 : · · · : xn].
Example 1.9 (Connected sum). Let p ∈ M and q ∈ N be points in
topological manifolds and let (U,ϕ) and (V, ψ) be charts around p, q such
that ϕ(p) = 0 and ψ(q) = 0.

Choose ε small enough so that B(0, 2ε) ⊂ ϕ(U) and B(0, 2ε) ⊂ ϕ(V ),
and define the map of annuli

B(0, 2ε)\B(0, ε)
φ // B(0, 2ε)\B(0, ε)

x
� // 2ε2

|x|2 x

(8)

This is a homeomorphism of the annulus to itself, exchanging the bound-
aries. Now we define a new topological manifold, called the connected sum
M#N , as the quotient X/ ∼, where

X = (M\ϕ−1(B(0, ε))) t (N\ψ−1(B(0, ε))),

and we define an identification x ∼ ψ−1φϕ(x) for x ∈ ϕ−1(B(0, 2ε)). If
AM and AN are atlases for M,N respectively, then a new atlas for the
connect sum is simply

AM |M\ϕ−1(B(0,ε)) ∪ AN |N\ψ−1(B(0,ε)).
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Remark 1.10. The connected sum operation as described above may be
viewed as an operation on the pair (L, {p, q}), where L = M t N is the
manifold formed by the disjoint union of M and N and {p, q} ⊂ L is a
set of two distinct points. The output of the connected sum is then the
manifold X/ ∼, where ∼ is as above and

X = L\(ϕ−1(B(0, ε)) t ψ−1(B(0, ε))).

The advantage of this formulation is that p, q need not be in the same
connected component: indeed we may perform the connected sum of any
manifold L with itself along a pair of points.
Remark 1.11. The homeomorphism type of the connected sum of con-
nected manifolds M,N is independent of the choices of p, q and ϕ,ψ,
except that it may depend on the two possible orientations of the gluing
map ψ−1φϕ. To prove this, one must appeal to the so-called annulus
theorem.
Remark 1.12. By iterated connect sum of S2 with T 2 and RP 2, we can
obtain all compact 2-dimensional manifolds.
Example 1.13. Let F be a topological space. A fiber bundle with fiber
F is a triple (E, p,B), where E,B are topological spaces called the “total
space” and “base”, respectively, and p : E −→ B is a continuous surjective
map called the “projection map”, such that, for each point b ∈ B, there
is a neighbourhood U of b and a homeomorphism

Φ : p−1U −→ U × F,

such that pU ◦ Φ = p, where pU : U × F −→ U is the usual projection.
The submanifold p−1(b) ∼= F is called the “fiber over b”.

When B,F are topological manifolds, then clearly E becomes one as
well. We will often encounter such manifolds.
Example 1.14 (General gluing construction). To construct a topologi-
cal manifold “from scratch”, we glue open subsets of Rn together using
homeomorphisms, as follows.

Begin with a countable collection of open subsets of Rn: A = {Ui}.
Then for each i, we choose finitely many open subsets Uij ⊂ Ui and gluing
maps

Uij
ϕij // Uji , (9)

which we require to satisfy ϕijϕji = IdUji , and such that ϕij(Uij ∩Uik) =
Uji ∩ Ujk for all k, and most important of all, ϕij must be homeomor-
phisms.

Next, we want the pairwise gluings to be consistent (transitive) and
so we require that ϕkiϕjkϕij = IdUij∩Ujk for all i, j, k. This will ensure
that the equivalence relation in (11) is well-defined.

Second countability of the glued manifold is guaranteed since we started
with a countable collection of opens, but the Hausdorff property is not
necessarily satisfied without a further assumption: we require that the
graph of ϕij , namely

{(x, ϕij(x)) : x ∈ Uij} (10)
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is a closed subset of Ui × Uj .
The final glued topological manifold is then

M =
⊔
Ui

∼ , (11)

for the equivalence relation x ∼ ϕij(x) for x ∈ Uij , for all i, j. This space
has a distinguished atlas A, whose charts are simply the inclusions of the
Ui in Rn.
Example 1.15 (Quotient construction). Let Γ be a group, and give it
the discrete topology. Suppose Γ acts continuously on the topological
n-manifold M , meaning that the action map

Γ×M
ρ // M

(h, x) � // h · x

is continuous. Suppose also that the action is free, i.e. the stabilizer of
each point is trivial. Suppose the action is properly discontinuous, meaning
that each x ∈ M has a neighbourhood U such that h · U is disjoint from
U for all nontrivial h ∈ Γ, that is, for all h 6= 1. Finally, assume that the
following subset is closed:

{(x, y) ∈M ×M : y = h · x for some h ∈ Γ}

Then M/Γ is a topological manifold and π : M →M/Γ is a local homeo-
morphism.
Example 1.16 (Mapping torus). Let M be a topological manifold and
φ : M →M a homeomorphism. Then

Mφ = (M × R) /Z

is a manifold, where k ∈ Z acts via k · (p, t) = (φk(p), t+k). This is called
the mapping torus of φ and is a fibre bundle over R/Z ∼= S1 with fibre M .

6



1.2 Smooth manifolds
Given coordinate charts (Ui, ϕi) and (Uj , ϕj) on a topological manifold,
we can compare them along the intersection Uij = Ui ∩ Uj , by forming
the “gluing map”

ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij) −→ ϕj(Uij). (12)

This is a homeomorphism, since it is a composition of homeomorphisms.
In this sense, topological manifolds are glued together by homeomor-
phisms.

This means that a given function on the manifold may happen to be
differentiable in one chart but not in another, if the gluing map between
the charts is not smooth – there is no way to make sense of calculus on
topological manifolds. This is why we introduce smooth manifolds, where
the gluing maps are smooth.
Remark 1.17 (Aside on smooth maps of vector spaces). Let U ⊂ V be
an open set in a finite-dimensional vector space, and let f : U −→W be a
function with values in another vector spaceW . We say f is differentiable
at p ∈ U if there is a linear map Df(p) : V −→W which approximates f
near p, meaning that

lim
x→0
x 6=0

||f(p+ x)− f(p)−Df(p)(x)||
||x|| = 0. (13)

Notice that Df(p) is uniquely characterized by the above property.
We have implicitly chosen inner products, and hence norms, on V and

W in the above definition, though the differentiability of f is independent
of this choice, since all norms are equivalent in finite dimensions. This is
no longer true for infinite-dimensional vector spaces, where the norm or
topology must be clearly specified andDf(p) is required to be a continuous
linear map. Most of what we do in this course can be developed in the
setting of Banach spaces, i.e. complete normed vector spaces.

A basis for V has a corresponding dual basis (x1, . . . , xn) of linear
functions on V , and we call these “coordinates”. Similarly, let (y1, . . . , ym)
be coordinates on W . Then the vector-valued function f has m scalar
components fj = yj ◦ f , and then the linear map Df(p) may be written,
relative to the chosen bases for V,W , as an m × n matrix, called the
Jacobian matrix of f at p.

Df(p) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 (14)

We say that f is differentiable in U when it is differentiable at all p ∈ U ,
and we say it is continuously differentiable when

Df : U −→ Hom(V,W ) (15)

is continuous. The vector space of continuously differentiable functions
on U with values in W is called C1(U,W ).
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Notice that the first derivative Df is itself a map from U to a vector
space Hom(V,W ), so if its derivative exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )), (16)

and so on. The vector space of k times continuously differentiable func-
tions on U with values in W is called Ck(U,W ). We are most interested
in C∞ or “smooth” maps, all of whose derivatives exist; the space of these
is denoted C∞(U,W ), and so we have

C∞(U,W ) =
⋂
k

Ck(U,W ). (17)

Note: for a C2 function, D2f actually has values in a smaller subspace
of V ∗⊗V ∗⊗W , namely in Sym2(V ∗)⊗W , since “mixed partials are equal”.
Definition 1.18. A smooth manifold is a topological manifold equipped
with an equivalence class of smooth atlases, as explained next.
Definition 1.19. An atlas A = {(Ui, ϕi)} for a topological manifold is
called smooth when all gluing maps

ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij) −→ ϕj(Uij) (18)

are smooth maps, i.e. lie in C∞(ϕi(Uij),Rn). Two atlases A,A′ are
equivalent if A ∪A′ is itself a smooth atlas.
Remark 1.20. Note that the gluing maps ϕj ◦ ϕ−1

i are not necessarily
defined on all of Rn. They only need be smooth on the open subset
ϕi(Ui ∩ Uj) ⊂ Rn.
Remark 1.21. Instead of requiring an atlas to be smooth, we could ask
for it to be Ck, or real-analytic, or even holomorphic (this makes sense for
a 2n-dimensional topological manifold when we identify R2n ∼= Cn). This
is how we define Ck, real-analytic, and complex manifolds, respectively.

We may now verify that all the examples from §1.1 are actually smooth
manifolds:
Example 1.22 (Spheres). The charts for the n-sphere given in Exam-
ple 1.5 form a smooth atlas, since

ϕN ◦ ϕ−1
S : ~z 7→ 1−x0

1+x0
~z = (1−x0)2

|~x|2 ~z = |~z|−2~z (19)

is a smooth map Rn \ {0} → Rn \ {0}, as required.
The Cartesian product of smooth manifolds inherits a natural smooth

structure from taking the Cartesian product of smooth atlases. Hence the
n-torus, for example, equipped with the atlas we described in Example 1.4,
is smooth. Example 1.2 is clearly defining a smooth manifold, since the
restriction of a smooth map to an open set is always smooth.
Example 1.23 (Projective spaces). The charts for projective spaces given
in Example 1.8 form a smooth atlas, since

ϕ1 ◦ ϕ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (20)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all ϕi, ϕj .
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The two remaining examples were constructed by gluing: the con-
nected sum in Example 1.9 is clearly smooth since φ is a smooth map,
and any topological manifold from Example 1.14 will be endowed with a
natural smooth atlas as long as the gluing maps ϕij are chosen to be C∞.

1.3 Manifolds with boundary
Manifolds with boundary relate manifolds of different dimension. Since
manifolds are not defined as subsets of another topological space, the
notion of boundary is not the usual one from point set topology. To
introduce boundaries, we change the local model for manifolds to

Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, (21)

with the induced topology from Rn.
Definition 1.24. A topological manifold with boundary M is a second
countable Hausdorff topological space which is locally homeomorphic to
Hn. Its boundary ∂M is the (n − 1) manifold consisting of all points
mapped to xn = 0 by a chart, and its interior IntM is the set of points
mapped to xn > 0 by some chart. It follows that M = ∂M t IntM .

A smooth structure on such a manifold with boundary is an equivalence
class of smooth atlases, with smoothness as defined below.
Definition 1.25. Let V,W be finite-dimensional vector spaces, as before.
A function f : A −→W from an arbitrary subset A ⊂ V is smooth when
it admits a smooth extension to an open neighbourhood Up ⊂W of every
point p ∈ A.
Example 1.26. The function f(x, y) = y is smooth on H2 but f(x, y) =√
y is not, since its derivatives do not extend to y ≤ 0.

Remark 1.27. If M is an n-manifold with boundary, then IntM is a
usual n-manifold (without boundary). Also, ∂M is an n − 1-manifold
without boundary. This is sometimes phrased as the equation

∂2 = 0. (22)

Example 1.28 (Möbius strip). Consider the quotient of R × [0, 1] by
the identification (x, y) ∼ (x+ 1, 1− y). The result E is a manifold with
boundary. It is also a fiber bundle over S1, via the map π : [(x, y)] 7→ e2πix.
The boundary, ∂E, is isomorphic to S1, so this provides us with our
first example of a non-trivial fiber bundle, since the trivial fiber bundle
S1 × [0, 1] has disconnected boundary.

1.4 Cobordism
Compact (n+1)-Manifolds with boundary provide us with a natural equiv-
alence relation on compact n-manifolds, called cobordism.
Definition 1.29. Compact n-manifoldsM1,M2 are cobordant when there
existsN , a compact n+1-manifold with boundary, such that ∂N is isomor-
phic to the disjoint union M1 tM2. All manifolds cobordant to M form
the cobordism class of M . We say that M is null-cobordant if M = ∂N
for N a compact n+ 1–manifold with boundary.
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Remark 1.30. It is important to assume compactness, otherwise all man-
ifolds are null-cobordant, by taking Cartesian product with the noncom-
pact manifold with boundary [0, 1).

Let Ωn be the set of cobordism classes of compact n-manifolds, includ-
ing the empty set ∅ as a compact n-manifold. Using the disjoint union
operation [M1] + [M2] = [M1 tM2], we see that Ωn is an abelian group
with identity [∅]. The additive inverse of [M ] is actually [M ] itself:
Proposition 1.31. The cobordism ring is 2-torsion, i.e. x+ x = 0 ∀x.

Proof. For any manifold M , the manifold with boundary M × [0, 1] has
boundary M tM . Hence [M ] + [M ] = [∅] = 0, as required.

The direct sum Ω• = ⊕n≥0Ωn is then endowed with another operation,

[M1] · [M2] = [M1 ×M2], (23)

rendering Ω• into a commutative ring, called the cobordism ring. It has
a multiplicative unit [∗], the class of the 0-manifold consisting of a single
point. It is also graded by dimension.
Example 1.32. The n-sphere Sn is null-cobordant (i.e. cobordant to ∅),
since ∂Bn+1(0, 1) ∼= Sn, where Bn+1(0, 1) denotes the unit ball in Rn+1.
Example 1.33. Any oriented compact 2-manifold is null-cobordant: we
may embed it in R3 and the “inside” is a 3-manifold with boundary.

We now state an amazing theorem of Thom, which is a complete de-
scription of the cobordism ring of smooth compact n-manifolds.
Theorem 1.34. The cobordism ring is a (countably generated) polynomial
ring over F2 with generators in every dimension n 6= 2k − 1, i.e.

Ω• = F2[x2, x4, x5, x6, x8, . . .]. (24)

This theorem implies that there are 3 cobordism classes in dimension
4, namely x2

2, x4, and x2
2 + x4. Can you find 4-manifolds representing

these classes? Can you find connected representatives?
Remark 1.35. Thom showed that for k even we can take xk = [RP k].
Dold showed that the family of manifolds

P (m,n) = (Sm × CPn)/((x, y) ∼ (−x, ȳ)),

and showed that for k = 2r(2s+ 1)− 1, we can take xk = [P (2r − 1, s2r)].
Remark 1.36. Two manifolds are cobordant if and only if their Stiefel-
Whitney characteristic numbers are the same. These numbers are built
out of the Stiefel-Whitney classes, which are topological invariants asso-
ciated to the tangent bundle of a manifold.
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1.5 Smooth maps
For topological manifolds M,N of dimension m,n, the natural notion of
morphism from M to N is that of a continuous map. A continuous map
with continuous inverse is then a homeomorphism from M to N , which
is the natural notion of equivalence for topological manifolds. Since the
composition of continuous maps is continuous, we obtain a “category” of
topological manifolds and continuous maps.

A category is a collection of objects C (in our case, topological mani-
folds) and a collection of arrows A (in our case, continuous maps). Each
arrow goes from an object (the source) to another object (the target),
meaning that there are “source” and “target” maps from A to C:

A
s
((

t

66 C (25)

Also, a category has an identity arrow for each object, given by a map
id : C −→ A (in our case, the identity map of any manifold to itself).
Furthermore, there is an associative composition operation on arrows.

Conventionally, we write the set of arrows from X to X as Hom(X,Y ),
i.e.

Hom(X,Y ) = {a ∈ A : s(a) = X and t(a) = Y }. (26)
Then the associative composition of arrows mentioned above becomes a
map

Hom(X,Y )×Hom(Y,Z)→ Hom(X,Z). (27)
We have described the category of topological manifolds; we now describe
the category of smooth manifolds by defining the notion of a smooth map.
Definition 1.37. A map f : M → N is called smooth when for each chart
(U,ϕ) for M and each chart (V, ψ) for N , the composition ψ ◦ f ◦ ϕ−1 is
a smooth map, i.e. ψ ◦ f ◦ ϕ−1 ∈ C∞(ϕ(U),Rn).

The set of smooth maps (i.e. morphisms) from M to N is denoted
C∞(M,N). A smooth map with a smooth inverse is called a diffeomor-
phism.
Proposition 1.38. If g : L→M and f : M → N are smooth maps, then
so is the composition f ◦ g.

Proof. If charts ϕ, χ, ψ for L,M,N are chosen near p ∈ L, g(p) ∈ M ,
and (fg)(p) ∈ N , then ψ ◦ (f ◦ g) ◦ ϕ−1 = A ◦ B, for A = ψfχ−1 and
B = χgϕ−1 both smooth mappings Rn → Rn. By the chain rule, A ◦ B
is differentiable at p, with derivative Dφ(p)(A ◦B) = (Dχ(g(p))A)(Dφ(p)B)
(matrix multiplication).

Now we have a new category, the category of smooth manifolds and
smooth maps; two manifolds are considered isomorphic when they are
diffeomorphic. In fact, the definitions above carry over, word for word, to
the setting of manifolds with boundary. Hence we have defined another
category, the category of smooth manifolds with boundary.

