4 Partitions of unity

Partitions of unity allow us to go from local to global, i.e. to build a
global object on a manifold by building it on each open set of a cover,
smoothly tapering each local piece so it is compactly supported in each
open set, and then taking a sum over open sets. This is a very flexible
operation which uses the properties of smooth functions—it will not work
for complex manifolds, for example. Our main example of such a passage
from local to global is to build a global map from a manifold to R which
is an embedding, a result first proved by Whitney.

Definition 4.1. A collection of subsets {Uas} of the topological space M
is called locally finite when each point z € M has a neighbourhood V'
intersecting only finitely many of the U,.

Definition 4.2. A covering {V,.} is a refinement of the covering {Us}
when each V,, is contained in some Ug.

Lemma 4.3. Any open covering {Aa} of a topological manifold has a
countable, locally finite refinement {(Ui,p:)} by coordinate charts such
that ;(U;) = B(0,3) and {V; = ;' (B(0,1))} is still a covering of M.
We will call such a cover a regular covering. In particular, any topolog-
ical manifold is paracompact (i.e. every open cover has a locally finite
refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around
any point x € M, we can translate and rescale to find a covering of M
by a refinement of the type desired, and choose a finite subcover, which
is obviously locally finite.

For a general manifold, we note that by second countability of M,
there is a countable basis of coordinate neighbourhoods and each of these
charts is a countable union of open sets P; with P, compact. Hence M
has a countable basis {P;} such that P; is compact.

Using these, we may define an increasing sequence of compact sets
which exhausts M: let K1 = Fh and

Ki+1:P1U~"UPT,

where r > 1 is the first integer with K; C Py U---U P,.

Now note that M is the union of ring-shaped sets K;\K;_;, each
of which is compact. If p € Aq, then p € K;y1\K; for some i. Now
choose a coordinate neighbourhood (Up,a, ¢p,a) With Up.a C Kito\K;
and ©p.o(Up,) = B(0,3) and define Vp,o = ¢~ *(B(0,1)).

Letting p, « vary, these neighbourhoods cover the compact set K;+1\K;
without leaving the band K;42\K;_;. Choose a finite subcover V; j for
each i. Then (U k, vi,x) is the desired locally finite refinement. O

Definition 4.4. A smooth partition of unity is a collection of smooth
non-negative functions { fo : M — R} such that

i) {suppfa = fa "(R\{0})} is locally finite,
i) > fa(x) =1 Vo € M, hence the name.
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A partition of unity is subordinate to an open cover {U; } when Va, supp fo C
U, for some 1.

Theorem 4.5. Given a regular covering {(Ui, i)} of a manifold, there

exists a partition of unity {f;} subordinate to it with f; > 0 on V; and
suppfi C o; '(B(0,2)).

Proof. A bump function is a smooth non-negative real-valued function §
on R"™ with §(z) =1 for ||z|| < 1 and g(z) = 0 for ||z|| > 2. For instance,
take

sy = =l
h(2 = |lz|]) + h(||z|| - 1)
for h(t) given by e~'/* for t > 0 and 0 for ¢ < 0.
Having this bump function, we can produce non-negative bump func-
tions on the manifold g; = §ow; which have support suppg; C ¢; ' (B(0,2))
and take the value +1 on V;. Finally we define our partition of unity via

fi=J =12,

= =, 1=
> 9i

4.1 Whitney embedding

We now investigate the embedding of arbitrary smooth manifolds as reg-
ular submanifolds of R”.

Theorem 4.6 (Compact Whitney embedding in RN). Any compact man-
ifold may be embedded in RN for sufficiently large N.

Proof. Let {(U; D Vi, i) }5_, be a finite regular covering, which exists by
compactness. Choose a partition of unity {fi,..., fx} as in Theorem 4.5
and define the following “zoom-in” maps M — RI™M.

- i\T)pi(x x e U;
sty - { FR@) ,
Then define a map & : M — R*(im M+ which zooms simultaneously
into all neighbourhoods, with extra information to guarantee injectivity:

(I)(I) = (@1(I)v .. '7¢k(x)7f1($)7' . ,fk(l'))

Note that ®(z) = ®(z) implies that for some i, f;(z) = fi(z') # 0 and
hence z,z" € U;. This then implies that ¢;(x) = ¢;(z’), implying = = z'.
Hence @ is injective.

We now check that D® is injective, which will show that it is an
injective immersion. At any point = the differential sends v € T, M to the
following vector in RY™M 5 ... 5 RUMM R x ... x R.

(Dfi(v)er(2)+fi(2)Dpr(v), . .., D fi(v)pr (@) + fr (@) Dipr (v), D fi(v), . .., D fi(v)

But this vector cannot be zero. Hence we see that ® is an immersion.
But an injective immersion from a compact space must be an embed-
ding: view ® as a bijection onto its image. We must show that ® ' is
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continuous, i.e. that ® takes closed sets to closed sets. If K C M is closed,
it is also compact and hence ®(K) must be compact, hence closed (since
the target is Hausdorff). O

Theorem 4.7 (Compact Whitney embedding in R?"*!). Any compact
n-manifold may be embedded in R®" T,

Proof. Begin with an embedding ® : M — RY and assume N > 2n + 1.
We then show that by projecting onto a hyperplane it is possible to obtain
an embedding to RN 71,

A vector v € S¥71 € RY defines a hyperplane (the orthogonal com-
plement) and let P, : RY — RN~ be the orthogonal projection to this
hyperplane. We show that the set of v for which ®, = P, o ® fails to be
an embedding is a set of measure zero, hence that it is possible to choose
v for which ®, is an embedding.

