
4 Partitions of unity

Partitions of unity allow us to go from local to global, i.e. to build a
global object on a manifold by building it on each open set of a cover,
smoothly tapering each local piece so it is compactly supported in each
open set, and then taking a sum over open sets. This is a very flexible
operation which uses the properties of smooth functions—it will not work
for complex manifolds, for example. Our main example of such a passage
from local to global is to build a global map from a manifold to RN which
is an embedding, a result first proved by Whitney.
Definition 4.1. A collection of subsets {U–} of the topological space M
is called locally finite when each point x œ M has a neighbourhood V
intersecting only finitely many of the U–.
Definition 4.2. A covering {V–} is a refinement of the covering {U—}
when each V– is contained in some U— .
Lemma 4.3. Any open covering {A–} of a topological manifold has a
countable, locally finite refinement {(Ui, Ïi)} by coordinate charts such
that Ïi(Ui) = B(0, 3) and {Vi = Ï≠1

i (B(0, 1))} is still a covering of M .
We will call such a cover a regular covering. In particular, any topolog-
ical manifold is paracompact (i.e. every open cover has a locally finite
refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around
any point x œ M , we can translate and rescale to find a covering of M
by a refinement of the type desired, and choose a finite subcover, which
is obviously locally finite.

For a general manifold, we note that by second countability of M ,
there is a countable basis of coordinate neighbourhoods and each of these
charts is a countable union of open sets Pi with Pi compact. Hence M
has a countable basis {Pi} such that Pi is compact.

Using these, we may define an increasing sequence of compact sets
which exhausts M : let K

1

= P
1

, and

Ki+1

= P
1

fi · · · fi Pr,

where r > 1 is the first integer with Ki µ P
1

fi · · · fi Pr.
Now note that M is the union of ring-shaped sets Ki\K¶

i≠1

, each
of which is compact. If p œ A–, then p œ Ki+1

\K¶
i for some i. Now

choose a coordinate neighbourhood (Up,–, Ïp,–) with Up,– µ Ki+2

\K¶
i≠1

and Ïp,–(Up,–) = B(0, 3) and define Vp,– = Ï≠1(B(0, 1)).
Letting p, – vary, these neighbourhoods cover the compact set Ki+1

\K¶
i

without leaving the band Ki+2

\K¶
i≠1

. Choose a finite subcover Vi,k for
each i. Then (Ui,k, Ïi,k) is the desired locally finite refinement.

Definition 4.4. A smooth partition of unity is a collection of smooth
non-negative functions {f– : M ≠æ R} such that

i) {suppf– = f≠1

– (R\{0})} is locally finite,
ii)

q
–

f–(x) = 1 ’x œ M , hence the name.
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A partition of unity is subordinate to an open cover {Ui} when ’–, suppf– µ
Ui for some i.
Theorem 4.5. Given a regular covering {(Ui, Ïi)} of a manifold, there
exists a partition of unity {fi} subordinate to it with fi > 0 on Vi and
suppfi µ Ï≠1

i (B(0, 2)).

Proof. A bump function is a smooth non-negative real-valued function g̃
on Rn with g̃(x) = 1 for ||x|| Æ 1 and g̃(x) = 0 for ||x|| Ø 2. For instance,
take

g̃(x) = h(2 ≠ ||x||)
h(2 ≠ ||x||) + h(||x|| ≠ 1) ,

for h(t) given by e≠1/t for t > 0 and 0 for t < 0.
Having this bump function, we can produce non-negative bump func-

tions on the manifold gi = g̃¶Ïi which have support suppgi µ Ï≠1

i (B(0, 2))
and take the value +1 on Vi. Finally we define our partition of unity via

fi = giq
j

gj
, i = 1, 2, . . . .

4.1 Whitney embedding

We now investigate the embedding of arbitrary smooth manifolds as reg-
ular submanifolds of Rk.
Theorem 4.6 (Compact Whitney embedding in RN ). Any compact man-
ifold may be embedded in RN for su�ciently large N .

Proof. Let {(Ui ∏ Vi, Ïi)}k
i=1

be a finite regular covering, which exists by
compactness. Choose a partition of unity {f

1

, . . . , fk} as in Theorem 4.5
and define the following “zoom-in” maps M ≠æ Rdim M :

Ï̃i(x) =
;

fi(x)Ïi(x) x œ Ui,

0 x /œ Ui.

Then define a map � : M ≠æ Rk(dim M+1) which zooms simultaneously
into all neighbourhoods, with extra information to guarantee injectivity:

�(x) = (Ï̃
1

(x), . . . , Ï̃k(x), f
1

(x), . . . , fk(x)).

Note that �(x) = �(xÕ) implies that for some i, fi(x) = fi(xÕ) ”= 0 and
hence x, xÕ œ Ui. This then implies that Ïi(x) = Ïi(xÕ), implying x = xÕ.
Hence � is injective.

We now check that D� is injective, which will show that it is an
injective immersion. At any point x the di�erential sends v œ TxM to the
following vector in Rdim M ◊ · · · ◊ Rdim M ◊ R ◊ · · · ◊ R.