In defining the arrows for the category of manifolds with boundary,
we may choose to consider all smooth maps, or only those smooth maps
which send the boundary to the boundary, i.e. boundary-preserving maps.
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The operation ∂ of “taking the boundary” sends a manifold with
boundary to a usual manifold. Furthermore, if ψ : M → N is a boundary-
preserving smooth map, then we can “take its boundary” by restricting
it to the boundary, i.e. ∂ψ = ψ|∂M . Since ∂ takes objects to objects and
arrows to arrows in a manner which respects compositions and identity
maps, it is called a “functor” from the category of manifolds with bound-
ary (and boundary-preserving smooth maps) to the category of smooth
manifolds.
Example 1.39. The smooth inclusion j : S1 → C induces a smooth
inclusion j×j of the 2-torus T 2 = S1×S1 into C2. The image of j×j does
not include zero, so we may compose with the projection π : C2 \ {0} →
CP 1 and the diffeomorphism CP 1 → S2, to obtain a smooth map

π ◦ (j × j) : T 2 → S2. (28)

Remark 1.40 (Exotic smooth structures). The topological Poincaré con-
jecture, now proven, states that any topological manifold homotopic to
the n-sphere is in fact homeomorphic to it. We have now seen how to put
a differentiable structure on this n-sphere. Remarkably, there are other
differentiable structures on the n-sphere which are not diffeomorphic to
the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and
since the connected sum operation is well-defined as a smooth manifold,
it follows that the connected sum defines a monoid structure on the set of
smooth n-spheres. In fact, Kervaire and Milnor showed that for n 6= 4, the
set of (oriented) diffeomorphism classes of smooth n-spheres forms a finite
abelian group under the connected sum operation. This is not known to
be the case in four dimensions. Kervaire and Milnor also compute the
order of this group, and the first dimension where there is more than one
smooth sphere is n = 7, in which case they show there are 28 smooth
spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Eu-
clidean spaces: any differentiable manifold homeomorphic to Rn for n 6= 4
must be diffeomorphic to it. On the other hand, by results of Donaldson,
Freedman, Taubes, and Kirby, we know that there are uncountably many
non-diffeomorphic smooth structures on the topological manifold R4; these
are called fake R4s.
Remark 1.41. The maps α : x 7→ x and β : x 7→ x3 are both homeo-
morphisms from R to R. Each one defines, by itself, a smooth atlas on R.
These two smooth atlases are not compatible (why?), so they do not de-
fine the same smooth structure on R. Nevertheless, the smooth structures
are equivalent, since there is a diffeomorphism taking one to the other.
What is it?
Example 1.42 (Lie groups). A group is a set G with an associative mul-
tiplication G×G m // G , an identity element e ∈ G, and an inversion
map ι : G −→ G, usually written ι(g) = g−1.

If we endow G with a topology for which G is a topological manifold
and m, ι are continuous maps, then the resulting structure is called a

12



topological group. If G is a given a smooth structure and m, ι are smooth
maps, the result is a Lie group.

The real line (where m is given by addition), the circle (where m is
given by complex multiplication), and their Cartesian products give simple
but important examples of Lie groups. We have also seen the general
linear group GL(n,R), which is a Lie group since matrix multiplication
and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and
define smooth maps Lg : G −→ G and Rg : G −→ G via Lg(h) = gh and
Rg(h) = hg. These are called left multiplication and right multiplication.
Note that the group axioms imply that RgLh = LhRg.

13



2 The derivative
The derivative of a smooth map is an absolutely central topic in differential
geometry. To make sense of the derivative, however, we must introduce
the notion of tangent vector and, further, the space of all tangent vectors,
known as the tangent bundle. In this section, we describe the tangent
bundle intrinsically, without reference to any embedding of the manifold
in a vector space.

2.1 The tangent bundle
The tangent bundle of an n-manifold M is a 2n-manifold, called TM ,
naturally constructed in terms ofM . As a set, it is fairly easy to describe,
as simply the disjoint union of all tangent spaces. However we must
explain precisely what we mean by the tangent space TpM to p ∈M .
Definition 2.1. Let (U,ϕ), (V, ψ) be coordinate charts around p ∈ M .
Let u ∈ Tϕ(p)ϕ(U) and v ∈ Tψ(p)ψ(V ). Then the triples (U,ϕ, u), (V, ψ, v)
are called equivalent when D(ψ ◦ ϕ−1)(ϕ(p)) : u 7→ v. The chain rule
for derivatives Rn −→ Rn guarantees that this is indeed an equivalence
relation.

The set of equivalence classes of such triples is called the tangent space
to p of M , denoted TpM . It is a real vector space of dimension dimM ,
since both Tϕ(p)ϕ(U) and Tψ(p)ψ(V ) are, and D(ψ ◦ ϕ−1) is a linear iso-
morphism.

As a set, the tangent bundle is defined by

TM =
⊔
p∈M

TpM, (29)

and it is equipped with a natural surjective map π : TM −→M , which is
simply π(X) = x for X ∈ TxM .

We now give it a manifold structure in a natural way.
Proposition 2.2. For an n-manifold M , the set TM has a natural
topology and smooth structure which make it a 2n-manifold, and make
π : TM −→M a smooth map.

Proof. Any chart (U,ϕ) for M defines a bijection

Tϕ(U) ∼= U × Rn −→ π−1(U) (30)

via (p, v) 7→ (U,ϕ, v). Using this, we induce a smooth manifold structure
on π−1(U), and view the inverse of this map as a chart (π−1(U),Φ) to
ϕ(U)× Rn.

given another chart (V, ψ), we obtain another chart (π−1(V ),Ψ) and
we may compare them via

Ψ ◦ Φ−1 : ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn, (31)

which is given by (p, u) 7→ ((ψ ◦ϕ−1)(p), D(ψ ◦ϕ−1)pu), which is smooth.
Therefore we obtain a topology and smooth structure on all of TM (by
defining W to be open when W ∩ π−1(U) is open for every U in an atlas
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for M ; all that remains is to verify the Hausdorff property, which holds
since points x, y are either in the same chart (in which case it is obvious)
or they can be separated by the given type of charts.

Remark 2.3. This is a more constructive way of looking at the tangent
bundle: We choose a countable, locally finite atlas {(Ui, ϕi)} for M and
glue together Ui × Rn to Uj × Rn via an equivalence

(x, u) ∼ (y, v) ⇔ y = ϕj ◦ ϕ−1
i (x) and v = D(ϕj ◦ ϕ−1

i )xu, (32)

and verify the conditions of the general gluing construction 1.14. The
choice of a different atlas yields a canonically diffeomorphic manifold.

2.2 The derivative
A description of the tangent bundle is not complete without defining the
derivative of a general smooth map of manifolds f : M −→ N . Such a map
may be defined locally in charts (Ui, ϕi) for M and (Vα, ψα) for N as a
collection of vector-valued functions ψα◦f◦ϕ−1

i = fiα : ϕi(Ui) −→ ψα(Vα)
which satisfy

(ψβ ◦ ψ−1
α ) ◦ fiα = fjβ ◦ (ϕj ◦ ϕ−1

i ). (33)
Differentiating, we obtain

D(ψβ ◦ ψ−1
α ) ◦Dfiα = Dfjβ ◦D(ϕj ◦ ϕ−1

i ). (34)

Equation 34 shows that Dfiα and Dfjβ glue together to define a map
TM −→ TN . This map is called the derivative of f and is denoted
Df : TM −→ TN . Sometimes it is called the “push-forward” of vectors
and is denoted f∗. The map fits into the commutative diagram

TM
Df //

π

��

TN

π

��
M

f
// N

(35)

Each fiber π−1(x) = TxM ⊂ TM is a vector space, and the map Df :
TxM −→ Tf(x)N is a linear map. In fact, (f,Df) defines a homomorphism
of vector bundles from TM to TN .

The usual chain rule for derivatives then implies that if f ◦ g = h
as maps of manifolds, then Df ◦ Dg = Dh. As a result, we obtain the
following category-theoretic statement.
Proposition 2.4. The mapping T which assigns to a manifold M its
tangent bundle TM , and which assigns to a map f : M −→ N its deriva-
tive Df : TM −→ TN , is a functor from the category of manifolds and
smooth maps to itself1.

For this reason, the derivative map Df is sometimes called the “tan-
gent mapping” Tf .

1We can also say that it is a functor from manifolds to the category of smooth vector
bundles.
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2.3 Vector fields
A vector field on an open subset U ⊂ V of a vector space V is what
we usually call a vector-valued function, i.e. a function X : U → V .
If (x1, . . . , xn) is a basis for V ∗, hence a coordinate system for V , then
the constant vector fields dual to this basis are usually denoted in the
following way: (

∂

∂x1
, . . . ,

∂

∂xn

)
. (36)

The reason for this notation is that we may identify a vector v with the
operator of directional derivative in the direction v. We will see later that
vector fields may be viewed as derivations on functions. A derivation is
a linear map D from smooth functions to R satisfying the Leibniz rule
D(fg) = fDg + gDf .

The tangent bundle allows us to make sense of the notion of vector
field in a global way. Locally, in a chart (Ui, ϕi), we would say that a
vector field Xi is simply a vector-valued function on Ui, i.e. a function
Xi : ϕ(Ui) −→ Rn. Of course if we had another vector fieldXj on (Uj , ϕj),
then the two would agree as vector fields on the overlap Ui ∩ Uj when
D(ϕj ◦ϕ−1

i ) : Xi 7→ Xj . So, if we specify a collection {Xi ∈ C∞(Ui,Rn)}
which glue together on overlaps, it defines a global vector field.
Definition 2.5. A smooth vector field on the manifold M is a smooth
map X : M −→ TM such that π ◦ X = idM . In words, it is a smooth
assignment of a unique tangent vector to each point in M .

Such maps X are also called cross-sections or simply sections of the
tangent bundle TM , and the set of all such sections is denoted C∞(M,TM)
or, better, Γ∞(M,TM), to distinguish them from all smooth mapsM −→
TM . The space vector fields is also sometimes denoted by X(M).
Example 2.6. From a computational point of view, given an atlas (Ũi, ϕi)
for M , let Ui = ϕi(Ũi) ⊂ Rn and let ϕij = ϕj ◦ ϕ−1

i . Then a global vec-
tor field X ∈ Γ∞(M,TM) is specified by a collection of vector-valued
functions

Xi : Ui −→ Rn, (37)
such that

Dϕij(Xi(x)) = Xj(ϕij(x)) (38)
for all x ∈ ϕi(Ũi ∩ Ũj). For example, if S1 = U0 t U1/ ∼, with U0 = R
and U1 = R, with x ∈ U0\{0} ∼ y ∈ U1\{0} whenever y = x−1, then
ϕ01 : x 7→ x−1 and Dϕ01(x) : v 7→ −x−2v. Then if we define (letting x be
the standard coordinate along R)

X0 = ∂

∂x

X1 = −y2 ∂

∂y
,

we see that this defines a global vector field, which does not vanish in U0
but vanishes to order 2 at a single point in U1. Find the local expression in
these charts for the rotational vector field on S1 given in polar coordinates
by ∂

∂θ
.
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Remark 2.7. While a vector v ∈ TpM is mapped to a vector (Df)p(v) ∈
Tf(p)N by the derivative of a map f ∈ C∞(M,N), there is no way, in
general, to transport a vector field X on M to a vector field on N . If f is
invertible, then of course Df ◦X ◦f−1 : N → TN defines a vector field on
N , which can be called f∗X, but if f is not invertible this approach fails.
Definition 2.8. We say that X ∈ X(M) and Y ∈ X(N) are f–related,
for f ∈ C∞(M,N), when the following diagram commutes

TM
Df // TN

M

X

OO

f
// N

Y

OO .

(39)
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2.4 Flow of a vector field
A smooth curve in the manifold M is by definition a smooth map from R
to M

γ : R→M.

The domain R has a natural coordinate t, and a natural coordinate vector
field ∂

∂t
, and if we apply the derivative of γ to this vector field, we get the

velocity of the path, defined as follows:

γ̇(t) = (Dγ)|t( ∂∂t ).

The velocity is therefore a path in TM which “lifts the path γ”, in the
sense that the following diagram commutes:

TM

π

��
R

γ
//

γ̇

==

M

Given a vector field X ∈ X(M) and an initial point x ∈M , there is a
natural dynamical system, where x is made to evolve in time according to
the rule that its velocity at all times must coincide with the vector field
X. This idea is captured in the following precise way.
Definition 2.9. The smooth curve γ is called an integral curve of the
vector field X ∈ X(M) when its velocity is X, that is,

γ̇(t) = X(γ(t)). (40)

If we choose a coordinate chart (U,Ψ) for M containing the path γ,
we may write γ in components: Ψ ◦ γ is nothing but an n-tuple of func-
tions (γ1, . . . , γn) of one variable t. Also, using the chart we may write
the vector field X in components, giving a vector-valued function of n
variables

(X1(x1, . . . , xn), . . . , Xn(x1, . . . , xn)).
Then the integral curve equation (40), written in components, states that

d
dt

(γi) = Xi(γ1, . . . γn), i = 1, . . . , n.

This is a system of ordinary differential equations, and so the existence and
uniqueness theorem for ODE guarantees that it has a unique solution on
some time interval (−ε, ε), ε > 0, once an initial point (γ1(0), . . . , γn(0)) is
chosen. This tells us that integral curves γ always exist and are unique in
a neighbourhood of zero once we fix γ(0). In fact, the theorem also guar-
antees that the integral curve depends smoothly on the initial condition.
We may state the theorem from ODE as follows:
Theorem 2.10 (Existence and uniqueness theorem for ODE). Let X be
a vector field defined on an open set V ⊂ Rn. For each point x0 ∈ V there
exists a neighbourhood U of x0 in V , a number ε > 0, and a smooth map

Φ : (−ε, ε)× U → V

(t, x) 7→ ϕt(x),
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such that for all x ∈ U , the curve t 7→ ϕt(x) is an integral curve of X with
initial condition ϕ0(x) = x. Furthermore, if (U ′, ε′,Φ′) is another tuple
satisfying the same conditions, then Φ coincides with Φ′ on (−τ, τ)× (U ∩
U ′), where τ = min(ε, ε′).
Corollary 2.11. Let X ∈ X(M). There exists an open neighbourhood U
of {0} ×M in R×M and a smooth map Φ : U → M such that, for each
x ∈M , we have

i) (R× {x}) ∩ U is an interval about zero;
ii) t 7→ ϕt(y) = Φ(t, y) is an integral curve of X;
iii) ϕ0(y) = y;
iv) if (t, x), (t+ t′, x), (t′, ϕt(x)) are all in U then ϕt′(ϕt(x)) = ϕt+t′(x).

Furthermore, if (U ′,Φ′) is as above and satisfies i), ii), iii), then it must
satisfy iv), and Φ = Φ′ on U ∩ U ′.

Proof. Using the previous theorem, we can find an open cover (Ui)i∈I of
M and a sequence (εi)i∈I , εi > 0, and maps Φi : (−εi, εi) × Ui → M
with the properties given in the theorem. By the uniqueness given in
the theorem, Φi coincides with Φj on the intersection of their respective
domains, and so we obtain a well-defined map

Φ : U =
⋃
i∈I

((−εi, εi)× Ui)→M.

By construction, Φ satisfies properties i), ii), iii). To verify property iv),
notice that τ 7→ ϕτ (ϕt(x)) and τ 7→ ϕt+τ (x), for 0 ≤ τ ≤ t′, are both
integral curves for X with initial condition ϕt(x), and so must coincide,
in particular the coincide for τ = t′. The final uniqueness statement is
proven exactly in the same way.

Such data (U,Φ) is sometimes called the flow of the vector field X.
More precisely, it is called a local 1-parameter group of diffeomorphisms
generated by X, for the simple reason that if W ⊂M is an open set such
that {t}×W and {−t}×ϕt(W ) are contained in U , then ϕt : W → ϕt(W )
is a diffeomorphism with inverse ϕ−t. Furthermore, if {t′} × ϕt(W ) and
{t+ t′} ×W are contained in U , then we have the composition law

ϕt′ ◦ ϕt = ϕt′+t, or etX ◦ et
′X = e(t+t′)X ,

if we use the exponential notation ϕt = etX to emphasize this group struc-
ture. Note that this is an intrinsic family of diffeomorphisms associated
to X, and does not coincide with the Riemannian exponential map in
Riemannian geometry, which uses the geodesic flow.

If the domain U is actually the whole of R × M , then we call this
structure a global 1-parameter group of diffeomorphisms. Note that, due
to the uniqueness in Corollary 2.11, we may take the union of all possible
domains of local 1-parameter groups of diffeomorphisms generated by X;
this is the unique maximal local 1-parameter group of diffeomorphisms
generated by X.
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Definition 2.12. The vector field X is complete when it generates a
global 1-parameter group of diffeomorphisms. That is, its flow is defined
for all time.
Theorem 2.13. Any vector field on a compact manifold is complete.

Proof. Let (U,Φ) be the maximal local 1-parameter group of diffeomor-
phisms generated by X. For a contradiction, suppose that x ∈ M is
such that U ∩ (R× {x}) is an open interval with finite upper limit ω (the
lower limit case is done similarly). Now using compactness, let y be an
accumulation point for Φ(t, x) as t approaches ω. We may then use the
flow defined near y to extend Φ(t, x) as follows, which contradicts the
maximality of Φ:

Let δ > 0 and a neighbourhood W of y be sufficiently small that
(−δ, δ) ×W ⊂ U , and let τ ∈ (ω − δ, ω) be such that ϕτ (x) ∈ W . Then
we can find a neighbourhood V of x with the property that {τ} × V ⊂ U
and ϕτ (V ) ⊂ W . Then if we enlarge U to U ∪ ((ω − δ, ω + δ) × V ), we
can extend Φ by

Φ′(t, x) = Φ(t− τ,Φ(τ, x)), for (t, x) ∈ (ω − δ, ω + δ)× V.

