
3.4 Genericity

Theorem 3.26 (Transversality theorem). Let F : X ◊ S ≠æ Y and
g : Z ≠æ Y be smooth maps of manifolds where only X has boundary.
Suppose that F and ˆF are transverse to g. Then for almost every s œ S,
fs = F (·, s) and ˆfs are transverse to g.

Proof. Due to the transversality, the fiber product W = (X ◊ S) ◊Y Z is
a submanifold (with boundary) of X ◊ S ◊ Z and projects to S via the
usual projection map fi. We show that any s œ S which is a regular value
for both the projection map fi : W ≠æ S and its boundary map ˆfi gives
rise to a fs which is transverse to g. Then by Sard’s theorem the s which
fail to be regular in this way form a set of measure zero.

Suppose that s œ S is a regular value for fi. Suppose that fs(x) =
g(z) = y and we now show that fs is transverse to g there. Since F (x, s) =
g(z) and F is transverse to g, we know that

imDF
(x,s)

+ imDgz = TyY.

Therefore, for any a œ TyY , there exists b = (w, e) œ T (X ◊ S) with
DF

(x,s)

b ≠ a in the image of Dgz. But since Dfi is surjective, there exists
(wÕ, e, cÕ) œ T

(x,y,z)

W . Hence we observe that

(Dfs)(w≠wÕ)≠a = DF
(x,s)

[(w, e)≠(wÕ, e)]≠a = (DF
(x,s)

b≠a)≠DF
(x,s)

(wÕ, e),

where both terms on the right hand side lie in imDgz, since (wÕ, e, cÕ) œ
T

(x,y,z)

W means Dgz(cÕ) = DF
(x,y)

(wÕ, e).
Precisely the same argument (with X replaced with ˆX and F replaced

with ˆF ) shows that if s is regular for ˆfi then ˆfs is transverse to g. This
gives the result.

The previous result immediately shows that transversal maps to Rn

are generic, since for any smooth map f : M ≠æ Rn we may produce a
family of maps

F : M ◊ Rn ≠æ Rn (73)
via F (x, s) = f(x) + s. This new map F is clearly a submersion and
hence is transverse to any smooth map g : Z ≠æ Rn. For arbitrary target
manifolds, we will imitate this argument, but we will require a (weak)
version of Whitney’s embedding theorem for manifolds into Rn.

In the next section we will show that any manifold Y can be embedded
via ÿ : Y æ RN in some large Euclidean space, and in such a way that
the image has a “tubular neighbourhood” U µ RN of radius ‘(y) (for
a positive real-valued function ‘ : Y æ R) equipped with a projection
fi : U æ Y such that fiÿ = idY .
Corollary 3.27. Let X be a manifold with boundary and f : X ≠æ Y be a
smooth map to a manifold Y . Then there is an open ball S = B(0, 1) µ RN

and a smooth map F : X ◊ S ≠æ Y such that F (x, 0) = f(x) and for
fixed x, the map fx : s ‘æ F (x, s) is a submersion S ≠æ Y .

In particular, F and ˆF are submersions, so are transverse to any
g : Z æ Y .
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Proof. Use the embedding of ÿ : Y æ RN and the tubular neighbourhood
fi : U æ Y to define

F (x, s) = fi(ÿ(f(x)) + ‘(y)s). (74)

The transversality theorem then guarantees that given any smooth
g : Z ≠æ Y , for almost all s œ S the maps fs, ˆfs are transverse to g. We
improve this slightly to show that fs may be chosen to be homotopic to
f .
Corollary 3.28 (Transversality homotopy theorem). Given any smooth
maps f

0

: X ≠æ Y , g : Z ≠æ Y , where only X has boundary, there exists
a smooth map f

1

: X ≠æ Y homotopic to f
0

with f
1

, ˆf
1

both transverse
to g.

