
2 The derivative

The derivative of a smooth map is an absolutely central topic in di�erential
geometry. To make sense of the derivative, however, we must introduce
the notion of tangent vector and, further, the space of all tangent vectors,
known as the tangent bundle. In this section, we describe the tangent
bundle intrinsically, without reference to any embedding of the manifold
in a vector space. The definition of the tangent bundle is simplest for an
open subset U µ Rn. In this case, a tangent vector to a point p œ U is
simply a vector in Rn, and so the tangent bundle, which consists of all
tangent vectors to all points in U , is simply given by

T U = U ◊ Rn. (29)

We now investigate the problem of generalizing the tangent bundle to
other manifolds, where the convenience of being an open set in a vector
space is not available.

2.1 The tangent bundle

The tangent bundle of an n-manifold M is a 2n-manifold, called T M ,
naturally constructed in terms of M . As a set, it is fairly easy to describe,
as simply the disjoint union of all tangent spaces. However we must
explain precisely what we mean by the tangent space TpM to p œ M .

We may define a tangent vector v is as an equivalence class of smooth
curves. Let a smooth curve through p be a smooth map “ : I æ M
from an open interval around zero I µ R to the manifold M , such that
“(0) = p. Then we say two such curves “

1

, “
2

are equivalent when they
have the same velocity at p, which we take to mean the following: in a
chart (U, Ï) containing p, we have

d
dt

--
t=0

(Ï ¶ “
1

) = d
dt

--
t=0

(Ï ¶ “
2

).

Note that the above di�erentiation makes sense since Ï ¶ “i are maps
between Euclidean spaces, which we know how to di�erentiate. Also note
that if this condition holds in one chart, then it clearly holds in any other
chart, by the chain rule.

Inspired by the above definition, which uses charts to make sense of
the derivative of a curve, we now present an alternative definition which
emphasizes the importance of the charts and makes it more clear how
tangent spaces at di�erent points may be unified to obtain a single tangent
bundle. We use as main ingredient the definition (29) of the tangent
bundle of an open set in Euclidean space.
Definition 2.1. Let (U, Ï), (V, Â) be coordinate charts around p œ M .
Let u œ TÏ(p)

Ï(U) and v œ TÂ(p)

Â(V ). Then the triples (U, Ï, u), (V, Â, v)
are called equivalent when D(Â ¶ Ï≠1)(Ï(p)) : u ‘æ v. The chain rule
for derivatives Rn ≠æ Rn guarantees that this is indeed an equivalence
relation.

The set of equivalence classes of such triples is called the tangent space
to p of M , denoted TpM . It is a real vector space of dimension dim M ,
since both TÏ(p)

Ï(U) and TÂ(p)

Â(V ) are, and D(Â ¶ Ï≠1) is a linear iso-
morphism.
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As a set, the tangent bundle is defined by

T M =
h

pœM

TpM, (30)

and it is equipped with a natural surjective map fi : T M ≠æ M , which is
simply fi(X) = x for X œ TxM .

We now give it a manifold structure in a natural way.
Proposition 2.2. For an n-manifold M , the set T M has a natural
topology and smooth structure which make it a 2n-manifold, and make
fi : T M ≠æ M a smooth map.

Proof. Any chart (U, Ï) for M defines a bijection

T Ï(U) ≥= U ◊ Rn ≠æ fi≠1(U) (31)

via (p, v) ‘æ (U, Ï, v). Using this, we induce a smooth manifold structure
on fi≠1(U), and view the inverse of this map as a chart (fi≠1(U), �) to
Ï(U) ◊ Rn.

given another chart (V, Â), we obtain another chart (fi≠1(V ), �) and
we may compare them via

� ¶ �≠1 : Ï(U fl V ) ◊ Rn ≠æ Â(U fl V ) ◊ Rn, (32)

which is given by (p, u) ‘æ ((Â ¶ Ï≠1)(p), D(Â ¶ Ï≠1)pu), which is smooth.
Therefore we obtain a topology and smooth structure on all of T M (by
defining W to be open when W fl fi≠1(U) is open for every U in an atlas
for M ; all that remains is to verify the Hausdor� property, which holds
since points x, y are either in the same chart (in which case it is obvious)
or they can be separated by the given type of charts.

Remark 2.3. This is a more constructive way of looking at the tangent
bundle: We choose a countable, locally finite atlas {(Ui, Ïi)} for M and
glue together Ui ◊ Rn to Uj ◊ Rn via an equivalence

(x, u) ≥ (y, v) … y = Ïj ¶ Ï≠1

i (x) and v = D(Ïj ¶ Ï≠1

i )xu, (33)

and verify the conditions of the general gluing construction 1.14. The
choice of a di�erent atlas yields a canonically di�eomorphic manifold.

2.2 The derivative

A description of the tangent bundle is not complete without defining the
derivative of a general smooth map of manifolds f : M ≠æ N . Such a
map may be defined locally in charts (Ui, Ïi) for M and (V–, Â–) for N as
a collection of vector-valued functions Â– ¶ f ¶ Ï≠1

i = fi– (defined where
the composition makes sense) which satisfy (again, at all points where the
composition is defined)

(Â— ¶ Â≠1

– ) ¶ fi– = fj— ¶ (Ïj ¶ Ï≠1

i ). (34)

Di�erentiating, we obtain

D(Â— ¶ Â≠1

– ) ¶ Dfi– = Dfj— ¶ D(Ïj ¶ Ï≠1

i ). (35)
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Equation 35 shows that Dfi– and Dfj— glue together to define a map
T M ≠æ T N . This map is called the derivative of f and is denoted
Df : T M ≠æ T N . Sometimes it is called the “push-forward” of vectors
and is denoted fú. The map fits into the commutative diagram

T M
Df //

fi

✏✏

T N

fi

✏✏
M

f
// N

(36)

Each fiber fi≠1(x) = TxM µ T M is a vector space, and the map Df :
TxM ≠æ Tf(x)

N is a linear map. In fact, (f, Df) defines a homomorphism
of vector bundles from T M to T N .

The usual chain rule for derivatives then implies that if f ¶ g = h
as maps of manifolds, then Df ¶ Dg = Dh. As a result, we obtain the
following category-theoretic statement.
Proposition 2.4. The mapping T which assigns to a manifold M its
tangent bundle T M , and which assigns to a map f : M ≠æ N its deriva-
tive Df : T M ≠æ T N , is a functor from the category of manifolds and
smooth maps to itself1.

For this reason, the derivative map Df is sometimes called the “tan-
gent mapping” T f .

1

We can also say that it is a functor from manifolds to the category of smooth vector

bundles.
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