Example 2.14. The vector field X = x2 ∂
∂x

on R is not complete. For
initial condition x0, have integral curve γ(t) = x0(1− tx0)−1, which gives
Φ(t, x0) = x0(1− tx0)−1, which is well-defined on

U = {1− tx > 0} ⊂ R× R.
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2.5 Local structure of smooth maps
In some ways, smooth manifolds are easier to produce or find than general
topological manifolds, because of the fact that smooth maps have linear
approximations. Therefore smooth maps often behave like linear maps of
vector spaces, and we may gain inspiration from vector space construc-
tions (e.g. subspace, kernel, image, cokernel) to produce new examples of
manifolds.

In charts (U,ϕ), (V, ψ) for the smooth manifoldsM,N , a smooth map
f : M −→ N is represented by a smooth map ψ◦f ◦ϕ−1 ∈ C∞(ϕ(U),Rn).
We shall give a general local classification of such maps, based on the
behaviour of the derivative. The fundamental result which provides in-
formation about the map based on its derivative is the inverse function
theorem.
Theorem 2.15 (Inverse function theorem). Let f : (M,p)→ (N, q) be a
smooth map of n-dimensional manifolds and suppose that Df(p) : TpM →
TqN is invertible. Then f has a local smooth inverse. That is, there are
neighbourhoods U, V of p, q and a smooth map g : V → U such that
f ◦ g = idV and g ◦ f = idU .

Proof. Without loss of generality, we can take M to be a neighbourhood
of the origin in Rn and N = Rn, and assume that f(0) = 0. We can
also assume Df(p) = Id, since we can replace f by (Df(0))−1 ◦ f (linear
change of variables). We are trying to invert f , so solve the equation
y = f(x) uniquely for x. Define k so that f(x) = x+ k(x). Hence k(x) is
the nonlinear part of f .

The claim is that if y is in a sufficiently small neighbourhood of the
origin, then the map hy : x 7→ y− k(x) is a contraction mapping on some
closed ball; it then has a unique fixed point g(y), and so y−k(g(y)) = g(y),
i.e. g is an inverse for f .

Why is hy a contraction mapping? Note that Dhy(0) = 0 and hence
there is a ball B(0, r) where ||Dhy|| ≤ 1

2 . This then implies (mean value
theorem) that for x, x′ ∈ B(0, r),

||hy(x)− hy(x′)|| ≤ 1
2 ||x− x

′||.

Therefore hy does look like a contraction, we just have to make sure it’s
operating on a complete metric space. Let’s estimate the size of hy(x):

||hy(x)|| ≤ ||hy(x)− hy(0)||+ ||hy(0)|| ≤ 1
2 ||x||+ ||y||.

Therefore by taking y ∈ B(0, r2 ), the map hy is a contraction mapping
on B(0, r). Let g(y) be the unique fixed point of hy guaranteed by the
contraction mapping theorem.

To see that φ is continuous (and hence f is a homeomorphism), we
compute

||g(y)− g(y′)|| = ||hy(g(y))− hy′(g(y′))||
≤ ||hy(g(y))− hy(g(y′))||+ ||y − y′||
≤ 1

2 ||g(y)− g(y′)||+ ||y − y′||,
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so that we have ||g(y)− g(y′)|| ≤ 2||y − y′||, as required.
Having shown that g is continuous, we can choose an open set U ⊂

B(0, r) and define V = g−1(U) ⊂ B(0, r2 ). Then f ◦ g = idV by the fixed
point property and g ◦ f = idU by the uniqueness of fixed points in the
closed ball, proving that f : U → V is indeed a homeomorphism.

To see that g is differentiable, we guess the derivative (Df)−1 and
compute. Let x = g(y) and x′ = g(y′). For this to make sense we must
have chosen r small enough so that Df is nonsingular on B(0, r), which
is not a problem.

||g(y)− g(y′)− (Df(x))−1(y − y′)|| = ||x− x′ − (Df(x))−1(f(x)− f(x′))||
≤ ||(Df(x))−1||||(Df(x))(x− x′)− (f(x)− f(x′))||.

Now note that ||(Df(x))−1|| is bounded and ||x − x′|| ≤ 2||y − y′|| as
shown before. Dividing by ||y − y′||, taking the limit y → y′, and using
the differentiability of f , we get that g is differentiable, and with derivative
(Df)−1. That is,

Dg = (Df)−1. (41)
Since inversion is C∞, g has as many derivatives as f , hence g is C∞.

This theorem provides us with a local normal form for a smooth map
with Df(p) invertible: we may choose coordinates on sufficiently small
neighbourhoods of p, f(p) so that f is represented by the identity map
Rn −→ Rn.

In fact, the inverse function theorem leads to a normal form theorem
for a more general class of maps:
Theorem 2.16 (Constant rank theorem). Let f : Mm → Nn be a smooth
map such that Df has constant rank k in a neighbourhood of p ∈M . Then
there are charts (U,ϕ) and (V, ψ) containing p, f(p) such that

ψ ◦ f ◦ ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0). (42)

Proof. Begin by choosing charts so that without loss of generality M is
an open set in Rm and N is Rn.

Since rk Df = k at p, there is a k × k minor of Df(p) with nonzero
determinant. Reorder the coordinates on Rm and Rn so that this minor is
top left, and translate coordinates so that f(0) = 0. label the coordinates
(x1, . . . , xk, y1, . . . ym−k) on the domain and (u1, . . . uk, v1, . . . , vn−k) on
the codomain.

Then we may write f(x, y) = (Q(x, y), R(x, y)), where Q is the pro-
jection to u = (u1, . . . , uk) and R is the projection to v. with ∂Q

∂x
non-

singular. First we wish to put Q into normal form. Consider the map
φ(x, y) = (Q(x, y), y), which has derivative

Dφ =
(

∂Q
∂x

∂Q
∂y

0 1

)
(43)

As a result we see Dφ(0) is nonsingular and hence there exists a local
inverse φ−1(x, y) = (A(x, y), B(x, y)). Since it’s an inverse this means
(x, y) = φ(φ−1(x, y)) = (Q(A,B), B), which implies that B(x, y) = y.
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Then f ◦ φ−1 : (x, y) 7→ (x, S = R(A, y)), and must still be of rank k.
Since its derivative is

D(f ◦ φ−1) =
(

Ik×k 0
∂S
∂x

∂S
∂y

)
(44)

we conclude that ∂S
∂y

= 0, meaning that we have eliminated the y-dependence:

f ◦ φ−1 : (x, y) 7→ (x, S(x)). (45)

We now postcompose by the diffeomorphism σ : (u, v) 7→ (u, v−S(u)), to
obtain

σ ◦ f ◦ φ−1 : (x, y) 7→ (x, 0), (46)
as required.

As we shall see, these theorems have many uses. One of the most
straightforward uses is for defining submanifolds.

There are several ways to define the notion of submanifold. We will
use a definition which works for topological and smooth manifolds, based
on the local model of inclusion of a vector subspace. These are sometimes
called regular or embedded submanifolds.
Definition 2.17. A subspace L ⊂ M of an m-manifold is called a sub-
manifold of codimension k when each point x ∈ L is contained in a chart
(U,ϕ) for M such that

L ∩ U = f−1(0), (47)
where f is the composition of ϕ with the projection Rm → Rk to the
last k coordinates (xm−k+1, . . . , xm). A submanifold of codimension 1 is
usually called a hypersurface.
Proposition 2.18. If f : M −→ N is a smooth map of manifolds, and if
Df(p) has constant rank on M , then for any q ∈ f(M), the inverse image
f−1(q) ⊂M is a regular submanifold.

Proof. Let x ∈ f−1(q). Then there exist charts ψ,ϕ such that ψ◦f ◦ϕ−1 :
(x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0) and f−1(q) ∩ U = {x1 = · · · = xk =
0}. Hence we obtain that f−1(q) is a codimension k submanifold.

Example 2.19. Let f : Rn −→ R be given by (x1, . . . , xn) 7→
∑

x2
i .

Then Df(x) = (2x1, . . . , 2xn), which has rank 1 at all points in Rn\{0}.
Hence since f−1(q) contains {0} iff q = 0, we see that f−1(q) is a regular
submanifold for all q 6= 0. Exercise: show that this manifold structure is
compatible with that obtained in Example 1.22.

The previous example leads to the following special case.
Proposition 2.20. If f : M −→ N is a smooth map of manifolds and
Df(p) has rank equal to dimN along f−1(q), then this subset f−1(q) is
an embedded submanifold of M .

Proof. Since the rank is maximal along f−1(q), it must be maximal in an
open neighbourhood U ⊂ M containing f−1(q), and hence f : U −→ N
is of constant rank.
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Definition 2.21. If f : M −→ N is a smooth map such that Df(p) is
surjective, then p is called a regular point. Otherwise p is called a critical
point. If all points in the level set f−1(q) are regular points, then q is
called a regular value, otherwise q is called a critical value. In particular,
if f−1(q) = ∅, then q is regular.

It is often useful to highlight two classes of smooth maps; those for
which Df is everywhere injective, or, on the other hand surjective.
Definition 2.22. A smooth map f : M −→ N is called a submersion
when Df(p) is surjective at all points p ∈M , and is called an immersion
when Df(p) is injective at all points p ∈M . If f is an injective immersion
which is a homeomorphism onto its image (when the image is equipped
with subspace topology), then we call f an embedding.
Proposition 2.23. If f : M −→ N is an embedding, then f(M) is a
regular submanifold.

Proof. Let f : M −→ N be an embedding. Then for all m ∈M , we have
charts (U,ϕ), (V, ψ) where ψ◦f◦ϕ−1 : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).
If f(U) = f(M)∩V , we’re done. To make sure that some other piece ofM
doesn’t get sent into the neighbourhood, use the fact that f(U) is open in
the subspace topology. This means we can find a smaller open set V ′ ⊂ V
such that V ′ ∩ f(M) = f(U). Restricting the coordinates to V ′, we see
that f(M) is cut out by (xm+1, . . . , xn), where n = dimN .

Example 2.24. If ι : M −→ N is an embedding of M into N , then Dι :
TM −→ TN is also an embedding (hence so are Dkι : T kM −→ T kN),
showing that TM is a submanifold of TN .

2.6 Smooth maps between manifolds with bound-
ary
We may also use the constant rank theorem to study manifolds with
boundary.
Proposition 2.25. Let M be a smooth n-manifold and f : M −→ R
a smooth and proper real-valued function, and let a, b, with a < b, be
regular values of f . Then f−1([a, b]) is a cobordism between the closed
n− 1-manifolds f−1(a) and f−1(b).

Proof. The pre-image f−1((a, b)) is an open subset of M and hence a
submanifold. Since p is regular for all p ∈ f−1(a), we may (by the constant
rank theorem) find charts such that f is given near p by the linear map

(x1, . . . , xm) 7→ xm. (48)

Possibly replacing xm by −xm, we therefore obtain a chart near p for
f−1([a, b]) into Hm, as required. Proceed similarly for p ∈ f−1(b).

Example 2.26. Using f : Rn −→ R given by (x1, . . . , xn) 7→
∑

x2
i ,

this gives a simple proof for the fact that the closed unit ball B(0, 1) =
f−1([−1, 1]) is a manifold with boundary.
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Example 2.27. Consider the C∞ function f : R3 −→ R given by
(x, y, z) 7→ x2 + y2 − z2. Both +1 and −1 are regular values for this
map, with pre-images given by 1- and 2-sheeted hyperboloids, respec-
tively. Hence f−1([−1, 1]) is a cobordism between hyperboloids of 1 and 2
sheets. In other words, it defines a cobordism between the disjoint union
of two closed disks and the closed cylinder (each of which has boundary
S1 t S1). Does this cobordism tell us something about the cobordism
class of a connected sum?
Proposition 2.28. Let f : M −→ N be a smooth map from a manifold
with boundary to the manifold N . Suppose that q ∈ N is a regular value
of f and also of f |∂M . Then the pre-image f−1(q) is a submanifold with
boundary2. Furthermore, the boundary of f−1(q) is simply its intersection
with ∂M .

Proof. If p ∈ f−1(q) is not in ∂M , then as before f−1(q) is a submanifold
in a neighbourhood of p. Therefore suppose p ∈ ∂M ∩f−1(q). Pick charts
ϕ,ψ so that ϕ(p) = 0 and ψ(q) = 0, and ψfϕ−1 is a map U ⊂ Hm −→ Rn.
Extend this to a smooth function f̃ defined in an open set Ũ ⊂ Rm
containing U . Shrinking Ũ if necessary, we may assume f̃ is regular on
Ũ . Hence f̃−1(0) is a submanifold of Rm of codimension n.

Now consider the real-valued function π : f̃−1(0) −→ R given by the
restriction of (x1, . . . , xm) 7→ xm. 0 ∈ R must be a regular value of π,
since if not, then the tangent space to f̃−1(0) at 0 would lie completely
in xm = 0, which contradicts the fact that q is a regular point for f |∂M .

Hence, by Proposition 2.25, we have expressed f−1(q), in a neighbour-
hood of p, as a regular submanifold with boundary given by {ϕ−1(x) :
x ∈ f̃−1(0) and π(x) ≥ 0}, as required.

2i.e. locally modeled on the inclusion Hk ⊂ Hn given by (x1, . . . xk) 7→ (0, . . . , 0, x1, . . . xk).
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3 Transversality
We continue to use the constant rank theorem to produce more manifolds,
except now these will be cut out only locally by functions. Globally,
they are cut out by intersecting with another submanifold. You should
think that intersecting with a submanifold locally imposes a number of
constraints equal to its codimension.

The problem is that the intersection of submanifolds need not be a
submanifold; this is why the condition of transversality is so important -
it guarantees that intersections are smooth.

Two subspaces K,L ⊂ V of a vector space V are transverse when
K + L = V , i.e. every vector in V may be written as a (possibly non-
unique) linear combination of vectors in K and L. In this situation one
can easily see that dimV = dimK + dimL− dimK ∩ L, or equivalently

codim(K ∩ L) = codimK + codimL. (49)

We may apply this to submanifolds as follows:
Definition 3.1. Let K,L ⊂ M be regular submanifolds such that every
point p ∈ K ∩ L satisfies

TpK + TpL = TpM. (50)

Then K,L are said to be transverse submanifolds and we write K ∩| L.
Proposition 3.2. If K,L ⊂M are transverse submanifolds, then K ∩ L
is either empty, or a submanifold of codimension codimK + codimL.

Proof. Let p ∈ K ∩L. Then there are neighbourhoods U, V of p for which
K ∩U = f−1(0) for 0 a regular value of a function f : U −→ RcodimK and
L ∩ V = g−1(0) for 0 a regular value of a function g : V −→ RcodimL.

Then p must be a regular point for (f, g) : U ∩V −→ RcodimK+codimL,
since the kernel of its derivative at p is the intersection kerDf(p) ∩
kerDg(p), which is exactly TpK ∩TpL, which has codimension codimK+
codimL by the transversality assumption, implying D(f, g)(p) is surjec-
tive. Therefore (f, g)−1(0, 0) = f−1(0) ∩ g−1(0) = K ∩ L ∩ U ∩ V is a
submanifold. Since this is true for all p ∈ K ∩L, we obtain that K ∩L is
a submanifold of M , as required. Since Tp(K ∩ L) = TpK ∩ TpL, we see
that K ∩ L has codimension codimL+ codimK.

Example 3.3 (Exotic spheres). Consider the following intersections in
C5\0:

S7
k = {z2

1 +z2
2 +z2

3 +z3
4 +z6k−1

5 = 0}∩{|z1|2+|z2|2+|z3|2+|z4|2+|z5|2 = 1}.
(51)

This is a transverse intersection, and for k = 1, . . . , 28 the intersection
is a smooth manifold homeomorphic to S7. These exotic 7-spheres were
constructed by Brieskorn and represent each of the 28 diffeomorphism
classes on S7.

We may choose to phrase the previous transversality result in a slightly
different way, in terms of the embedding maps k, l for K,L in M . Specif-
ically, we say the maps k, l are transverse in the sense that ∀a ∈ K, b ∈ L
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such that k(a) = l(b) = p, we have im(Dk(a)) + im(Dl(b)) = TpM . The
advantage of this approach is that it makes sense for any maps, not nec-
essarily embeddings.
Definition 3.4. Two maps f : K −→ M , g : L −→ M of manifolds are
called transverse when im(Df(a)) + im(Dg(b)) = TpM for all a, b, p such
that f(a) = g(b) = p.
Proposition 3.5. If f : K −→ M , g : L −→ M are transverse smooth
maps, then Kf×gL = {(a, b) ∈ K × L : f(a) = g(b)} is naturally a
smooth manifold equipped with commuting maps

K × L
p2

))
p1

��

Kf×gL
i

ee

��

//

f∩g

##

L

g

��
K

f
// M

(52)

where i is the inclusion and f ∩ g : (a, b) 7→ f(a) = g(b).
The manifold Kf×gL of the previous proposition is called the fiber

product of K with L over M , and is a generalization of the intersection
product. It is often denoted simply by K ×M L, when the maps to M are
clear.

