
2.3 Vector fields

A vector field on an open subset U µ V of a vector space V is what
we usually call a vector-valued function, i.e. a function X : U æ V .
If (x

1

, . . . , xn) is a basis for V ú, hence a coordinate system for V , then
the constant vector fields dual to this basis are usually denoted in the
following way: 1

ˆ
ˆx

1

, . . . ,
ˆ

ˆxn

2
. (37)

The reason for this notation is that we may identify a vector v with the
operator of directional derivative in the direction v. We will see later that
vector fields may be viewed as derivations on functions. A derivation is
a linear map D from smooth functions to R satisfying the Leibniz rule
D(fg) = fD(g) + gD(f).

The tangent bundle allows us to make sense of the notion of vector
field in a global way. Locally, in a chart (Ui, Ïi), we would say that a
vector field Xi is simply a vector-valued function on Ui, i.e. a function
Xi : Ï(Ui) ≠æ Rn. Of course if we had another vector field Xj on (Uj , Ïj),
then the two would agree as vector fields on the overlap Ui fl Uj when
D(Ïj ¶ Ï≠1

i ) : Xi ‘æ Xj . So, if we specify a collection {Xi œ CŒ(Ui,Rn)}
which glue together on overlaps, it defines a global vector field.
Definition 2.5. A smooth vector field on the manifold M is a smooth
map X : M ≠æ T M such that fi ¶ X = idM . In words, it is a smooth
assignment of a unique tangent vector to each point in M .

Such maps X are also called cross-sections or simply sections of the
tangent bundle T M , and the set of all such sections is denoted CŒ(M, T M)
or, better, �Œ(M, T M), to distinguish them from all smooth maps M ≠æ
T M . The space vector fields is also sometimes denoted by X(M).
Example 2.6. From a computational point of view, given an atlas (Ũi, Ïi)
for M , let Ui = Ïi(Ũi) µ Rn and let Ïij = Ïj ¶ Ï≠1

i . Then a global vec-
tor field X œ �Œ(M, T M) is specified by a collection of vector-valued
functions

Xi : Ui ≠æ Rn, (38)
such that

DÏij(Xi(x)) = Xj(Ïij(x)) (39)
for all x œ Ïi(Ũi fl Ũj). For example, if S1 = U

0

Û U
1

/ ≥, with U
0

= R
and U

1

= R, with x œ U
0

\{0} ≥ y œ U
1

\{0} whenever y = x≠1, then
Ï

01

: x ‘æ x≠1 and DÏ
01

(x) : v ‘æ ≠x≠2v. Then if we define (letting x be
the standard coordinate along R)

X
0

= ˆ
ˆx

X
1

= ≠y2

ˆ
ˆy

,

we see that this defines a global vector field, which does not vanish in U
0

but vanishes to order 2 at a single point in U
1

. Find the local expression in
these charts for the rotational vector field on S1 given in polar coordinates
by ˆ

ˆ◊
.
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Remark 2.7. While a vector v œ TpM is mapped to a vector (Df)p(v) œ
Tf(p)

N by the derivative of a map f œ CŒ(M, N), there is no way, in
general, to transport a vector field X on M to a vector field on N . If f is
invertible, then of course Df ¶X ¶f≠1 : N æ T N defines a vector field on
N , which can be called fúX, but if f is not invertible this approach fails.
Definition 2.8. We say that X œ X(M) and Y œ X(N) are f–related,
for f œ CŒ(M, N), when the following diagram commutes

T M
Df // T N

M

X

OO

f
// N

Y

OO .

(40)

2.4 Flow of a vector field

A smooth curve in the manifold M is by definition a smooth map from R
to M

“ : R æ M.

The domain R has a natural coordinate t, and a natural coordinate vector
field ˆ

ˆt
, and if we apply the derivative of “ to this vector field, we get the

velocity of the path, defined as follows:

“̇(t) = (D“)|t( ˆ
ˆt

).

The velocity is therefore a path in T M which “lifts the path “”, in the
sense that the following diagram commutes:

T M

fi

✏✏
R

“
//

“̇

==

M

Given a vector field X œ X(M) and an initial point x œ M , there is a
natural dynamical system, where x is made to evolve in time according to
the rule that its velocity at all times must coincide with the vector field
X. This idea is captured in the following precise way.
Definition 2.9. The smooth curve “ is called an integral curve of the
vector field X œ X(M) when its velocity is X, that is,

“̇(t) = X(“(t)). (41)

If we choose a coordinate chart (U, �) for M containing the path “,
we may write “ in components: � ¶ “ is nothing but an n-tuple of func-
tions (“1, . . . , “n) of one variable t. Also, using the chart we may write
the vector field X in components, giving a vector-valued function of n
variables

(X
1

(x1, . . . , xn), . . . , Xn(x1, . . . , xn)).
Then the integral curve equation (41), written in components, states that

d
dt

(“i) = Xi(“1, . . . “n), i = 1, . . . , n.
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This is a system of ordinary di�erential equations, and so the existence and
uniqueness theorem for ODE guarantees that it has a unique solution on
some time interval (≠‘, ‘), ‘ > 0, once an initial point (“1(0), . . . , “n(0)) is
chosen. This tells us that integral curves “ always exist and are unique in
a neighbourhood of zero once we fix “(0). In fact, the theorem also guar-
antees that the integral curve depends smoothly on the initial condition.
We may state the theorem from ODE as follows:
Theorem 2.10 (Existence and uniqueness theorem for ODE). Let X be
a vector field defined on an open set V µ Rn. For each point x