Proof. Let S, F be as in the previous corollary. Away from a set of measure
zero in S, the functions fs, ˆfs are transverse to g, by the transversality
theorem. But these fs are all homotopic to f via the homotopy X ◊
[0, 1] ≠æ Y given by

(x, t) ‘æ F (x, ts). (75)

The last theorem we shall prove concerning transversality is a very
useful extension result which is essential for intersection theory:
Theorem 3.29 (Homotopic transverse extension of boundary map). Let
X be a manifold with boundary and f

0

: X ≠æ Y a smooth map to a
manifold Y . Suppose that ˆf

0

is transverse to the closed map g : Z ≠æ Y .
Then there exists a map f

1

: X ≠æ Y , homotopic to f and with ˆf
1

= ˆf
0

,
such that f

1

is transverse to g.

Proof. First observe that since ˆf
0

is transverse to g on ˆX, f
0

is also
transverse to g there, and furthermore since g is closed, f

0

is transverse
to g in a neighbourhood U of ˆX. (for example, if x œ ˆX but x not in
f≠1

0

(g(Z)) then since the latter set is closed, we obtain a neighbourhood
of x for which f

0

is transverse to g.)
Now choose a smooth function “ : X ≠æ [0, 1] which is 1 outside U

but 0 on a neighbourhood of ˆX. (why does “ exist? exercise.) Then
set · = “2, so that d·(x) = 0 wherever ·(x) = 0. Recall the map
F : X ◊S ≠æ Y we used in proving the transversality homotopy theorem
and modify it via

G(x, s) = F (x, ·(x)s). (76)
The claim is that G and ˆG are transverse to g. This is clear for x such
that ·(x) ”= 0. But if ·(x) = 0,

T G
(x,s)

(v, w) = T F
(x,0)

(v, 0) = T (f
0

)x(v), (77)

but ·(x) = 0 means that x œ U , in which f is transverse to g.
Since transversality holds, there exists s such that f

1

: x ‘æ G(x, s)
and ˆf

1

are transverse to g (and homotopic to f
0

, as before). Finally, if
x is in the neighbourhood of ˆX for which · = 0, then f

1

(x) = F (x, 0) =
f

0

(x).
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Corollary 3.30. If f
0

: X ≠æ Y and f
1

: X ≠æ Y are homotopic smooth
maps of manifolds, each transverse to the closed map g : Z ≠æ Y , then
the fiber products W

0

= Xf0 ◊gZ and W
1

= Xf1 ◊gZ are cobordant.

Proof. if F : X ◊ [0, 1] ≠æ Y is the homotopy between f
0

, f
1

, then by the
previous theorem, we may find a (homotopic) homotopy G : X ◊ [0, 1] ≠æ
Y which is transverse to g, without changing F on the boundary. Hence
the fiber product U = (X ◊ [0, 1])G◊gZ is a cobordism with boundary
W Û W Õ.

3.5 Intersection theory

The previous corollary allows us to make the following definition:
Definition 3.31. Let f : X ≠æ Y and g : Z ≠æ Y be smooth maps
with X and Z compact, and dim X + dim Z = dim Y . Then we define the
(mod 2) intersection number of f and g to be

I
2

(f, g) = #(Xf Õ ◊g Z) (mod 2),

where f Õ : X ≠æ Y is any smooth map smoothly homotopic to f but
transverse to g.
Example 3.32. If C

1

, C
2

are two distinct great circles on S2 then they
have two transverse intersection points, so I

2

(C
1

, C
2

) = 0 in Z
2

. Of course
we can shrink one of the circles to get a homotopic one which does not
intersect the other at all. This corresponds to the standard cobordism
from two points to the empty set.
Example 3.33. If (e

1

, e
2

, e
3

) is a basis for R3 we can consider the fol-
lowing two embeddings of S1 = R/2fiZ into RP 2: ÿ

1

: ◊ ‘æ Ècos(◊/2)e
1

+
sin(◊/2)e

2

Í and ÿ
2

: ◊ ‘æ Ècos(◊/2)e
2

+ sin(◊/2)e
3

Í. These two embed-
ded submanifolds intersect transversally in a single point Èe