Proof. Consider the graphs Γf ⊂ K ×M and Γg ⊂ L ×M . To impose
f(k) = g(l), we can take an intersection with the diagonal submanifold

∆ = {(k,m, l,m) ∈ K ×M × L×M}. (53)

Step 1. We show that the intersection Γ = (Γf × Γg) ∩∆ is transverse.
Let f(k) = g(l) = m so that x = (k,m, l,m) ∈ Γ, and note that

Tx(Γf × Γg) = {((v,Df(v)), (w,Dg(w))), v ∈ TkK, w ∈ TlL} (54)

whereas we also have

Tx(∆) = {((v,m), (w,m)) : v ∈ TkK, w ∈ TlL, m ∈ TpM} (55)

By transversality of f, g, any tangent vector mi ∈ TpM may be written
as Df(vi) + Dg(wi) for some (vi, wi), i = 1, 2. In particular, we may
decompose a general tangent vector to M ×M as

(m1,m2) = (Df(v2), Df(v2))+(Dg(w1), Dg(w1))+(Df(v1−v2), Dg(w2−w1)),
(56)

leading directly to the transversality of the spaces (54), (55). This shows
that Γ is a submanifold of K ×M × L×M .
Step 2. The projection map π : K×M×L×M → K×L takes Γ bijectively
to Kf×gL. Since (54) is a graph, it follows that π|Γ : Γ → K × L is an
injective immersion. Since the projection π is an open map, it also follows
that π|Γ is a homeomorphism onto its image, hence is an embedding. This
shows that Kf×gL is a submanifold of K × L.
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Example 3.6. If K1 = M ×Z1 and K2 = M ×Z2, we may view both Ki

as “fibering” over M with fibers Zi. If pi are the projections to M , then
K1 ×M K2 = M × Z1 × Z2, hence the name “fiber product”.
Example 3.7. Let L ⊂ M be a submanifold and let f : K → M be
“transverse to L” in the sense that f is transverse to the embedding ιL :
L→M . This means that for each pair (k, l) such that f(k) = l, we have
Df(TkK) + TlL = TlM . Under this condition, the theorem implies that

f−1(L) = {k ∈ K : f(k) ∈ L}

is a smooth submanifold of K (Why?) This is a generalization of the
regular value theorem.
Example 3.8. Consider the Hopf map p : S3 −→ S2 given by composing
the embedding S3 ⊂ C2\{0} with the projection π : C2\{0} −→ CP 1 ∼=
S2. Then for any point q ∈ S2, p−1(q) ∼= S1. Since p is a submersion, it
is obviously transverse to itself, hence we may form the fiber product

S3 ×S2 S3,

which is a smooth 4-manifold equipped with a map p∩p to S2 with fibers
(p ∩ p)−1(q) ∼= S1 × S1.

These are our first examples of nontrivial fiber bundles, which we shall
explore later.
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3.1 Stability
Transversality is a stable condition. In other words, if transversality holds,
it will continue to hold for any sufficiently small perturbation (of the
submanifolds or maps involved). Not only is transversality stable, it is
actually generic, meaning that even if it does not hold, it can be made to
hold by a small perturbation. In a sense, stability says that transversal
maps form an open set, and genericity says that this open set is dense in
the space of maps. To make this precise, we would introduce a topology
on the space of maps, something which we leave for another course.
Definition 3.9. We call a smooth map

F : M × [0, 1]→ N (57)

a smooth homotopy from f0 to f1, where ft = F◦jt and jt : M →M×[0, 1]
is the embedding x 7→ (x, t).
Definition 3.10. A property of a smooth map f : M −→ N is stable
under perturbations when for any smooth homotopy ft with f0 = f ,
there exists an ε > 0 such that the property holds for all ft with t < ε.
Proposition 3.11. If M is compact, then the property of f : M → N
being an immersion (or submersion) is stable under perturbations.

Proof. If ft, t ∈ [0, 1] is a smooth homotopy of the immersion f0, then in
any chart around the point p ∈M , the derivative Df0(p) has am×m sub-
matrix with nonvanishing determinant, for m = dimM . By continuity,
this m × m submatrix must have nonvanishing determinant in a neigh-
bourhood around (p, 0) ∈ M × [0, 1]. We can cover M × {0} by a finite
number of such neighbourhoods, since M is compact. Choose ε such that
M × [0, ε) is contained in the union of these intervals, giving the result.
The proof for submersions is identical.

Corollary 3.12. If K is compact and f : K → M is transverse to the
closed submanifold L ⊂M (this just means that f is transverse to the em-
bedding ι : L → M), then the transversality is stable under perturbations
of f .

Proof. Let F : K× [0, 1]→M be a homotopy with f0 = f . We show that
K has an open cover by neighbourhoods in which ft is transverse for t in
a small interval; we then use compactness to obtain a uniform interval.

First the points which do not intersect L: F−1(M \ L) is open in
K × [0, 1] and contains (K \ f−1(L))× {0}. So, for each p ∈ K \ f−1(L),
there is a neighbourhood Up ⊂ K of p and an interval Ip = [0, εp) such
that F (Up × Ip) ∩ L = ∅.

Now, the points which do intersect L: L is a submanifold, so for each
p ∈ f−1(L), we can find a neighbourhood V ⊂ M containing f(p) and a
submersion ψ : V → Rl cutting out L ∩ V . Transversality of f and L is
then the statement that ψf is a submersion at p. This implies there is a
neighbourhood Ũp of (p, 0) inK×[0, 1] where ψft is a submersion. Choose
an open subset (containing (p, 0)) of the form Up × Ip, for Ip = [0, εp).

By compactness of K, choose a finite subcover of {Up}p∈K ; the small-
est εp in the resulting subcover gives the required interval in which ft
remains transverse to L.
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Remark 3.13. Transversality of two maps f : M → N , g : M ′ → N can
be expressed in terms of the transversality of f × g : M ×M ′ → N ×N to
the diagonal ∆N ⊂ N×N . So, ifM andM ′ are compact, we get stability
for transversality of f, g under perturbations of both f and g.
Remark 3.14. Local diffeomorphism and embedding are also stable
properties.
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3.2 Sard’s theorem
The fundamental idea which allows us to prove that transversality is a
generic condition is a the theorem of Sard showing that critical values of
a smooth map f : M −→ N (i.e. points q ∈ N for which the map f and
the inclusion ι : q ↪→ N fail to be transverse maps) are rare. The following
proof is taken from Milnor, based on Pontryagin.

The meaning of “rare” will be that the set of critical values is of mea-
sure zero, which means, in Rm, that for any ε > 0 we can find a sequence of
balls in Rm, containing f(C) in their union, with total volume less than
ε. Some easy facts about sets of measure zero: the countable union of
measure zero sets is of measure zero, the complement of a set of measure
zero is dense.

We begin with an elementary lemma describing the behaviour of measure-
zero sets under differentiable maps.
Lemma 3.15. Let Im = [0, 1]m be the unit cube, and f : Im −→ Rn a
C1 map. If m < n then f(Im) has measure zero. If m = n and A ⊂ Im

has measure zero, then f(A) has measure zero.

Proof. If f ∈ C1, its derivative is bounded on Im, so for all x, y ∈ Im we
have

||f(y)− f(x)|| ≤M ||y − x||, (58)
for a constant3 M > 0 depending only on f . So, the image of a ball
of radius r in Im is contained in a ball of radius Mr, which has volume
proportional to rn.

If A ⊂ Im has measure zero, then for each ε we have a countable
covering of A by balls of radius rk with total volume cm

∑
k
rmk < ε. We

deduce that f(Ai) is covered by balls of radius Mrk with total volume
Mncn

∑
k
rnk ; since n ≥ m this goes to zero as ε → 0. We conclude that

f(A) is of measure zero.
Ifm < n then f defines a C1 map Im×In−m −→ Rn by pre-composing

with the projection map to Im. Since Im × {0} ⊂ Im × In−m clearly has
measure zero, its image must also.

Remark 3.16. If we considered the case n < m, the resulting sum of
volumes may be larger in Rn. For example, the projection map R2 −→ R
given by (x, y) 7→ x clearly takes the set of measure zero y = 0 to one of
positive measure.

A subset A ⊂ M of a manifold is said to have measure zero when its
image in each chart of an atlas has measure zero. Lemma 3.15, together
with the fact that a manifold is second countable, implies that the prop-
erty is independent of the choice of atlas, and that it is preserved under
equidimensional maps:
Corollary 3.17. Let f : M → N be a C1 map of manifolds where
dimM = dimN . Then the image f(A) of a set A ⊂ M of measure
zero also has measure zero.

3This is called a Lipschitz constant.
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Corollary 3.18 (Baby Sard). Let f : M → N be a C1 of manifolds where
dimM < dimN . Then f(M) (i.e. the set of critical values) has measure
zero in N .
Remark 3.19. Note that this implies that space-filling curves are not
C1.

Now we investigate the measure of the critical values of a map f :
M → N where dimM = dimN . The set of critical points need not have
measure zero, but we shall see that

The variation of f is constrained along its critical locus
since this is where Df drops rank. In fact, the set of
critical values has measure zero.

Theorem 3.20 (Equidimensional Sard). Let f : M → N be a C1 map of
n-manifolds, and let C ⊂ M be the set of critical points. Then f(C) has
measure zero.

Proof. It suffices to show result for the unit cube mapping to Euclidean
space (using second countability, we can cover M by countable collection
of charts (Ui, ϕi)i∈I with the property that (ϕ−1

i (In))i∈I covers M . Since
a countable union of measure zero sets is measure zero, we obtain the
result). Let f : In −→ Rn a C1 map, and let M be the Lipschitz constant
for f on In, i.e.

||f(x)− f(y)|| ≤M |x− y|, ∀x, y ∈ In. (59)

Let c be a critical point, so that the image of Df(c) is a proper subspace
of Rn. Choose a hyperplane containing this subspace, translate it to f(c),
and call it H. Then

d(f(x), H) ≤ ||f(x)− f lin
c (x)||, (60)

where f lin
c (x) = f(c)+Dcf(x−c) is the linear approximation to f at c. By

the definition of the derivative, for each c ∈ C, we have that ∀ε > 0, ∃δ > 0
such that

||f(x)− f lin
c (x)|| < ε||x− c|| for all x s.t. ||x− c|| < δ.

Because f is C1 and C is compact, we conclude that ∀ε > 0, ∃δ > 0 such
that the inequality above holds for all c ∈ C.

Now we apply this: if c ∈ C and ||x − c|| ≤ δ, then f(x) is within
a distance εδ from H and within a distance Mε of f(c), so lies within a
paralellepiped of volume

(2εδ)(2Mδ)n−1. (61)

Now subdivide In into hn cubes of edge length h−1 with h sufficiently
large that h−1√n < δ. Apply the argument for each small cube, in which
||x− c|| ≤ h−1√n < δ. The number of cubes containing critical points is
at most hn, so this gives a total volume for f(C) less than

(2εh−1√n)(2Mh−1√n)n−1(hn). (62)

Since ε can be chosen arbitrarily small, f(C) has measure zero.
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The argument above will not work for dimN < dimM ; we need more
control on the function f . In particular, one can find a C1 function I2 −→
R which fails to have critical values of measure zero. (Hint: find a C1

function f : R → R with critical values containing the Cantor set C ⊂
[0, 1]. Compose f×f with the sum R×R→ R and note that C+C = [0, 2].)
As a result, Sard’s theorem in general requires more differentiability of f .
Theorem 3.21 (Big Sard’s theorem). Let f : M −→ N be a Ck map
of manifolds of dimension m, n, respectively. Let C be the set of critical
points. Then f(C) has measure zero if k > m

n
− 1.

Proof. As before, it suffices to show for f : Im −→ Rn. We do an induction
on m – note that the theorem holds for m = 0.

Define C1 ⊂ C to be the set of points x for which Df(x) = 0. Define
Ci ⊂ Ci−1 to be the set of points x for which Djf(x) = 0 for all j ≤ i. So
we have a descending sequence of closed sets:

C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck. (63)

We will show that f(C) has measure zero by showing
1. f(Ck) has measure zero,
2. each successive difference f(Ci\Ci+1) has measure zero for i ≥ 1,
3. f(C\C1) has measure zero.

Step 1: For x ∈ Ck, Taylor’s theorem gives the estimate

||f(x+ t)− f(x)|| ≤ c||t||k+1, (64)

where c depends only on Im and f .
Subdivide Im into hm small cubes with edge h−1; then any point in

in the small cube I0 containing x may be written as x + t with ||t|| ≤
h−1√m. As a result, f(I0) is contained by a cube of edge ah−(k+1), with
a = 2cm(k+1)/2 independent of the small cube size. At most hm cubes are
necessary to cover Ck, and their images have total volume less than

hm(ah−(k+1))n = anhm−(k+1)n. (65)

Assuming that k > m
n
− 1, this tends to 0 as we increase the number of

cubes.
Step 2: For each x ∈ Ci\Ci+1, i ≥ 1, there is a i+ 1th partial, say wlog
∂i+1f1/∂x1 · · · ∂xi+1, which is nonzero at x. Therefore the function

w(x) = ∂if1/∂x2 · · · ∂xi+1 (66)

vanishes on Ci but its partial derivative ∂w/∂x1 is nonvanishing near x.
Then

(w(x), x2, . . . , xm) (67)
forms an alternate coordinate system in a neighbourhood V around x by
the inverse function theorem (the change of coordinates is of class Ck),
and we have trapped Ci inside a hyperplane. The restriction of f to w = 0
in V is clearly critical on Ci ∩ V and so by induction on m we have that
f(Ci ∩ V ) has measure zero. Cover Ci \ Ci+1 by countably many such
neighbourhoods V .
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Step 3: Let x ∈ C\C1. Note that we won’t necessarily be able to trap
C in a hypersurface. But, since there is some partial derivative, wlog
∂f1/∂x1, which is nonzero at x, so defining w = f1, we have that

(w(x), x2, . . . , xm) (68)

is an alternative coordinate system in some neighbourhood V of x (the
coordinate change is a diffeomorphism of class Ck). In these coordinates,
the hyperplanes w = t in the domain are sent into hyperplanes y1 = t in
the codomain, and so f can be described as a family of maps ft whose
domain and codomain has dimension reduced by 1. Since w = f1, the
derivative of f in these coordinates can be written

Df =
(

1 0
∗ Dft

)
, (69)

and so a point x′ = (t, p) in V is critical for f if and only if p is critical for
ft. Therefore, the critical values of f consist of the union of the critical
values of ft on each hyperplane y1 = t in the codomain. Since the domain
of ft has dimension reduced by one, by induction it has critical values of
measure zero. So the critical values of f intersect each hyperplane in a set
of measure zero, and by Fubini’s theorem this means they have measure
zero. Cover C \ C1 by countably many such neighbourhoods.

Remark 3.22. Note that f(C) is measurable, since it is the countable
union of compact subsets (the set of critical values is not necessarily closed,
but the set of critical points is closed and hence a countable union of
compact subsets, which implies the same of the critical values.)

To show the consequence of Fubini’s theorem directly, we can use the
following argument. First note that for any covering of [a, b] by intervals,
we may extract a finite subcovering of intervals whose total length is
≤ 2|b − a|. To see this, first choose a minimal subcovering {I1, . . . , Ip},
numbered according to their left endpoints. Then the total overlap is at
most the length of [a, b]. Therefore the total length is at most 2|b− a|.

Now let B ⊂ Rn be compact, so that we may assume B ⊂ Rn−1×[a, b].
We prove that if B∩Pc has measure zero in the hyperplane Pc = {xn = c},
for any constant c ∈ [a, b], then it has measure zero in Rn.

If B∩Pc has measure zero, we can find a covering by open sets Ric ⊂ Pc
with total volume < ε. For sufficiently small αc, the sets Ric×[c−αc, c+αc]
cover B ∩

⋃
z∈[c−αc,c+αc]

Pz (since B is compact). As we vary c, the sets
[c − αc, c + αc] form a covering of [a, b], and we extract a finite subcover
{Ij} of total length ≤ 2|b− a|.

Let Rij be the set Ric for Ij = [c−αc, c+αc]. Then the sets Rij×Ij form
a cover of B with total volume ≤ 2ε|b− a|. We can make this arbitrarily
small, so that B has measure zero.
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3.3 Brouwer’s fixed point theorem
Corollary 3.23. Let M be a compact manifold with boundary. There is
no smooth map f : M −→ ∂M leaving ∂M pointwise fixed. Such a map
is called a smooth retraction of M onto its boundary.

Proof. Such a map f must have a regular value by Sard’s theorem, let this
value be y ∈ ∂M . Then y is obviously a regular value for f |∂M = Id as
well, so that f−1(y) must be a compact 1-manifold with boundary given by
f−1(y)∩∂M , which is simply the point y itself. Since there is no compact
1-manifold with a single boundary point, we have a contradiction.

For example, this shows that the identity map Sn → Sn may not be
extended to a smooth map f : B(0, 1)→ Sn.
Lemma 3.24. Every smooth map of the closed n-ball to itself has a fixed
point.

Proof. Let Dn = B(0, 1). If g : Dn → Dn had no fixed points, then
define the function f : Dn → Sn−1 as follows: let f(x) be the point in
Sn−1 nearer to x on the line joining x and g(x).

This map is smooth, since f(x) = x+ tu, where

u = ||x− g(x)||−1(x− g(x)), (70)

and t is the positive solution to the quadratic equation (x+tu)·(x+tu) = 1,
which has positive discriminant b2 − 4ac = 4(1 − |x|2 + (x · u)2). Such a
smooth map is therefore impossible by the previous corollary.

Theorem 3.25 (Brouwer fixed point theorem). Any continuous self-map
of Dn has a fixed point.