0

œ V there
exists a neighbourhood U of x

0

in V , a number ‘ > 0, and a smooth map

� : (≠‘, ‘) ◊ U æ V

(t, x) ‘æ Ït(x),

such that for all x œ U , the curve t ‘æ Ït(x) is an integral curve of X with
initial condition Ï

0

(x) = x. Furthermore, if (U Õ, ‘Õ, �Õ) is another tuple
satisfying the same conditions, then � coincides with �Õ on (≠·, ·)◊ (U fl
U Õ), where · = min(‘, ‘Õ).
Corollary 2.11. Let X œ X(M). There exists an open neighbourhood U
of {0} ◊ M in R ◊ M and a smooth map � : U æ M such that, for each
x œ M , we have

i) (R ◊ {x}) fl U is an interval about zero;
ii) t ‘æ Ït(y) = �(t, y) is an integral curve of X;

iii) Ï
0

(y) = y;
iv) if (t, x), (t+ tÕ, x), (tÕ, Ït(x)) are all in U then ÏtÕ (Ït(x)) = Ït+tÕ (x).

Furthermore, if (U Õ, �Õ) is as above and satisfies i), ii), iii), then it must
satisfy iv), and � = �Õ on U fl U Õ.

Proof. Using the previous theorem, we can find an open cover (Ui)iœI of
M and a sequence (‘i)iœI , ‘i > 0, and maps �i : (≠‘i, ‘i) ◊ Ui æ M
with the properties given in the theorem. By the uniqueness given in
the theorem, �i coincides with �j on the intersection of their respective
domains, and so we obtain a well-defined map

� : U =
€

iœI

((≠‘i, ‘i) ◊ Ui) æ M.

By construction, � satisfies properties i), ii), iii). To verify property iv),
notice that · ‘æ Ï· (Ït(x)) and · ‘æ Ït+· (x), for 0 Æ · Æ tÕ, are both
integral curves for X with initial condition Ït(x), and so must coincide,
in particular the coincide for · = tÕ. The final uniqueness statement is
proven exactly in the same way.

Such data (U, �) is sometimes called the flow of the vector field X.
More precisely, it is called a local 1-parameter group of di�eomorphisms
generated by X, for the simple reason that if W µ M is an open set such
that {t}◊W and {≠t}◊Ït(W ) are contained in U , then Ït : W æ Ït(W )
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is a di�eomorphism with inverse Ï≠t. Furthermore, if {tÕ} ◊ Ït(W ) and
{t + tÕ} ◊ W are contained in U , then we have the composition law

ÏtÕ ¶ Ït = ÏtÕ
+t, or etX ¶ etÕX = e(t+tÕ

)X ,

if we use the exponential notation Ït = etX to emphasize this group struc-
ture. Note that this is an intrinsic family of di�eomorphisms associated
to X, and does not coincide with the Riemannian exponential map in
Riemannian geometry, which uses the geodesic flow.

If the domain U is actually the whole of R ◊ M , then we call this
structure a global 1-parameter group of di�eomorphisms. Note that, due
to the uniqueness in Corollary 2.11, we may take the union of all possible
domains of local 1-parameter groups of di�eomorphisms generated by X;
this is the unique maximal local 1-parameter group of di�eomorphisms
generated by X.
Definition 2.12. The vector field X is complete when it generates a
global 1-parameter group of di�eomorphisms. That is, its flow is defined
for all time.
Theorem 2.13. Any vector field on a compact manifold is complete.

Proof. Let (U, �) be the maximal local 1-parameter group of di�eomor-
phisms generated by X. For a contradiction, suppose that x œ M is
such that U fl (R ◊ {x}) is an open interval with finite upper limit Ê (the
lower limit case is done similarly). Now using compactness, let y be an
accumulation point for �(t, x) as t approaches Ê. We may then use the
flow defined near y to extend �(t, x) as follows, which contradicts the
maximality of �:

Let ” > 0 and a neighbourhood W of y be su�ciently small that
(≠”, ”) ◊ W µ U , and let · œ (Ê ≠ ”, Ê) be such that Ï· (x) œ W . Then
we can find a neighbourhood V of x with the property that {·} ◊ V µ U
and Ï· (V ) µ W . Then if we enlarge U to U fi ((Ê ≠ ”, Ê + ”) ◊ V ), we
can extend � by

�Õ(t, x) = �(t ≠ ·, �(·, x)), for (t, x) œ (Ê ≠ ”, Ê + ”) ◊ V.

Example 2.14. The vector field X = x2 ˆ
ˆx

on R is not complete. For
initial condition x

0

, have integral curve “(t) = x
0

(1 ≠ tx
0

)≠1, which gives
�(t, x

0

) = x
0

(1 ≠ tx
0

)≠1, which is well-defined on

U = {1 ≠ tx > 0} µ R ◊ R.
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