
2.5 Local structure of smooth maps

In some ways, smooth manifolds are easier to produce or find than general
topological manifolds, because of the fact that smooth maps have linear
approximations. Therefore smooth maps often behave like linear maps of
vector spaces, and we may gain inspiration from vector space construc-
tions (e.g. subspace, kernel, image, cokernel) to produce new examples of
manifolds.

In charts (U, Ï), (V, Â) for the smooth manifolds M, N , a smooth map
f : M ≠æ N is represented by a smooth map Â¶f ¶Ï≠1 œ CŒ(Ï(U),Rn).
We shall give a general local classification of such maps, based on the
behaviour of the derivative. The fundamental result which provides in-
formation about the map based on its derivative is the inverse function
theorem.
Theorem 2.15 (Inverse function theorem). Let f : (M, p) æ (N, q) be a
smooth map of n-dimensional manifolds and suppose that Df(p) : TpM æ
TqN is invertible. Then f has a local smooth inverse. That is, there are
neighbourhoods U, V of p, q and a smooth map g : V æ U such that
f ¶ g = idV and g ¶ f = idU .

This theorem provides us with a local normal form for a smooth map
with Df(p) invertible: we may choose coordinates on su�ciently small
neighbourhoods of p, f(p) so that f is represented by the identity map
Rn ≠æ Rn.

In fact, the inverse function theorem leads to a normal form theorem
for a more general class of maps:
Theorem 2.16 (Constant rank theorem). Let f : Mm æ Nn be a smooth
map such that Df has constant rank k in a neighbourhood of p œ M . Then
there are charts (U, Ï) and (V, Â) containing p, f(p) such that

Â ¶ f ¶ Ï≠1 : (x
1

, . . . , xm) ‘æ (x
1

, . . . , xk, 0, . . . , 0). (42)

Proof. Begin by choosing charts so that without loss of generality M is
an open set in Rm and N is Rn.

Since rk Df = k at p, there is a k ◊ k minor of Df(p) with nonzero
determinant. Reorder the coordinates on Rm and Rn so that this minor is
top left, and translate coordinates so that f(0) = 0. label the coordinates
(x

1

, . . . , xk, y
1

, . . . ym≠k) on the domain and (u
1

, . . . uk, v
1

, . . . , vn≠k) on
the codomain.

Then we may write f(x, y) = (Q(x, y), R(x, y)), where Q is the pro-
jection to u = (u

1

, . . . , uk) and R is the projection to v. with ˆQ
ˆx

non-
singular. First we wish to put Q into normal form. Consider the map
„(x, y) = (Q(x, y), y), which has derivative

D„ =
3

ˆQ
ˆx

ˆQ
ˆy

0 1

4
(43)

As a result we see D„(0) is nonsingular and hence there exists a local
inverse „≠1(x, y) = (A(x, y), B(x, y)). Since it’s an inverse this means
(x, y) = „(„≠1(x, y)) = (Q(A, B), B), which implies that B(x, y) = y.
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Then f ¶ „≠1 : (x, y) ‘æ (x, S = R(A, y)), and must still be of rank k.
Since its derivative is

D(f ¶ „≠1) =
3

Ik◊k 0
ˆS
ˆx

ˆS
ˆy

4
(44)

we conclude that ˆS
ˆy

= 0, meaning that we have eliminated the y-dependence:

f ¶ „≠1 : (x, y) ‘æ (x, S(x)). (45)

We now postcompose by the di�eomorphism ‡ : (u, v) ‘æ (u, v ≠ S(u)), to
obtain

‡ ¶ f ¶ „≠1 : (x, y) ‘æ (x, 0), (46)
as required.

As we shall see, these theorems have many uses. One of the most
straightforward uses is for defining submanifolds.

There are several ways to define the notion of submanifold. We will
use a definition which works for topological and smooth manifolds, based
on the local model of inclusion of a vector subspace. These are sometimes
called regular or embedded submanifolds.
Definition 2.17. A subspace L µ M of an m-manifold is called a sub-
manifold of codimension k when each point x œ L is contained in a chart
(U, Ï) for M such that

L fl U = f≠1(0), (47)
where f is the composition of Ï with the projection Rm æ Rk to the
last k coordinates (xm≠k+1

, . . . , xm). A submanifold of codimension 1 is
usually called a hypersurface.
Proposition 2.18. If f : M ≠æ N is a smooth map of manifolds, and if
Df(p) has constant rank on M , then for any q œ f(M), the inverse image
f≠1(q) µ M is a regular submanifold.

Proof. Let x œ f≠1(q). Then there exist charts Â, Ï such that Â¶f ¶Ï≠1 :
(x

1

, . . . , xm) ‘æ (x
1

, . . . , xk, 0, . . . , 0) and f≠1(q) fl U = {x
1

= · · · = xk =
0}. Hence we obtain that f≠1(q) is a codimension k submanifold.

Example 2.19. Let f : Rn ≠æ R be given by (x
1

, . . . , xn) ‘æ
q

x2

i .
Then Df(x) = (2x

1

, . . . , 2xn), which has rank 1 at all points in Rn\{0}.
Hence since f≠1(q) contains {0} i� q = 0, we see that f≠1(q) is a regular
submanifold for all q ”= 0. Exercise: show that this manifold structure is
compatible with that obtained in Example 1.22.

The previous example leads to the following special case.
Proposition 2.20. If f : M ≠æ N is a smooth map of manifolds and
Df(p) has rank equal to dim N along f≠1(q), then this subset f≠1(q) is
an embedded submanifold of M .

Proof. Since the rank is maximal along f≠1(q), it must be maximal in an
open neighbourhood U µ M containing f≠1(q), and hence f : U ≠æ N
is of constant rank.
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Definition 2.21. If f : M ≠æ N is a smooth map such that Df(p) is
surjective, then p is called a regular point. Otherwise p is called a critical
point. If all points in the level set f≠1(q) are regular points, then q is
called a regular value, otherwise q is called a critical value. In particular,
if f≠1(q) = ?, then q is regular.

It is often useful to highlight two classes of smooth maps; those for
which Df is everywhere injective, or, on the other hand surjective.
Definition 2.22. A smooth map f : M ≠æ N is called a submersion
when Df(p) is surjective at all points p œ M , and is called an immersion
when Df(p) is injective at all points p œ M . If f is an injective immersion
which is a homeomorphism onto its image (when the image is equipped
with subspace topology), then we call f an embedding.
Proposition 2.23. If f : M ≠æ N is an embedding, then f(M) is a
regular submanifold.

Proof. Let f : M ≠æ N be an embedding. Then for all m œ M , we have
charts (U, Ï), (V, Â) where Â¶f¶Ï≠1 : (x

1

, . . . , xm) ‘æ (x
1

, . . . , xm, 0, . . . , 0).
If f(U) = f(M)flV , we’re done. To make sure that some other piece of M
doesn’t get sent into the neighbourhood, use the fact that f(U) is open in
the subspace topology. This means we can find a smaller open set V Õ µ V
such that V Õ fl f(M) = f(U). Restricting the coordinates to V Õ, we see
that f(M) is cut out by (xm+1

, . . . , xn), where n = dim N .

Example 2.24. If ÿ : M ≠æ N is an embedding of M into N , then Dÿ :
T M ≠æ T N is also an embedding (hence so are Dkÿ : T kM ≠æ T kN),
showing that T M is a submanifold of T N .
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