Proof. The Weierstrass approximation theorem says that any continuous
function on [0, 1] can be uniformly approximated by a polynomial function
in the supremum norm ||f ||∞ = supx∈[0,1] |f(x)|. In other words, the
polynomials are dense in the continuous functions with respect to the
supremum norm. The Stone-Weierstrass is a generalization, stating that
for any compact Hausdorff space X, if A is a subalgebra of C0(X,R) such
that A separates points (∀x, y, ∃f ∈ A : f(x) 6= f(y)) and contains a
nonzero constant function, then A is dense in C0.

Given this result, approximate a given continuous self-map g of Dn by
a polynomial function p′ so that ||p′−g||∞ < ε on Dn. To ensure p′ sends
Dn into itself, rescale it via

p = (1 + ε)−1p′. (71)

Then clearly p is a Dn self-map while ||p − g||∞ < 2ε. If g had no fixed
point, then |g(x) − x| must have a minimum value µ on Dn, and by
choosing 2ε = µ we guarantee that for each x,

|p(x)− x| ≥ |g(x)− x| − |g(x)− p(x)| > µ− µ = 0. (72)

Hence p has no fixed point. Such a smooth function can’t exist and hence
we obtain the result.
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3.4 Genericity
Theorem 3.26 (Transversality theorem). Let F : X × S −→ Y and
g : Z −→ Y be smooth maps of manifolds where only X has boundary.
Suppose that F and ∂F are transverse to g. Then for almost every s ∈ S,
fs = F (·, s) and ∂fs are transverse to g.

Proof. Due to the transversality, the fiber product W = (X × S)×Y Z is
a submanifold (with boundary) of X × S × Z and projects to S via the
usual projection map π. We show that any s ∈ S which is a regular value
for both the projection map π : W −→ S and its boundary map ∂π gives
rise to a fs which is transverse to g. Then by Sard’s theorem the s which
fail to be regular in this way form a set of measure zero.

Suppose that s ∈ S is a regular value for π. Suppose that fs(x) =
g(z) = y and we now show that fs is transverse to g there. Since F (x, s) =
g(z) and F is transverse to g, we know that

imDF(x,s) + imDgz = TyY.

Therefore, for any a ∈ TyY , there exists b = (w, e) ∈ T (X × S) with
DF(x,s)b− a in the image of Dgz. But since Dπ is surjective, there exists
(w′, e, c′) ∈ T(x,y,z)W . Hence we observe that

(Dfs)(w−w′)−a = DF(x,s)[(w, e)−(w′, e)]−a = (DF(x,s)b−a)−DF(x,s)(w′, e),

where both terms on the right hand side lie in imDgz, since (w′, e, c′) ∈
T(x,y,z)W means Dgz(c′) = DF(x,y)(w′, e).

Precisely the same argument (with X replaced with ∂X and F replaced
with ∂F ) shows that if s is regular for ∂π then ∂fs is transverse to g. This
gives the result.

The previous result immediately shows that transversal maps to Rn
are generic, since for any smooth map f : M −→ Rn we may produce a
family of maps

F : M × Rn −→ Rn (73)
via F (x, s) = f(x) + s. This new map F is clearly a submersion and
hence is transverse to any smooth map g : Z −→ Rn. For arbitrary target
manifolds, we will imitate this argument, but we will require a (weak)
version of Whitney’s embedding theorem for manifolds into Rn.

In the next section we will show that any manifold Y can be embedded
via ι : Y → RN in some large Euclidean space, and in such a way that
the image has a “tubular neighbourhood” U ⊂ RN of radius ε(y) (for
a positive real-valued function ε : Y → R) equipped with a projection
π : U → Y such that πι = idY .
Corollary 3.27. Let X be a manifold with boundary and f : X −→ Y be a
smooth map to a manifold Y . Then there is an open ball S = B(0, 1) ⊂ RN
and a smooth map F : X × S −→ Y such that F (x, 0) = f(x) and for
fixed x, the map fx : s 7→ F (x, s) is a submersion S −→ Y .

In particular, F and ∂F are submersions, so are transverse to any
g : Z → Y .
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Proof. Use the embedding of ι : Y → RN and the tubular neighbourhood
π : U → Y to define

F (x, s) = π(ι(f(x)) + ε(y)s). (74)

The transversality theorem then guarantees that given any smooth
g : Z −→ Y , for almost all s ∈ S the maps fs, ∂fs are transverse to g. We
improve this slightly to show that fs may be chosen to be homotopic to
f .
Corollary 3.28 (Transversality homotopy theorem). Given any smooth
maps f0 : X −→ Y , g : Z −→ Y , where only X has boundary, there exists
a smooth map f1 : X −→ Y homotopic to f0 with f1, ∂f1 both transverse
to g.

Proof. Let S, F be as in the previous corollary. Away from a set of measure
zero in S, the functions fs, ∂fs are transverse to g, by the transversality
theorem. But these fs are all homotopic to f via the homotopy X ×
[0, 1] −→ Y given by

(x, t) 7→ F (x, ts). (75)

The last theorem we shall prove concerning transversality is a very
useful extension result which is essential for intersection theory:
Theorem 3.29 (Homotopic transverse extension of boundary map). Let
X be a manifold with boundary and f0 : X −→ Y a smooth map to a
manifold Y . Suppose that ∂f0 is transverse to the closed map g : Z −→ Y .
Then there exists a map f1 : X −→ Y , homotopic to f and with ∂f1 = ∂f0,
such that f1 is transverse to g.

Proof. First observe that since ∂f0 is transverse to g on ∂X, f0 is also
transverse to g there, and furthermore since g is closed, f0 is transverse
to g in a neighbourhood U of ∂X. (for example, if x ∈ ∂X but x not in
f−1

0 (g(Z)) then since the latter set is closed, we obtain a neighbourhood
of x for which f0 is transverse to g.)

Now choose a smooth function γ : X −→ [0, 1] which is 1 outside U
but 0 on a neighbourhood of ∂X. (why does γ exist? exercise.) Then
set τ = γ2, so that dτ(x) = 0 wherever τ(x) = 0. Recall the map
F : X×S −→ Y we used in proving the transversality homotopy theorem
and modify it via

G(x, s) = F (x, τ(x)s). (76)
The claim is that G and ∂G are transverse to g. This is clear for x such
that τ(x) 6= 0. But if τ(x) = 0,

TG(x,s)(v, w) = TF(x,0)(v, 0) = T (f0)x(v), (77)

but τ(x) = 0 means that x ∈ U , in which f is transverse to g.
Since transversality holds, there exists s such that f1 : x 7→ G(x, s)

and ∂f1 are transverse to g (and homotopic to f0, as before). Finally, if
x is in the neighbourhood of ∂X for which τ = 0, then f1(x) = F (x, 0) =
f0(x).
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Corollary 3.30. If f0 : X −→ Y and f1 : X −→ Y are homotopic smooth
maps of manifolds, each transverse to the closed map g : Z −→ Y , then
the fiber products W0 = Xf0×gZ and W1 = Xf1×gZ are cobordant.

Proof. if F : X× [0, 1] −→ Y is the homotopy between f0, f1, then by the
previous theorem, we may find a (homotopic) homotopy G : X× [0, 1] −→
Y which is transverse to g, without changing F on the boundary. Hence
the fiber product U = (X × [0, 1])G×gZ is a cobordism with boundary
W tW ′.

3.5 Intersection theory
The previous corollary allows us to make the following definition:
Definition 3.31. Let f : X −→ Y and g : Z −→ Y be smooth maps
with X and Z compact, and dimX+ dimZ = dimY . Then we define the
(mod 2) intersection number of f and g to be

I2(f, g) = #(Xf ′ ×g Z) (mod 2),

where f ′ : X −→ Y is any smooth map smoothly homotopic to f but
transverse to g.
Example 3.32. If C1, C2 are two distinct great circles on S2 then they
have two transverse intersection points, so I2(C1, C2) = 0 in Z2. Of course
we can shrink one of the circles to get a homotopic one which does not
intersect the other at all. This corresponds to the standard cobordism
from two points to the empty set.
Example 3.33. If (e1, e2, e3) is a basis for R3 we can consider the fol-
lowing two embeddings of S1 = R/2πZ into RP 2: ι1 : θ 7→ 〈cos(θ/2)e1 +
sin(θ/2)e2〉 and ι2 : θ 7→ 〈cos(θ/2)e2 + sin(θ/2)e3〉. These two embed-
ded submanifolds intersect transversally in a single point 〈e2〉, and hence
I2(ι1, ι2) = 1 in Z2. As a result, there is no way to deform ιi so that they
intersect transversally in zero points.
Example 3.34. Given a smooth map f : X −→ Y for X compact and
dimY = 2 dimX, we may consider the self-intersection I2(f, f). In the
previous examples we may check I2(C1, C1) = 0 and I2(ι1, ι1) = 1. Any
embedded S1 in an oriented surface has no self-intersection. If the surface
is nonorientable, the self-intersection may be nonzero.
Example 3.35. Let p ∈ S1. Then the identity map Id : S1 −→ S1 is
transverse to the inclusion ι : p −→ S1 with one point of intersection.
Hence the identity map is not (smoothly) homotopic to a constant map,
which would be transverse to ι with zero intersection. Using smooth
approximation, get that Id is not continuously homotopic to a constant
map, and also that S1 is not contractible.
Example 3.36. By the previous argument, any compact manifold is not
contractible.
Example 3.37. Consider SO(3) ∼= RP 3 and let ` ⊂ RP 3 be a line,
diffeomorphic to S1. This line corresponds to a path of rotations about
an axis by θ ∈ [0, π] radians. Let P ⊂ RP 3 be a plane intersecting ` in one

38



point. Since this is a transverse intersection in a single point, ` cannot
be deformed to a point (which would have zero intersection with P. This
shows that the path of rotations is not homotopic to a constant path.

If ι : θ 7→ ι(θ) is the embedding of S1, then traversing the path twice
via ι′ : θ 7→ ι(2θ), we obtain a map ι′ which is transverse to P but with
two intersection points. Hence it is possible that ι′ may be deformed so
as not to intersect P. Can it be done?
Example 3.38. Consider RP 4 and two transverse hyperplanes P1, P2
each an embedded copy of RP 3. These then intersect in P1 ∩ P2 = RP 2,
and since RP 2 is not null-homotopic, we cannot deform the planes to
remove all intersection.

Intersection theory also allows us to define the degree of a map modulo
2. The degree measures how many generic preimages there are of a local
diffeomorphism.
Definition 3.39. Let f : M −→ N be a smooth map of manifolds of the
same dimension, and suppose M is compact and N connected. Let p ∈ N
be any point. Then we define deg2(f) = I2(f, p).
Example 3.40. Let f : S1 −→ S1 be given by z 7→ zk. Then deg2(f) = k
(mod 2).
Example 3.41. If p : C∪ {∞} −→ C∪ {∞} is a polynomial of degree k,
then as a map S2 −→ S2 we have deg2(p) = k (mod 2), and hence any
odd polynomial has at least one root. To get the fundamental theorem of
algebra, we must consider oriented cobordism

Even if submanifolds C,C′ do not intersect, it may be that there are
more sophisticated geometrical invariants which cause them to be “inter-
twined” in some way. One example of this is linking number.
Definition 3.42. Suppose that M,N ⊂ Rk+1 are compact embedded
submanifolds with dimM + dimN = k, and let us assume they are trans-
verse, meaning they do not intersect at all.

Then define λ : M ×N −→ Sk via

(x, y) 7→ x− y
|x− y| .

Then we define the (mod 2) linking number of M,N to be deg2(λ).
Example 3.43. Consider the standard Hopf link in R3. Then it is easy to
calculate that deg2(λ) = 1. On the other hand, the standard embedding of
disjoint circles (differing by a translation, say) has deg2(λ) = 0. Hence it is
impossible to deform the circles through embeddings of S1tS1 −→ R3, so
that they are unlinked. Why must we stay within the space of embeddings,
and not allow the circles to intersect?
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4 Partitions of unity
Partitions of unity allow us to go from local to global, i.e. to build a
global object on a manifold by building it on each open set of a cover,
smoothly tapering each local piece so it is compactly supported in each
open set, and then taking a sum over open sets. This is a very flexible
operation which uses the properties of smooth functions—it will not work
for complex manifolds, for example. Our main example of such a passage
from local to global is to build a global map from a manifold to RN which
is an embedding, a result first proved by Whitney.
Definition 4.1. A collection of subsets {Uα} of the topological space M
is called locally finite when each point x ∈ M has a neighbourhood V
intersecting only finitely many of the Uα.
Definition 4.2. A covering {Vα} is a refinement of the covering {Uβ}
when each Vα is contained in some Uβ .
Lemma 4.3. Any open covering {Aα} of a topological manifold has a
countable, locally finite refinement {(Ui, ϕi)} by coordinate charts such
that ϕi(Ui) = B(0, 3) and {Vi = ϕ−1

i (B(0, 1))} is still a covering of M .
We will call such a cover a regular covering. In particular, any topolog-
ical manifold is paracompact (i.e. every open cover has a locally finite
refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around
any point x ∈ M , we can translate and rescale to find a covering of M
by a refinement of the type desired, and choose a finite subcover, which
is obviously locally finite.

For a general manifold, we note that by second countability of M ,
there is a countable basis of coordinate neighbourhoods and each of these
charts is a countable union of open sets Pi with Pi compact. Hence M
has a countable basis {Pi} such that Pi is compact.

Using these, we may define an increasing sequence of compact sets
which exhausts M : let K1 = P 1, and

Ki+1 = P1 ∪ · · · ∪ Pr,

where r > 1 is the first integer with Ki ⊂ P1 ∪ · · · ∪ Pr.
Now note that M is the union of ring-shaped sets Ki\K◦i−1, each

of which is compact. If p ∈ Aα, then p ∈ Ki+1\K◦i for some i. Now
choose a coordinate neighbourhood (Up,α, ϕp,α) with Up,α ⊂ Ki+2\K◦i−1
and ϕp,α(Up,α) = B(0, 3) and define Vp,α = ϕ−1(B(0, 1)).

Letting p, α vary, these neighbourhoods cover the compact setKi+1\K◦i
without leaving the band Ki+2\K◦i−1. Choose a finite subcover Vi,k for
each i. Then (Ui,k, ϕi,k) is the desired locally finite refinement.

Definition 4.4. A smooth partition of unity is a collection of smooth
non-negative functions {fα : M −→ R} such that

i) {suppfα = f−1
α (R\{0})} is locally finite,

ii)
∑

α
fα(x) = 1 ∀x ∈M , hence the name.
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A partition of unity is subordinate to an open cover {Ui} when ∀α, suppfα ⊂
Ui for some i.
Theorem 4.5. Given a regular covering {(Ui, ϕi)} of a manifold, there
exists a partition of unity {fi} subordinate to it with fi > 0 on Vi and
suppfi ⊂ ϕ−1

i (B(0, 2)).

Proof. A bump function is a smooth non-negative real-valued function g̃
on Rn with g̃(x) = 1 for ||x|| ≤ 1 and g̃(x) = 0 for ||x|| ≥ 2. For instance,
take

g̃(x) = h(2− ||x||)
h(2− ||x||) + h(||x||+ 1) ,

for h(t) given by e−1/t for t > 0 and 0 for t < 0.
Having this bump function, we can produce non-negative bump func-

tions on the manifold gi = g̃◦ϕi which have support suppgi ⊂ ϕ−1
i (B(0, 2))

and take the value +1 on Vi. Finally we define our partition of unity via

fi = gi∑
j
gj
, i = 1, 2, . . . .

4.1 Whitney embedding
We now investigate the embedding of arbitrary smooth manifolds as reg-
ular submanifolds of Rk.
Theorem 4.6 (Compact Whitney embedding in RN ). Any compact man-
ifold may be embedded in RN for sufficiently large N .

Proof. Let {(Ui ⊃ Vi, ϕi)}ki=1 be a finite regular covering, which exists by
compactness. Choose a partition of unity {f1, . . . , fk} as in Theorem 4.5
and define the following “zoom-in” maps M −→ RdimM :

ϕ̃i(x) =
{
fi(x)ϕi(x) x ∈ Ui,
0 x /∈ Ui.

Then define a map Φ : M −→ Rk(dimM+1) which zooms simultaneously
into all neighbourhoods, with extra information to guarantee injectivity:

Φ(x) = (ϕ̃1(x), . . . , ϕ̃k(x), f1(x), . . . , fk(x)).

Note that Φ(x) = Φ(x′) implies that for some i, fi(x) = fi(x′) 6= 0 and
hence x, x′ ∈ Ui. This then implies that ϕi(x) = ϕi(x′), implying x = x′.
Hence Φ is injective.

We now check that DΦ is injective, which will show that it is an
injective immersion. At any point x the differential sends v ∈ TxM to the
following vector in RdimM × · · · × RdimM × R× · · · × R.

(Df1(v)ϕ1(x)+f1(x)Dϕ1(v), . . . , Dfk(v)ϕk(x)+fk(x)Dϕ1(v), Df1(v), . . . , Dfk(v)

But this vector cannot be zero. Hence we see that Φ is an immersion.
But an injective immersion from a compact space must be an embed-

ding: view Φ as a bijection onto its image. We must show that Φ−1 is
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continuous, i.e. that Φ takes closed sets to closed sets. If K ⊂M is closed,
it is also compact and hence Φ(K) must be compact, hence closed (since
the target is Hausdorff).

Theorem 4.7 (Compact Whitney embedding in R2n+1). Any compact
n-manifold may be embedded in R2n+1.