d, fails to be an embedding exactly when ®, is not injective or D®,
is not injective at some point. Let us consider the two failures separately:

If v is in the image of the map £1 : (M x M)\Ay — SV =1 given by

TSI
Bi(p1,p2) = [|®(p2) — ®(p1)||’

then &, will fail to be injective. Note however that $; maps a 2n-
dimensional manifold to a N — 1-manifold, and if N > 2n + 1 then baby
Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in
a chart (U, ). @, will fail to be an immersion in U precisely when v
coincides with a vector in the normalized image of D(® o ') where

Doy ') CcR* — RV,
Hence we have a map (letting N(w) = ||w]])

D(®o @_1)

. n—1 N-1
NoD(<I>o<p—1)'UXS — ST

The image has measure zero as long as 2n — 1 < N — 1, which is certainly
true since 2n < N — 1. Taking union over countably many charts, we see
that immersion fails on a set of measure zero in S~ 1.

Hence we see that @, fails to be an embedding for a set of v € SV ~!
of measure zero. Hence we may reduce N all the way to N =2n+1. [

Corollary 4.8. We see from the proof that if we do not require injectivity
but only that the manifold be immersed in RY, then we can take N = 2n
instead of 2n + 1.

We now use Whitney embedding to prove the existence of tubular
neighbourhoods for submanifolds of RV, a key point in proving genericity
of transversality. Tubular neighbourhoods also exist for submanifolds of
any manifold, but we leave this corollary for the reader.

If Y ¢ RY is an embedded submanifold, the normal space at y € Y’
is defined by N,Y = {v € RY : vlT,Y}. The collection of all normal
spaces of all points in Y is called the normal bundle:

NY = {(y,v) €Y xRY : ve N,Y}.
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Proposition 4.9. NY C RY x RY is an embedded submanifold of di-
mension N.

Proof. Given y € Y, choose coordinates (ul7 . uN) in a neighbourhood
U CRY of ysothat Y NU = {u"™! = = u" = 0}. Define @ :
UxRY — RY"" x R" via

D(z,v) = (u" (@), .., u" (@), (v, 52r|a)s -, (U, 5o ]e)),

so that ®71(0) is precisely NY N (U x RY). We then show that 0is a
regular value: observe that, writing v in terms of its components v’ %
in the standard basis for R,

(0. 52 1e) = (7 58 B u(w)) e l) = D! B (ul)

Jj=

-

Therefore the Jacobian of ® is the ((N —n) 4+ n) x (N + N) matrix
oud
D®(z) = ( 357 (2) s 0 )
* gur (u())

The N rows of this matrix are linearly independent, proving ® is a sub-
mersion. O

The normal bundle NY contains Y 2 Y x {0} as a regular submanifold,
and is equipped with a smooth map 7 : NY — Y sending (y,v) — y.
The map 7 is a surjective submersion and is the bundle projection. The
vector spaces ! (y) for y € Y are called the fibers of the bundle and NY
is an example of a vector bundle.

We may take advantage of the embedding in RY to define a smooth
map E: NY — R¥ via

E(z,v) =z +wv.

Definition 4.10. A tubular neighbourhood of the embedded submanifold
Y ¢ RY is a neighbourhood U of Y in R¥ that is the diffeomorphic image
under E of an open subset V' C NY of the form

V ={(y,v) € NY : |v| <d(y)},

for some positive continuous function § : M — R.

If U ¢ RY is such a tubular neighbourhood of Y, then there does exist
a positive continuous function € : Y — R such that U. = {z € RY
Jy € Y with |z — y| < e(y)} is contained in U. This is simply

e(y) =sup{r : B(y,r) C U},

which is continuous since Ve > 0,3z € U for which €(y) < |z — y| + €. For
any other y' € Y, this is < |y — ¢'| + |z — ¢'| + €. Since |z — 3’| < €(y'),
we have [e(y) —e(y)| < |y — ¢/ + e

Theorem 4.11 (Tubular neighbourhood theorem). Every regular sub-
manifold of RN has a tubular neighbourhood.
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Proof. First we show that E is a local diffeomorphism near y € Y C NY.
if ¢+ is the embedding of Y in RY, and ¢/ : ¥ — NY is the embedding in
the normal bundle, then Fo.’ = ¢, hence we have DEo Di' = Du, showing
that the image of DE(y) contains T,Y. Now if ¢ is the embedding of N, Y
in RY, and ¢/ : N,Y — NY is the embedding in the normal bundle,
then Eo.' = 1. Hence we see that the image of DE(y) contains N, Y, and
hence the image is all of TyRN. Hence E is a diffeomorphism on some
neighbourhood

Vs(y) ={(y/,v") e NY : |y —y| <4, [v/| <4}, 6>0.

Now for y € Y let r(y) = sup{d : El|v,(y) is a diffecomorphism} if this is
<1 and let r(y) = 1 otherwise. The function r(y) is continuous, since if
ly —y'| < r(y), then Vs(y") C V,(y(y) for 6 = r(y) — |y — ¢'|. This means
that r(y") > 6, i.e. r(y)—7r(y’) < |y—1y'|. Switching y and y/, this remains
true, hence |r(y) — r(y")| < |y — /|, yielding continuity.

Finally, let V = {(y,v) € NY : |v| < 3r(y)}. We show that E
is injective on V. Suppose (y,v),(y’,v") € V are such that E(y,v) =
E(y',v"), and suppose wlog r(y') < r(y). Then since y +v =y’ + v, we
have

ly =yl == < ||+ V'] < 57(y) + 57(y) < r(y).
Hence y,y’ are in V,.()(y), on which E is a diffeomorphism. The required
tubular neighbourhood is then U = E(V). O
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