2

Í, and hence
I

2

(ÿ
1

, ÿ
2

) = 1 in Z
2

. As a result, there is no way to deform ÿi so that they
intersect transversally in zero points.
Example 3.34. Given a smooth map f : X ≠æ Y for X compact and
dim Y = 2 dim X, we may consider the self-intersection I

2

(f, f). In the
previous examples we may check I

2

(C
1

, C
1

) = 0 and I
2

(ÿ
1

, ÿ
1

) = 1. Any
embedded S1 in an oriented surface has no self-intersection. If the surface
is nonorientable, the self-intersection may be nonzero.
Example 3.35. Let p œ S1. Then the identity map Id : S1 ≠æ S1 is
transverse to the inclusion ÿ : p ≠æ S1 with one point of intersection.
Hence the identity map is not (smoothly) homotopic to a constant map,
which would be transverse to ÿ with zero intersection. Using smooth
approximation, get that Id is not continuously homotopic to a constant
map, and also that S1 is not contractible.
Example 3.36. By the previous argument, any compact manifold is not
contractible.
Example 3.37. Consider SO(3) ≥= RP 3 and let ¸ µ RP 3 be a line,
di�eomorphic to S1. This line corresponds to a path of rotations about
an axis by ◊ œ [0, fi] radians. Let P µ RP 3 be a plane intersecting ¸ in one

36



point. Since this is a transverse intersection in a single point, ¸ cannot
be deformed to a point (which would have zero intersection with P. This
shows that the path of rotations is not homotopic to a constant path.

If ÿ : ◊ ‘æ ÿ(◊) is the embedding of S1, then traversing the path twice
via ÿÕ : ◊ ‘æ ÿ(2◊), we obtain a map ÿÕ which is transverse to P but with
two intersection points. Hence it is possible that ÿÕ may be deformed so
as not to intersect P. Can it be done?
Example 3.38. Consider RP 4 and two transverse hyperplanes P

1

, P
2

each an embedded copy of RP 3. These then intersect in P
1

fl P
2

= RP 2,
and since RP 2 is not null-homotopic, we cannot deform the planes to
remove all intersection.

Intersection theory also allows us to define the degree of a map modulo
2. The degree measures how many generic preimages there are of a local
di�eomorphism.
Definition 3.39. Let f : M ≠æ N be a smooth map of manifolds of the
same dimension, and suppose M is compact and N connected. Let p œ N
be any point. Then we define deg

2

(f) = I
2

(f, p).
Example 3.40. Let f : S1 ≠æ S1 be given by z ‘æ zk. Then deg

2

(f) = k
(mod 2).
Example 3.41. If p : Cfi {Œ} ≠æ Cfi {Œ} is a polynomial of degree k,
then as a map S2 ≠æ S2 we have deg

2

(p) = k (mod 2), and hence any
odd polynomial has at least one root. To get the fundamental theorem of
algebra, we must consider oriented cobordism

Even if submanifolds C, CÕ do not intersect, it may be that there are
more sophisticated geometrical invariants which cause them to be “inter-
twined” in some way. One example of this is linking number.
Definition 3.42. Suppose that M, N µ Rk+1 are compact embedded
submanifolds with dim M + dim N = k, and let us assume they are trans-
verse, meaning they do not intersect at all.

Then define ⁄ : M ◊ N ≠æ Sk via

(x, y) ‘æ x ≠ y
|x ≠ y| .

Then we define the (mod 2) linking number of M, N to be deg
2

(⁄).
Example 3.43. Consider the standard Hopf link in R3. Then it is easy to
calculate that deg

2

(⁄) = 1. On the other hand, the standard embedding of
disjoint circles (di�ering by a translation, say) has deg

2

(⁄) = 0. Hence it is
impossible to deform the circles through embeddings of S1 ÛS1 ≠æ R3, so
that they are unlinked. Why must we stay within the space of embeddings,
and not allow the circles to intersect?
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