Proof. Begin with an embedding Φ : M −→ RN and assume N > 2n+ 1.
We then show that by projecting onto a hyperplane it is possible to obtain
an embedding to RN−1.

A vector v ∈ SN−1 ⊂ RN defines a hyperplane (the orthogonal com-
plement) and let Pv : RN −→ RN−1 be the orthogonal projection to this
hyperplane. We show that the set of v for which Φv = Pv ◦ Φ fails to be
an embedding is a set of measure zero, hence that it is possible to choose
v for which Φv is an embedding.

Φv fails to be an embedding exactly when Φv is not injective or DΦv
is not injective at some point. Let us consider the two failures separately:

If v is in the image of the map β1 : (M ×M)\∆M −→ SN−1 given by

β1(p1, p2) = Φ(p2)− Φ(p1)
||Φ(p2)− Φ(p1)|| ,

then Φv will fail to be injective. Note however that β1 maps a 2n-
dimensional manifold to a N − 1-manifold, and if N > 2n+ 1 then baby
Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in
a chart (U,ϕ). Φv will fail to be an immersion in U precisely when v
coincides with a vector in the normalized image of D(Φ ◦ ϕ−1) where

Φ ◦ ϕ−1 : ϕ(U) ⊂ Rn −→ RN .

Hence we have a map (letting N(w) = ||w||)

D(Φ ◦ ϕ−1)
N ◦D(Φ ◦ ϕ−1) : U × Sn−1 −→ SN−1.

The image has measure zero as long as 2n− 1 < N − 1, which is certainly
true since 2n < N − 1. Taking union over countably many charts, we see
that immersion fails on a set of measure zero in SN−1.

Hence we see that Φv fails to be an embedding for a set of v ∈ SN−1

of measure zero. Hence we may reduce N all the way to N = 2n+ 1.

Corollary 4.8. We see from the proof that if we do not require injectivity
but only that the manifold be immersed in RN , then we can take N = 2n
instead of 2n+ 1.

We now use Whitney embedding to prove the existence of tubular
neighbourhoods for submanifolds of RN , a key point in proving genericity
of transversality. Tubular neighbourhoods also exist for submanifolds of
any manifold, but we leave this corollary for the reader.

If Y ⊂ RN is an embedded submanifold, the normal space at y ∈ Y
is defined by NyY = {v ∈ RN : v⊥TyY }. The collection of all normal
spaces of all points in Y is called the normal bundle:

NY = {(y, v) ∈ Y × RN : v ∈ NyY }.
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Proposition 4.9. NY ⊂ RN × RN is an embedded submanifold of di-
mension N .

Proof. Given y ∈ Y , choose coordinates (u1, . . . uN ) in a neighbourhood
U ⊂ RN of y so that Y ∩ U = {un+1 = · · · = uN = 0}. Define Φ :
U × RN −→ RN−n × Rn via

Φ(x, v) = (un+1(x), . . . , uN (x), 〈v, ∂
∂u1 |x〉, . . . , 〈v, ∂

∂un
|x〉),

so that Φ−1(0) is precisely NY ∩ (U × RN ). We then show that 0 is a
regular value: observe that, writing v in terms of its components vj ∂

∂xj

in the standard basis for RN ,

〈v, ∂
∂ui
|x〉 = 〈vj ∂

∂xj
, ∂x

k

∂ui
(u(x)) ∂

∂xk
|x〉 =

N∑
j=1

vj ∂x
j

∂ui
(u(x))

Therefore the Jacobian of Φ is the ((N − n) + n)× (N +N) matrix

DΦ(x) =
(

∂uj

∂xi
(x) 0
∗ ∂xj

∂ui
(u(x))

)
The N rows of this matrix are linearly independent, proving Φ is a sub-
mersion.

The normal bundleNY contains Y ∼= Y ×{0} as a regular submanifold,
and is equipped with a smooth map π : NY −→ Y sending (y, v) 7→ y.
The map π is a surjective submersion and is the bundle projection. The
vector spaces π−1(y) for y ∈ Y are called the fibers of the bundle and NY
is an example of a vector bundle.

We may take advantage of the embedding in RN to define a smooth
map E : NY −→ RN via

E(x, v) = x+ v.

Definition 4.10. A tubular neighbourhood of the embedded submanifold
Y ⊂ RN is a neighbourhood U of Y in RN that is the diffeomorphic image
under E of an open subset V ⊂ NY of the form

V = {(y, v) ∈ NY : |v| < δ(y)},

for some positive continuous function δ : M −→ R.
If U ⊂ RN is such a tubular neighbourhood of Y , then there does exist

a positive continuous function ε : Y −→ R such that Uε = {x ∈ RN :
∃y ∈ Y with |x− y| < ε(y)} is contained in U . This is simply

ε(y) = sup{r : B(y, r) ⊂ U},

which is continuous since ∀ε > 0, ∃x ∈ U for which ε(y) ≤ |x− y|+ ε. For
any other y′ ∈ Y , this is ≤ |y − y′| + |x − y′| + ε. Since |x − y′| ≤ ε(y′),
we have |ε(y)− ε(y′)| ≤ |y − y′|+ ε.
Theorem 4.11 (Tubular neighbourhood theorem). Every regular sub-
manifold of RN has a tubular neighbourhood.
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Proof. First we show that E is a local diffeomorphism near y ∈ Y ⊂ NY .
if ι is the embedding of Y in RN , and ι′ : Y −→ NY is the embedding in
the normal bundle, then E ◦ι′ = ι, hence we have DE ◦Dι′ = Dι, showing
that the image of DE(y) contains TyY . Now if ι is the embedding of NyY
in RN , and ι′ : NyY −→ NY is the embedding in the normal bundle,
then E ◦ ι′ = ι. Hence we see that the image of DE(y) contains NyY , and
hence the image is all of TyRN . Hence E is a diffeomorphism on some
neighbourhood

Vδ(y) = {(y′, v′) ∈ NY : |y′ − y| < δ, |v′| < δ}, δ > 0.

Now for y ∈ Y let r(y) = sup{δ : E|Vδ(y) is a diffeomorphism} if this is
≤ 1 and let r(y) = 1 otherwise. The function r(y) is continuous, since if
|y − y′| < r(y), then Vδ(y′) ⊂ Vr(y)(y) for δ = r(y)− |y − y′|. This means
that r(y′) ≥ δ, i.e. r(y)−r(y′) ≤ |y−y′|. Switching y and y′, this remains
true, hence |r(y)− r(y′)| ≤ |y − y′|, yielding continuity.

Finally, let V = {(y, v) ∈ NY : |v| < 1
2r(y)}. We show that E

is injective on V . Suppose (y, v), (y′, v′) ∈ V are such that E(y, v) =
E(y′, v′), and suppose wlog r(y′) ≤ r(y). Then since y + v = y′ + v′, we
have

|y − y′| = |v − v′| ≤ |v|+ |v′| ≤ 1
2r(y) + 1

2r(y
′) ≤ r(y).

Hence y, y′ are in Vr(y)(y), on which E is a diffeomorphism. The required
tubular neighbourhood is then U = E(V ).
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4.2 Vector fields vs. derivations
The space C∞(M,R) of smooth functions on M is not only a vector
space but also a ring, with multiplication (fg)(p) := f(p)g(p). Given
a smooth map ϕ : M −→ N of manifolds, we obtain a natural operation
ϕ∗ : C∞(N,R) −→ C∞(M,R), given by f 7→ f ◦ ϕ. This is called the
pullback of functions, and defines a homomorphism of rings.

The association M 7→ C∞(M,R) and ϕ 7→ ϕ∗ is therefore a con-
travariant functor from the category of manifolds to the category of rings,
and is the basis for algebraic geometry, the algebraic representation of
geometrical objects.

It is easy to see from this that any diffeomorphism ϕ : M −→M defines
an automorphism ϕ∗ of C∞(M,R), but actually all automorphisms are of
this form (Exercise!).

The concept of derivation of an algebra A is the infinitesimal version
of an automorphism of A. That is, if φt : A −→ A is a family of auto-
morphisms of A starting at Id, so that φt(ab) = φt(a)φt(b), then the map
a 7→ d

dt
|t=0φt(a) is a derivation.

Definition 4.12. A derivation of the R-algebra A is a R-linear map D :
A −→ A such that D(ab) = (Da)b + a(Db). The space of all derivations
is denoted Der(A).

If automorphisms of C∞(M,R) correspond to diffeomorphisms, then
it is natural to ask what derivations correspond to. We now show that
they correspond to vector fields.

The vector fields X(M) form a vector space over R of infinite dimension
(unlessM is a finite set). They also form a module over the ring of smooth
functions C∞(M,R) via pointwise multiplication: for f ∈ C∞(M,R) and
X ∈ X(M), fX : x 7→ f(x)X(x) is a smooth vector field.

The important property of vector fields which we are interested in is
that they act as derivations of the algebra of smooth functions. Locally, it
is clear that a vector field X =

∑
i
ai ∂
∂xi

gives a derivation of the algebra
of smooth functions, via the formula X(f) =

∑
i
ai ∂f
∂xi

, since

X(fg) =
∑
i

ai( ∂f
∂xi

g + f ∂g
∂xi

) = X(f)g + fX(g).

We wish to verify that this local action extends to a well-defined global
derivation on C∞(M,R).
Definition 4.13. The differential of a function f ∈ C∞(M,R) is the
function on TM given by composing Tf : TM → TR with the second
projection p2 : TR = R× R→ R:

df = p2 ◦ Tf (78)

To remove any confusion, df evaluates at the point (x, v) ∈ TM to
give the derivative of f at x in the direction v:

df(x, v) = Df |x(v).
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Definition 4.14. Let X be a vector field. Then we define

X(f) = df ◦X.

This is called the directional (or Lie) derivative of f along X.
In coordinates, if X =

∑
ai∂/∂xi, then X(f) =

∑
ai∂f/∂xi, coin-

ciding with the usual directional derivative mentioned above. This shows
that f 7→ X(f) has the derivation property (since it satisfies it locally),
but we can alternatively see that it is a derivation by using the property

d(fg) = fdg + gdf

of the differential of a product (here fdg is really (π∗f)dg).
Theorem 4.15. The map X 7→ (f 7→ X(f)) is an isomorphism

X(M)→ Der(C∞(M,R)).

Proof. First we prove the result for an open set U ⊂ Rn. Let D be
a derivation of C∞(U,R) and define the smooth functions ai = D(xi).
Then we claim D =

∑
i
ai ∂
∂xi

. We prove this by testing against smooth
functions. Any smooth function f on Rn may be written

f(x) = f(0) +
∑
i

xigi(x),

with gi(0) = ∂f
∂xi

(0) (simply take gi(x) =
∫ 1

0
∂f
∂xi

(tx)dt). Translating the
origin to y ∈ U , we obtain for any z ∈ U

f(z) = f(y) +
∑
i

(xi(z)− xi(y))gi(z), gi(y) = ∂f
∂xi

(y).

Applying D, we obtain

Df(z) =
∑
i

(Dxi)gi(z)−
∑
i

(xi(z)− xi(y))Dgi(z).

Letting z approach y, we obtain

Df(y) =
∑
i

ai ∂f
∂xi

(y) = X(f)(y),

as required.
To prove the global result, let (Vi ⊂ Ui, ϕi) be a regular covering and θi

an associated partition of unity. Then for each i, θiD : f 7→ θiD(f) is also
a derivation of C∞(M,R). This derivation defines a unique derivation
Di of C∞(Ui,R) such that Di(f |Ui) = (θiDf)|Ui , since for any point
p ∈ Ui, a given function g ∈ C∞(Ui,R) may be replaced with a function
g̃ ∈ C∞(M,R) which agrees with g on a small neighbourhood of p, and we
define (Dig)(p) = θi(p)Dg̃(p). This definition is independent of g̃, since if
h1 = h2 on an open set W , Dh1 = Dh2 on that open set (let ψ = 1 in a
neighbourhood of p and vanish outsideW ; then h1−h2 = (h1−h2)(1−ψ)
and applying D we obtain zero in W ).
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The derivation Di is then represented by a vector field Xi, which must
vanish outside the support of θi. Hence it may be extended by zero to
a global vector field which we also call Xi. Finally we observe that for
X =

∑
i
Xi, we have

X(f) =
∑
i

Xi(f) =
∑
i

Di(f) = D(f),

as required.
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5 Vector bundles
Definition 5.1. A smooth real vector bundle of rank k over the base
manifold M is a manifold E (called the total space), together with a
smooth surjection π : E −→M (called the bundle projection), such that
• ∀p ∈ M , π−1(p) = Ep has the structure of k-dimensional vector

space,
• Each p ∈ M has a neighbourhood U and a diffeomorphism Φ :
π−1(U) −→ U × Rk (called a local trivialization of E over U) such
that π1(Φ(π−1(x))) = x, where π1 : U × Rk −→ U is the first
projection, and also that Φ : π−1(x) −→ {x} × Rk is a linear map,
for all x ∈M .

Given two local trivializations Φi : π−1(Ui) −→ Ui × Rk and Φj :
π−1(Uj) −→ Uj × Rk, we obtain a smooth gluing map Φj ◦ Φ−1

i : Uij ×
Rk −→ Uij × Rk, where Uij = Ui ∩ Uj . This map preserves images to
M , and hence it sends (x, v) to (x, gji(v)), where gji is an invertible k× k
matrix smoothly depending on x. That is, the gluing map is uniquely
specified by a smooth map

gji : Uij −→ GL(k,R).

These are called transition functions of the bundle, and since they come
from Φj ◦ Φ−1

i , they clearly satisfy gij = g−1
ji as well as the “cocycle

condition”
gijgjkgki = Id|Ui∩Uj∩Uk .

Example 5.2. To build a vector bundle, choose an open cover {Ui} and
form the pieces {Ui × Rk} Then glue these together on double overlaps
{Uij} via functions gij : Uij −→ GL(k,R). As long as gij satisfy gij = g−1

ji

as well as the cocycle condition, the resulting space has a vector bundle
structure.
Example 5.3. Let S2 = U0 t U1 for Ui = R2, as before. Then on
U01 = R2\{0} = C\{0}, define

g01(z) = [zk], k ∈ Z.

In real coordinates z = reiθ, g01(r, θ) = rk
(
cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

)
. This

defines a vector bundle Ek −→ S2 of rank 2 for each k ∈ Z (or a complex
vector bundle of rank 1, since g01 : U01 −→ GL(1,C)). Actually, since
the map g01 is actually holomorphic as a function of z, we have defined
holomorphic vector bundles on CP 1.
Example 5.4 (The tangent bundle). The tangent bundle TM is indeed
a vector bundle, of rank dimM . For any chart (U,ϕ) of M , there is
an associated local trivialization (π−1(U),Φ) of TM , and the transition
function gji : Uij −→ GL(n,R) between two trivializations obtained from
(Ui, ϕi), (Uj , ϕj) is simply the Jacobian matrix

gji : p 7→ D(ϕj ◦ ϕ−1
i )(p).
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Just as for the tangent bundle, we can define the analog of a vector-
valued function, where the function has values in a vector bundle:
Definition 5.5. A smooth section of the vector bundle E π−→ M is a
smooth map s : M −→ E such that π ◦ s = IdM . The set of all smooth
sections, denoted Γ∞(M,E), is an infinite-dimensional real vector space,
and is also a module over the ring C∞(M,R).

Having introduced vector bundles, we must define the notion of mor-
phism between vector bundles, so as to form a category.
Definition 5.6. A smooth bundle map between the bundles E π−→ M

and E′
π′−→ M ′ is a pair (f, F ) of smooth maps f : M −→ M ′ and

F : E −→ E′ such that π′ ◦ F = f ◦ π and such that F : Ep −→ E′f(p) is
a linear map for all p.
Example 5.7. I claim that the bundles Ek

π−→ S2 are all non-isomorphic,
except that Ek is isomorphic to E−k over the antipodal map S2 −→ S2.
Example 5.8. Suppose f : M −→ N is a smooth map. Then f∗ :
TM −→ TN is a bundle map covering f , i.e. (f∗, f) defines a bundle
map.
Example 5.9 (Pullback bundle). if f : M −→ N is a smooth map
and E

π−→ N is a vector bundle over N , then we may form the fiber
productMf×πE, which then is a bundle overM with local trivializations
(f−1(Ui), f∗gij), where (Ui, gij) is the local transition data for E over N .
This bundle is called the pullback bundle and is denoted by f∗E. The
natural projection to E defines a vector bundle map back to E:

f∗E

p1

��

p2 // E

π

��
M

f
// N

There is also a natural pullback map on sections: given a section s ∈
Γ∞(N,E), the composition s ◦ f gives a map M −→ E. This then deter-
mines a smooth map f∗s : M −→ f∗E by the universal property of the
fiber product. We therefore obtain a pullback map

f∗ : Γ∞(N,E) −→ Γ∞(M, f∗E).

Example 5.10. If f : M −→ N is an embedding, then so is the bundle
map f∗ : TM −→ TN . By the universal property of the fiber product
we obtain a bundle map, also denoted f∗, from TM to f∗TN . This is a
vector bundle inclusion and f∗TN/f∗TM = NM is a vector bundle over
M called the normal bundle of M . Note: we haven’t covered subbundles
and quotient bundles in detail. I’ll leave this as an exercise.

5.1 Associated bundles
We now describe a functorial construction of vector bundles, using func-
tors from vector spaces. Consider the category VectR of finite-dimensional
real vector spaces and linear maps. We will describe several functors from
VectR to itself.
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Example 5.11. If V ∈ VectR, then V ∗ ∈ VectR, and if f : V −→ W
then f∗ : W ∗ −→ V ∗. Since the composition of duals is the dual of the
composition, duality defines a contravariant functor ∗ : VectR −→ VectR.
Example 5.12. If V,W ∈ VectR, then V ⊕W ∈ VectR, and this defines
a covariant functor VectR ×VectR −→ VectR.
Example 5.13. If V,W ∈ VectR, then V ⊗W ∈ VectR and this again
defines a covariant functor VectR ×VectR −→ VectR.
Example 5.14. If V ∈ VectR, then

⊗•V = R⊕ V ⊕ (V ⊗ V )⊕ · · · ⊕ (⊗kV )⊕ · · ·

is an infinite-dimensional vector space, with a product a⊗ b. Quotienting
by the double-sided ideal I = 〈v ⊗ v : v ∈ V 〉, we obtain the exterior
algebra

∧•V = R⊕ V ⊕ ∧2V ⊕ · · · ⊕ ∧nV,
with n = dimV . The product is customarily denoted (a, b) 7→ a ∧ b. The
direct sum decompositions above, where ∧kV or ⊗kV is labeled by the
integer k, are called Z-gradings, and since the product takes ∧k × ∧l −→
∧k+l, these algebras are called Z-graded algebras.

If (v1, . . . vn) is a basis for V , then vi1 ∧ · · · ∧ vik for i1 < · · · < ik form
a basis for ∧kV . This space then has dimension

(
n
k

)
, hence the algebra

∧•V has dimension 2n.
Note in particular that ∧nV has dimension 1, is also called the deter-

minant line detV , and a choice of nonzero element in detV is called an
“orientation” on the vector space V .

Recall that if f : V −→ W is a linear map, then ∧kf : ∧kV −→ ∧kW
is defined on monomials via

∧kf(a1 ∧ · · · ∧ ak) = f(a1) ∧ · · · ∧ f(ak).

In particular, if A : V −→ V is a linear map, then for n = dimV ,
the top exterior power ∧nA : ∧nV −→ ∧nV is a linear map of a 1-
dimensional space onto itself, and is hence given by a number, called
detA, the determinant of A.

We may now apply any of these functors to vector bundles. The main
observation is that if F is a vector space functor as above, we may apply
it to any vector bundle E π−→M to obtain a new vector bundle

F (E) = tp∈MF (Ep).

If (Ui) is an atlas for M and E has local trivializations (Ui × Rk), glued
together via gji : Uij −→ GL(k,R), then F (E) may be given the local
trivialization (Ui × F (Rk)), glued together via F (gji). This new vector
bundle F (E) is called the “associated” vector bundle to E, given by the
functor F .
Example 5.15. If E −→ M is a vector bundle, then E∗ −→ M is the
dual vector bundle. If E,F are vector bundles then E ⊕ F is called the
direct or “Whitney” sum, and has rank rk E + rk F . E ⊗ F is the tensor
product bundle, which has rank rk E · rk F .

50



Example 5.16. If E −→M is a vector bundle of rank n, then ⊗kE and
∧kE are its tensor power bundles, of rank nk and

(
n
k

)
, respectively. The

top exterior power ∧nE has rank 1, and is hence a line bundle. If this
line bundle is trivial (i.e. isomorphic to M × R) then E is said to be an
orientable bundle.
Example 5.17. Starting with the tangent bundle TM −→ M , we may
form the cotangent bundle T ∗M , the bundle of tensors of type (r, s),
⊗rTM ⊗⊗sT ∗M .

We may also form the bundle of multivectors ∧kTM , which has sec-
tions Γ∞(M,∧kTM) called multivector fields.

Finally, we may form the bundle of k-forms, ∧kT ∗M , whose sections
Γ∞(M,∧kT ∗M) = Ωk(M) are called differential k-forms, and will occupy
us for some time.

We have now produced several vector bundles by applying functors to
the tangent bundle. We are familiar with vector fields, which are sections
of TM , and we know that a vector field is written locally in coordinates
(x1, . . . , xn) as

X =
∑
i

ai ∂
∂xi

,

with coefficients ai smooth functions.
There is an easy way to produce examples of 1-forms in Ω1(M), using

smooth functions f . We note that the action X 7→ X(f) defines a dual
vector at each point of M , since (X(f))p depends only on the vector Xp
and not the behaviour of X away from p. Recall that X(f) = Df2(X).
Definition 5.18. The exterior derivative of a function f , denoted df , is
the section of T ∗M given by the fiber projection Df2.

Since dxi( ∂
∂xj

) = δij , we see that (dx1, . . . , dxn) is the dual basis to
( ∂
∂x1 , . . . ,

∂
∂xn

). Therefore, a section of T ∗M has local expression

ξ =
∑
i

ξidx
i,

for ξi smooth functions, given by ξi = ξ( ∂
∂xi

). In particular, the exterior
derivative of a function df can be written

df =
∑
i

∂f
∂xi

dxi.

A section of the tensor bundle ⊗rTM ⊗⊗sT ∗M can be written as

Θ =
∑

i1,··· ,ir
j1,··· ,js

ai1···irj1···js
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs ,

where ai1···irj1···js are nr+s smooth functions.
A general differential form ρ ∈ Ωk(M) can be written

ρ =
∑

i1<···<ik

ρi1···ikdx
i1 ∧ · · · ∧ dxik
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6 Differential forms
There are several properties of differential forms which make them indis-
pensible: first, the k-forms are intended to give a notion of k-dimensional
volume (this is why they are multilinear and skew-symmetric, like the
determinant) and in a way compatible with the boundary map (this leads
to the exterior derivative, which we define below). Second, they behave
well functorially, as we see now.

Given a smooth map f : M −→ N , we obtain bundle maps f∗ :
TM −→ TN and hence f∗ := ∧k(f∗)∗ : ∧kT ∗N −→ ∧kT ∗M . Hence we
have the diagram

∧kT ∗M

πM

��

∧kT ∗N

πN

��

f∗
oo

M
f

// N

The interesting thing is that if ρ ∈ Ωk(N) is a differential form on N ,
then it is a section of πN . Composing with f, f∗, we obtain a section
f∗ρ := f∗ ◦ ρ ◦ f of πM . Hence we obtain a natural map

Ωk(N) f∗−→ Ωk(M).

Such a natural map does not exist (in either direction) for multivector
fields, for instance.

Suppose that ρ ∈ Ωk(N) is given in a coordinate chart by

ρ =
∑

ρi1···ikdy
i1 ∧ · · · ∧ dyik .

Now choose a coordinate chart for M with coordinates x1, . . . xm. What
is the local expression for f∗ρ? We need only compute f∗dyi. We use
a notation where fk denotes the kth component of f in the coordinates
(y1, . . . yn), i.e. fk = yk ◦ f .

f∗dyi( ∂
∂xj

) = dyi(f∗ ∂
∂xj

) (79)

= dyi(
∑
k

∂fk

∂xj
∂
∂yk

) (80)

= ∂fi

∂xj
. (81)

Hence we conclude that

f∗dyi =
∑
j

∂fi

∂xj
dxj .

Finally we compute

f∗ρ =
∑

i1<···<ik

f∗ρi1···ikf
∗(dyi1 ) ∧ · · · ∧ f∗(dyik ) (82)

=
∑

i1<···<ik

(ρi1···ik ◦ f)
∑
j1

· · ·
∑
jk

∂fi1

∂xj1 · · ·
∂fik

∂xjk
dxj1 ∧ · · · dxjk . (83)
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6.1 The exterior derivative
Differential forms are equipped with a natural differential operator, which
extends the exterior derivative of functions to all forms: d : Ωk(M) −→
Ωk+1(M). The exterior derivative is uniquely specified by the following
requirements: first, it satisfies d(df) = 0 for all functions f . Second, it is
a graded derivation of the algebra of exterior differential forms of degree
1, i.e.

d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ.
This allows us to compute its action on any 1-form d(ξidxi) = dξi ∧ dxi,
and hence, in coordinates, we have

d(ρdxi1 ∧ · · · ∧ dxik ) =
∑
k

∂ρ

∂xk
dxk ∧ dxi1 ∧ · · · ∧ dxik .

Extending by linearity, this gives a local definition of d on all forms.
Does it actually satisfy the requirements? this is a simple calculation: let
τp = dxi1 ∧ · · · ∧ dxip and τq = dxj1 ∧ · · · ∧ dxjq . Then

d((fτp)∧(gτq)) = d(fgτp∧τq) = (gdf+fdg)∧τp∧τq = d(fτp)∧gτq+(−1)pfτp∧d(gτq),

as required.
Therefore we have defined d, and since the definition is coordinate-

independent, we can be satisfied that d is well-defined.
Definition 6.1. d is the unique degree +1 graded derivation of Ω•(M)
such that df(X) = X(f) and d(df) = 0 for all functions f .
Example 6.2. Consider M = R3. For f ∈ Ω0(M), we have

df = ∂f
∂x1 dx

1 + ∂f
∂x2 dx

2 + ∂f
∂x3 dx

3.

Similarly, for A = A1dx
1 +A2dx

2 +A3dx
3, we have

dA = ( ∂A2
∂x1 − ∂A1

∂x2 )dx1∧dx2 +( ∂A3
∂x1 − ∂A1

∂x3 )dx1∧dx3 +( ∂A3
∂x2 − ∂A2

∂x3 )dx2∧dx3

Finally, for B = B12dx
1 ∧ dx2 +B13dx

1 ∧ dx3 +B23dx
2 ∧ dx3, we have

dB = ( ∂B12
∂x3 − ∂B13

∂x2 + ∂B23
∂x1 )dx1 ∧ dx2 ∧ dx3.

Definition 6.3. The form ρ ∈ Ω•(M) is called closed when dρ = 0 and
exact when ρ = dτ for some τ .
Example 6.4. A function f ∈ Ω0(M) is closed if and only if it is constant
on each connected component of M : This is because, in coordinates, we
have

df = ∂f
∂x1 dx

1 + · · ·+ ∂f
∂xn

dxn,

and if this vanishes, then all partial derivatives of f must vanish, and
hence f must be constant.
Theorem 6.5. The exterior derivative of an exact form is zero, i.e. d ◦
d = 0. Usually written d2 = 0.
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Proof. The graded commutator [d1, d2] = d1 ◦ d2 − (−1)|d1||d2|d2 ◦ d1 of
derivations of degree |d1|, |d2| is always (why?) a derivation of degree
|d1|+ |d2|. Hence we see [d, d] = d ◦ d− (−1)1·1d ◦ d = 2d2 is a derivation
of degree 2 (and so is d2). Hence to show it vanishes we must test on
functions and exact 1-forms, which locally generate forms since every form
is of the form fdxi1 ∧ · · · ∧ dxik .

But d(df) = 0 by definition and this certainly implies d2(df) = 0,
showing that d2 = 0.
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6.2 de Rham Cohomology
The fact that d2 = 0 is dual to the fact that ∂(∂M) = ∅ for a manifold
with boundary M . We will see later that Stokes’ theorem explains this
duality. Because of the fact d2 = 0, we have a very special algebraic
structure: we have a sequence of vector spaces Ωk(M), and maps d :
Ωk(M) −→ Ωk+1(M) which are such that any successive composition is
zero. This means that the image of d is contained in the kernel of the
next d in the sequence. This arrangement of vector spaces and operators
is called a cochain complex of vector spaces 4. We often simply refer to
this as a “complex” and omit the term “cochain”. The reason for the “co”
is that the differential increases the degree k, which is opposite to the
usual boundary map on manifolds, which decreases k. We will see chain
complexes when we study homology.

A complex of vector spaces is usually drawn as a linear sequence of
symbols and arrows as follows: if f : U −→ V is a linear map and g :
V −→W is a linear map such that g ◦ f = 0, then we write

U
f−→ V

g−→W

In general, this simply means that imf ⊂ ker g, and to measure the dif-
ference between them we look at the quotient ker g/imf , which is called
the cohomology of the complex at the position V (or homology, if d
decreases degree). If we are lucky, and the complex has no cohomology
at V , meaning that ker g is precisely equal to imf , then we say that the
complex is exact at V . If the complex is exact everywhere, we call it an
exact sequence (and it has no cohomology!) In our case, we have a longer
cochain complex:

0 // Ω0(M) d // Ω1(M) d // · · · d // Ωn−1(M) d // Ωn(M) // 0

There is a bit of terminology to learn: we have seen that if dρ = 0
then ρ is called closed. But these are also called cocycles and denoted
Zk(M). Similarly the exact forms dα are also called coboundaries,
and are denoted Bk(M). Hence the cohomology groups may be written
Hk
dR(M) = ZkdR(M)/BkdR(M).

Definition 6.6. The de Rham complex is the complex (Ω•(M), d), and
its cohomology at Ωk(M) is called Hk

dR(M), the de Rham cohomology.
Exercise: Check that the graded vector spaceH•dR(M) =

⊕
k∈ZH

k(M)
inherits a product from the wedge product of forms, making it into a Z-
graded ring. This is called the de Rham cohomology ring of M , and the
product is called the cup product.

It is clear from the definition of d that it commutes with pullback via
diffeomorphisms, in the sense f∗ ◦ d = d ◦ f∗. But this is only a special
case of a more fundamental property of d:
Theorem 6.7. Exterior differentiation commutes with pullback: for f :
M −→ N a smooth map, f∗ ◦ dN = dM ◦ f∗.

4since this complex appears for Ω•(U) for any open set U ⊂M , this is actually a cochain
complex of sheaves of vector spaces, but this won’t concern us right away.
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Proof. We need only check this on functions g and exact 1-forms dg: let
X be a vector field on M and g ∈ C∞(N,R).

f∗(dg)(X) = dg(f∗X) = π2g∗f∗X = π2(g ◦ f)∗X = d(f∗g)(X),

giving f∗dg = df∗g, as required. For exact 1-forms we have f∗d(dg) = 0
and d(f∗dg) = d(df∗g) = 0 by the result for functions.

This theorem may be interpreted as follows: The differential forms
give us a Z-graded ring, Ω•(M), which is equipped with a differential
d : Ωk −→ Ωk+1. This sequence of vector spaces and maps which compose
to zero is called a cochain complex. Beyond it being a cochain complex,
it is equipped with a wedge product.

Cochain complexes (C•, dC) may be considered as objects of a new
category, whose morphisms consist of a sum of linear maps ψk : Ck −→ Dk

commuting with the differentials, i.e. dD ◦ ψk = ψk+1 ◦ dC . The previous
theorem shows that pullback f∗ defines a morphism of cochain complexes
Ω•(N) −→ Ω•(M); indeed it even preserves the wedge product, hence it
is a morphism of differential graded algebras.
Corollary 6.8. We may interpret the previous result as showing that Ω•
is a functor from manifolds to differential graded algebras (or, if we forget
the wedge product, to the category of cochain complexes). As a result, we
see that the de Rham cohomology H•dR may be viewed as a functor, from
smooth manifolds to Z-graded commutative rings.
Example 6.9. S1 is connected, and hence H0

dR(S1) = R. So it remains
to compute H1

dR(S1).
Let ∂

∂θ
be the rotational vector field on S1 of unit Euclidean norm, and

let dθ be its dual 1-form, i.e. dθ( ∂
∂θ

) = 1. Note that θ is not a well-defined
function on S1, so the notation dθ may be misleading at first.

Of course, d(dθ) = 0, since Ω2(S1) = 0. We might ask, is there a
function f(θ) such that df = dθ? This would mean ∂f

∂θ
= 1, and hence

f = θ+c2. But since f is a function on S1, we must have f(θ+2π) = f(θ),
which is a contradiction. Hence dθ is not exact, and [dθ] 6= 0 in H1

dR(S1).
Any other 1-form will be closed, and can be represented as gdθ for

g ∈ C∞(S1,R). Let g = 1
2π

∫ θ=2π
θ=0 g(θ)dθ be the average value of g, and

consider g0 = g − g. Then define

f(θ) =
∫ t=θ

t=0
g0(t)dt.

Clearly we have ∂f
∂θ

= g0(θ), and furthermore f is a well-defined function
on S1, since f(θ + 2π) = f(θ). Hence we have that g0 = df , and hence
g = g + df , showing that [gdθ] = g[dθ].

Hence H1
dR(S1) = R, and as a ring, H0

dR +H1
dR is simply R[x]/(x2).

Note that technically we have proven that H1
dR(S1) ∼= R, but we will

see from the definition of integration later that this isomorphism is canon-
ical.
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The de Rham cohomology is an important invariant of a smooth man-
ifold (in fact it doesn’t even depend on the smooth structure, only the
topological structure). To compute it, there are many tools available.
There are three particularly important tools: first, there is Poincaré’s
lemma, telling us the cohomology of Rn. Second, there is integration,
which allows us to prove that certain cohomology classes are non-trivial.
Third, there is the Mayer-Vietoris sequence, which allows us to compute
the cohomology of a union of open sets, given knowledge about the coho-
mology of each set in the union.
Lemma 6.10. Consider the embeddings Ji : M −→ M × [0, 1] given by
x 7→ (x, i) for i = 0, 1. The induced morphisms of de Rham complexes
J∗0 and J∗1 are chain homotopic morphisms, meaning that there is a linear
map K : Ωk(M × [0, 1]) −→ Ωk−1(M) such that

J∗1 − J∗0 = dK +Kd

This shows that on closed forms, J∗i may differ, but only by an exact form.

Proof. Let t be the coordinate on [0, 1]. Define Kf = 0 for f ∈ Ω0(M ×
[0, 1]), and Kα = 0 if α = fρ for ρ ∈ Ωk(M) . But for β = fdt ∧ ρ we
define

Kβ = (
∫ 1

0
fdt)ρ.

Then we verify that

dKf +Kdf = 0 +
∫ 1

0

∂f
∂t
dt = (J∗1 − J∗0 )f,

dKα+Kdα = 0 + (
∫ 1

0

∂f
∂t
dt)ρ = (J∗1 − J∗0 )α,

dKβ+Kdβ = (
∫ 1

0
dMfdt)∧ρ+(

∫ 1

0
fdt)∧dρ+K(df∧dt∧ρ−fdt∧dρ) = 0,

which agrees with (J∗1 − J∗0 )β = 0 − 0 = 0. Note that we have used
K(df ∧ dt ∧ ρ) = K(−dt ∧ dMf ∧ ρ) = −(

∫ 1
0 dMf) ∧ ρ, and the notation

dMf is a time-dependent 1-form whose value at time t is the exterior
derivative on M of the function f(−, t) ∈ Ω0(M).

The previous theorem can be used in a clever way to prove that ho-
motopic maps M −→ N induce the same map on cohomology:
Theorem 6.11. Let f : M −→ N and g : M −→ N be smooth maps
which are (smoothly) homotopic. Then f∗ = g∗ as maps H•(N) −→
H•(M).

Proof. Let H : M × [0, 1] −→ N be a (smooth) homotopy between f, g,
and let J0, J1 be the embeddingsM −→M×[0, 1] from the previous result,
so that H ◦ J0 = f and H ◦ J1 = g. Recall that J∗1 − J∗0 = dK + Kd, so
we have

g∗ − f∗ = (J∗1 − J∗0 )H∗ = (dK +Kd)H∗ = dKH∗ +KH∗d

This shows that f∗, g∗ differ, on closed forms, only by exact terms, and
hence are equal on cohomology.

57



Corollary 6.12. If M,N are (smoothly) homotopic, then H•dR(M) ∼=
H•dR(N).

Proof. M,N are homotopic iff we have maps f : M −→ N , g : N −→ M
with fg ∼ 1 and gf ∼ 1. This shows that f∗g∗ = 1 and g∗f∗ = 1, hence
f∗, g∗ are inverses of each other on cohomology, and hence isomorphisms.

Corollary 6.13 (Poincaré lemma). Since Rn is homotopic to the 1-point
space (R0), we have

Hk
dR(Rn) =

{
R for k = 0
0 for k > 0

As a note, we should mention that the homotopy in the previous the-
orem need not be smooth, since any homotopy may be deformed (using a
continuous homotopy) to a smooth homotopy, by smooth approximation.
Hence we finally obtain that the de Rham cohomology is a homotopy
invariant of smooth manifolds.

6.3 Integration
Since we are accustomed to the idea that a function may be integrated over
a subset of Rn, we might think that if we have a function on a manifold,
we can compute its local integrals and take a sum. This, however, makes
no sense, because the answer will depend on the particular coordinate
system you choose in each open set: for example, if f : U −→ R is a
smooth function on U ⊂ Rn and ϕ : V −→ U is a diffeomorphism onto
V ⊂ Rn, then we have the usual change of variables formula for the
(Lebesgue or Riemann) integral:∫

U

fdx1dx2 · · · dxn =
∫
V

ϕ∗f
∣∣det[ ∂ϕi

∂xj
]
∣∣ dx1 · · · dxn.

The extra factor of the absolute value of the Jacobian determinant shows
that the integral of f is coordinate-dependant. For this reason, it makes
more sense to view the left hand side not as the integral of f but rather as
the integral of ν = fdx1∧· · ·∧dxn. Then, the right hand side is indeed the
integral of ϕ∗ν (which includes the Jacobian determinant in its expression
automatically) , as long as ϕ∗ has positive Jacobian determinant.

Therefore, the integral of a differential n-form will be well-defined on
an n-manifold M , as long as we can choose an atlas where the Jacobian
determinants of the gluing maps are all positive: This is precisely the
choice of an orientation on M , as we now show.
Definition 6.14. A n-manifold M is called orientable when detT ∗M :=
∧nT ∗M is isomorphic to the trivial line bundle. An orientation is the
choice of an equivalence class of nonvanishing sections v, where v ∼ v′ iff
fv = v′ for f a positive real-valued smooth function. M is called oriented
when an orientation is chosen, and ifM is connected and orientable, there
are two possible orientations.
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Rn has a natural orientation by dx1 ∧ · · · ∧ dxn; if M is orientable, we
may choose charts which preserve orientation, as we now show.
Proposition 6.15. If the n-manifoldM is oriented by [v], it is possible to
choose an orientation-preserving atlas (Ui, ϕi) in the sense that ϕ∗i dx1 ∧
· · · ∧ dxn ∼ v for all i. In particular, the Jacobian determinants for this
atlas are all positive.

Proof. Choose any atlas (Ui, ϕi). For each i, either ϕ∗i dx1∧· · ·∧dxn ∼ v,
and if not, replace ϕi with q ◦ ϕ, where q : (x1, . . . , xn) 7→ (−x1, . . . , xn).
This completes the proof.

Now we can define the integral on an oriented n-manifoldM , by defin-
ing the integral on chart images and asking it to be compatible with these
charts:
Theorem 6.16. LetM be an oriented n-manifold. Then there is a unique
linear map

∫
M

: Ωnc (M) −→ R on compactly supported n-forms which has
the following property: if h is an orientation-preserving diffeomorphism
from V ⊂ Rn to U ⊂ M , and if α ∈ Ωnc (M) has support contained in U ,
then ∫

M

α =
∫
V

h∗α.

Proof. Let α ∈ Ωnc (M) and choose an orientation-preserving, locally finite
atlas (Ui, ϕi) with subordinate partition of unity (θi). Then using the
required properties (and noting that α is nonzero in only finitely many
Ui), we have ∫

M

α =
∑
i

∫
M

θiα =
∑
i

∫
ϕi(Ui)

(ϕ−1
i )∗θiα.

This proves the uniqueness of the integral. To show existence, we must
prove that the above expression actually satisfies the defining condition,
and hence can be used as an explicit definition of the integral.

Let h : V −→ U be an orientation-preserving diffeomorphism from
V ⊂ Rn to U ⊂ M , and suppose α has support in U . Then ϕi ◦ h are
orientation-preserving, and

∫
M

α =
∑
i

∫
ϕi(Ui)∩ϕi(U)

(ϕ−1
i )∗θiα

=
∑
i

∫
V ∩h−1(Ui)

(ϕi ◦ h)∗(ϕ−1
i )∗θiα

=
∑
i

∫
V ∩h−1(Ui)

h∗(θiα)

=
∫
V

h∗α,

as required.
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6.4 Stokes’ Theorem
Having defined the integral, we wish to explain the duality between d and
∂: A n− 1-form α on a n-manifold may be pulled back to the boundary
∂M and integrated. On the other hand, it can be differentiated and
integrated over M . The fact that these are equal is Stokes’ theorem, and
is a generalization of the fundamental theorem of calculus.

First we must some simple observations concerning the behaviour of
forms in a neighbourhood of the boundary.

Recall the operation of contraction with a vector field X, which maps
ρ ∈ Ωk(M) to iXρ ∈ Ωk−1(M), defined by the condition of being a graded
derivation iX(α ∧ β) = iXα ∧ β + (−1)|α|α ∧ iXβ such that iXf = 0 and
iXdf = X(f) for all f ∈ C∞(M,R).
Proposition 6.17. Let M be a manifold with boundary. If M is ori-
entable, then so is ∂M . Furthermore, an orientation on M induces one
on ∂M .

Proof. Given a locally finite atlas (Ui) of ∂M , in each Ui we can pick
a nonvanishing outward-pointing vector field Xi in Γ∞(Ui, j∗TM), for
j : ∂M −→M the inclusion. Let (θi) be a subordinate partition of unity,
and form X =

∑
i
θiXi. This is a vector field on ∂M , tangent to M and

pointing outward everywhere along the boundary.
Given an orientation [v] of M , we can form [iXv], which is then an

orientation of ∂M . This depends only on [v] and X being a nonvanishing
outward vector field.

We now verify a local computation leading to Stokes’ theorem. If

α =
∑
i

aidx
1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxm

is a degree m− 1 form with compact support in U ⊂ Hm, and if U does
not intersect the boundary ∂Hm, then by the fundamental theorem of
calculus, ∫

U

dα =
∑
i

(−1)i−1
∫
U

∂ai
∂xi

dx1 · · · dxm = 0.

Now suppose that V = U ∩ ∂Hm 6= ∅. Then∫
U

dα =
∑
i

(−1)i−1
∫
U

∂ai
∂xi

dx1 · · · dxm

= −(−1)m−1
∫
V

am(x1, . . . , xm−1, 0)dx1 · · · dxm−1

=
∫
V

am(x1, . . . , xm−1, 0)i
− ∂
∂xm

(dx1 ∧ · · · dxm)

=
∫
V

j∗α,

where the last integral is with respect to the orientation induced by the
outward vector field.
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Theorem 6.18 (Stokes’ theorem). Let M be an oriented manifold with
boundary, and let the boundary be oriented with respect to an outward
pointing vector field. Then for α ∈ Ωm−1

c (M) and j : ∂M −→ M the
inclusion of the boundary, we have∫

M

dα =
∫
∂M

j∗α.

Proof. For a locally finite atlas (Ui, ϕi), we have∫
M

dα =
∫
M

d(
∑
i

θiα) =
∑
i

∫
ϕi(Ui)

(ϕ−1
i )∗d(θiα)

By the local calculation above, if ϕi(Ui) ∩ ∂Hm = ∅, the summand on
the right hand side vanishes. On the other hand, if ϕi(Ui) ∩ ∂Hm 6= ∅,
we obtain (letting ψi = ϕi|Ui∩∂M and j′ : ∂Hm −→ Rn), using the local
result, ∫

ϕi(Ui)
(ϕ−1
i )∗d(θiα) =

∫
ϕi(Ui)∩∂Hm

j′
∗(ϕ−1

i )∗(θiα)

=
∫
ϕi(Ui)∩∂Hm

(ψ−1
i )∗(j∗(θiα)).

This then shows that
∫
M
dα =

∫
∂M

j∗α, as desired.

Corollary 6.19. If ∂M = ∅, then for all α ∈ Ωn−1
c (M), we have

∫
M
dα =

0.
Corollary 6.20. Let M be orientable and compact, and let v ∈ Ωn(M)
be nonvanishing. Then

∫
M
v > 0, when M is oriented by [v]. Hence,

v cannot be exact, by the previous corollary. This tells us that the class
[v] ∈ Hn

dR(M) cannot be zero. In this way, integration of a closed form
may often be used to show that it is nontrivial in de Rham cohomology.

6.5 The Mayer-Vietoris sequence
Decompose a manifold M into a union of open sets M = U ∪V . We wish
to relate the de Rham cohomology of M to that of U and V separately,
and also that of U ∩V . These 4 manifolds are related by obvious inclusion
maps as follows:

U ∪ V U t Voo U ∩ V
∂Uoo
∂V

oo

Applying the functor Ω•, we obtain morphisms of complexes in the other
direction, given by simple restriction (pullback under inclusion):

Ω•(U ∪ V ) // Ω•(U)⊕ Ω•(V )
∂∗U

//
∂∗V // Ω•(U ∩ V )
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Now we notice the following: if forms ω ∈ Ω•(U) and τ ∈ Ω•(V ) come
from a single global form on U∪V , then they are killed by ∂∗V −∂∗U . Hence
we obtain a complex of (morphisms of cochain complexes):

0 // Ω•(U ∪ V ) // Ω•(U)⊕ Ω•(V )
∂∗V −∂

∗
U // Ω•(U ∩ V ) // 0

(84)
It is clear that this complex is exact at the first position, since a form
must vanish if it vanishes on U and V . Similarly, if forms on U, V agree
on U ∩V , they must glue to a form on U ∪V . Hence the complex is exact
at the middle position. We now show that the complex is exact at the
last position.
Theorem 6.21. The above complex (of de Rham complexes) is exact. It
may be called a “short exact sequence” of cochain complexes.

Proof. Let α ∈ Ωq(U ∩ V ). We wish to write α as a difference τ − ω
with τ ∈ Ωq(U) and ω ∈ Ωq(V ). Let (ρU , ρV ) be a partition of unity
subordinate to (U, V ). Then we have α = ρUα− (−ρV α) in U ∩ V . Now
observe that ρUα may be extended by zero in V (call the result τ), while
−ρV α may be extended by zero in U (call the result ω). Then we have
α = (∂∗V − ∂∗U )(τ, ω), as required.

It is not surprising that given an exact sequence of morphisms of com-
plexes

0 −→ A•
f−→ B•

g−→ C• −→ 0, (85)
we obtain maps between the cohomology groups of the complexes

Hk(A•) f∗−→ Hk(B•) g∗−→ Hk(C•).

And it is not difficult to see that this sequence is exact at the middle
term: Let [ρ] ∈ Hk(B•), for ρ ∈ Bk such that dBρ = 0. Suppose that
g(ρ) = 0 in Ck, so that there exists τ ∈ Ak with f(τ) = ρ. Then since f
is a morphism of complexes, it follows that f(dAτ) = dBf(τ) = dBρ = 0.
Since f : Ak+1 −→ Bk+1 is injective, this implies that dAτ = 0, so we
have f∗[τ ] = [ρ], as required.

The interesting thing is that the maps g∗ are not necessarily surjec-
tive, nor are f∗ necessarily injective. In fact, there is a natural map
δ : Hk(C•) −→ Hk+1(A•) (called the connecting homomorphism) which
extends the 3-term sequence to a full complex involving all cohomology
groups of arbitrary degree:

If [γ] ∈ Hk(C•), where dCγ = 0, then by exactness of (85) at position
3, there must exist β ∈ Bk with g(β) = γ. This β may not be closed, but
g(dBβ) = dC(g(β)) = dCγ = 0, so that by exactness of (85) at position 2,
there must exist α ∈ Ak+1 with f(α) = dBβ. Now note that α is closed,
because f(dAα) = dB(f(α)) = 0 and f is injective by exactness of (85) at
position 1. Hence this determines a class [α] ∈ Hk+1(A•). By making a
similar “diagram chase”, check that this class [α] does not depend on the
choices made! We then define δ([γ]) = [α].
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Proposition 6.22. With this definition of δ, one gets a long exact
sequence of vector spaces as follows:

· · · // Hk−1(C) δ // Hk(A)
f∗ // Hk(B)

g∗ // Hk(C) δ // Hk+1(A) // · · ·

Proof. We leave the proof as an exercise.

Therefore, from the complex of complexes (84), we immediately obtain
a long exact sequence of vector spaces, called the Mayer-Vietoris sequence:

· · · −→ Hk(U∪V ) −→ Hk(U)⊕Hk(V ) −→ Hk(U∩V ) δ−→ Hk+1(U∪V ) −→ · · ·

where the first map is simply a restriction map, the second map is the
difference of the restrictions δ∗V − δ∗U , and the third map is the connecting
homomorphism δ, which can be written explicitly as follows:

δ[α] = [β], β = −d(ρV α) = d(ρUα).

(notice that β has support contained in U ∩ V .)

6.6 Examples of cohomology computations
Example 6.23 (Circle). Here we present another computation ofH•dR(S1),
by the Mayer-Vietoris sequence. Express S1 = U0 ∪ U1 as before, with
Ui ∼= R, so that H0(Ui) = R, H1

dR(Ui) = 0 by the Poincaré lemma. Since
U0 ∩ U1 ∼= R t R, we have H0(U0 ∩ U1) = R ⊕ R and H1(U0 ∩ U1) = 0.
Since we know that H2

dR(S1) = 0, the Mayer-Vietoris sequence only has
4 a priori nonzero terms:

0 −→ H0(S1) −→ R⊕ R
δ∗1−δ

∗
0−→ R⊕ R δ−→ H1(S1) −→ 0.

The middle map takes (c1, c0) 7→ c1 − c0 and hence has 1-dimensional
kernel. Hence H0(S1) = R. Furthermore the kernel of δ must only be
1-dimensional, hence H1(S1) = R as well. Exercise: Using a partition
of unity, determine an explicit representative for the class in H1

dR(S1),
starting with the function on U0 ∩ U1 which takes values 0,1 on each
respective connected component.
Example 6.24 (Spheres). To determine the cohomology of S2, decom-
pose into the usual coordinate charts U0, U1, so that Ui ∼= R2, while
U0 ∩ U1 ∼ S1. The first line of the Mayer-Vietoris sequence is

0 −→ H0(S2) −→ R⊕ R −→ R.

The third map is nontrivial, since it is just the subtraction. Hence this
first line must be exact, and H0(S2) = R (not surprising since S2 is
connected). The second line then reads (we can start it with zero since
the first line was exact)

0 −→ H1(S2) −→ 0 −→ H1(S1) = R,
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where the second zero comes from the fact that H1(R2) = 0. This then
shows us that H1(S2) = 0. The last term, together with the third line
now give

0 −→ H1(S1) = R −→ H2(S2) −→ 0,
showing that H2(S2) = R.

Continuing this process, we obtain the de Rham cohomology of all
spheres:

Hk
dR(Sn) =

{
R, for k = 0 or n,
0 otherwise.
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