(Df
1

(v)Ï
1

(x)+f
1

(x)DÏ
1

(v), . . . , Dfk(v)Ïk(x)+fk(x)DÏ
1

(v), Df
1

(v), . . . , Dfk(v)

But this vector cannot be zero. Hence we see that � is an immersion.
But an injective immersion from a compact space must be an embed-

ding: view � as a bijection onto its image. We must show that �≠1 is
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continuous, i.e. that � takes closed sets to closed sets. If K µ M is closed,
it is also compact and hence �(K) must be compact, hence closed (since
the target is Hausdor�).

Theorem 4.7 (Compact Whitney embedding in R2n+1). Any compact
n-manifold may be embedded in R2n+1.

Proof. Begin with an embedding � : M ≠æ RN and assume N > 2n + 1.
We then show that by projecting onto a hyperplane it is possible to obtain
an embedding to RN≠1.

A vector v œ SN≠1 µ RN defines a hyperplane (the orthogonal com-
plement) and let Pv : RN ≠æ RN≠1 be the orthogonal projection to this
hyperplane. We show that the set of v for which �v = Pv ¶ � fails to be
an embedding is a set of measure zero, hence that it is possible to choose
v for which �v is an embedding.

�v fails to be an embedding exactly when �v is not injective or D�v

is not injective at some point. Let us consider the two failures separately:
If v is in the image of the map —

1

: (M ◊ M)\�M ≠æ SN≠1 given by

—
1

(p
1

, p
2

) = �(p
2

) ≠ �(p
1

)
||�(p

2

) ≠ �(p
1

)|| ,

then �v will fail to be injective. Note however that —
1

maps a 2n-
dimensional manifold to a N ≠ 1-manifold, and if N > 2n + 1 then baby
Sard’s theorem implies the image has measure zero.

The immersion condition is a local one, which we may analyze in
a chart (U, Ï). �v will fail to be an immersion in U precisely when v
coincides with a vector in the normalized image of D(� ¶ Ï≠1) where

� ¶ Ï≠1 : Ï(U) µ Rn ≠æ RN .

Hence we have a map (letting N(w) = ||w||)

D(� ¶ Ï≠1)
N ¶ D(� ¶ Ï≠1) : U ◊ Sn≠1 ≠æ SN≠1.

The image has measure zero as long as 2n ≠ 1 < N ≠ 1, which is certainly
true since 2n < N ≠ 1. Taking union over countably many charts, we see
that immersion fails on a set of measure zero in SN≠1.

Hence we see that �v fails to be an embedding for a set of v œ SN≠1

of measure zero. Hence we may reduce N all the way to N = 2n + 1.

Corollary 4.8. We see from the proof that if we do not require injectivity
but only that the manifold be immersed in RN , then we can take N = 2n
instead of 2n + 1.

We now use Whitney embedding to prove the existence of tubular
neighbourhoods for submanifolds of RN , a key point in proving genericity
of transversality. Tubular neighbourhoods also exist for submanifolds of
any manifold, but we leave this corollary for the reader.

If Y µ RN is an embedded submanifold, the normal space at y œ Y
is defined by NyY = {v œ RN : v‹TyY }. The collection of all normal
spaces of all points in Y is called the normal bundle:

NY = {(y, v) œ Y ◊ RN : v œ NyY }.
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Proposition 4.9. NY µ RN ◊ RN is an embedded submanifold of di-
mension N .

Proof. Given y œ Y , choose coordinates (u1, . . . uN ) in a neighbourhood
U µ RN of y so that Y fl U = {un+1 = · · · = uN = 0}. Define � :
U ◊ RN ≠æ RN≠n ◊ Rn via

�(x, v) = (un+1(x), . . . , uN (x), Èv, ˆ
ˆu1 |xÍ, . . . , Èv, ˆ

ˆun |xÍ),

so that �≠1(0) is precisely NY fl (U ◊ RN ). We then show that 0 is a
regular value: observe that, writing v in terms of its components vj ˆ

ˆxj

in the standard basis for RN ,

Èv, ˆ
ˆui |xÍ = Èvj ˆ

ˆxj , ˆxk

ˆui (u(x)) ˆ
ˆxk |xÍ =

Nÿ

j=1

vj ˆxj

ˆui (u(x))

Therefore the Jacobian of � is the ((N ≠ n) + n) ◊ (N + N) matrix

D�(x) =
3

ˆuj

ˆxi (x) 0
ú ˆxj

ˆui (u(x))

4

The N rows of this matrix are linearly independent, proving � is a sub-
mersion.

The normal bundle NY contains Y ≥= Y ◊{0} as a regular submanifold,
and is equipped with a smooth map fi : NY ≠æ Y sending (y, v) ‘æ y.
The map fi is a surjective submersion and is the bundle projection. The
vector spaces fi≠1(y) for y œ Y are called the fibers of the bundle and NY
is an example of a vector bundle.

We may take advantage of the embedding in RN to define a smooth
map E : NY ≠æ RN via

E(x, v) = x + v.

Definition 4.10. A tubular neighbourhood of the embedded submanifold
Y µ RN is a neighbourhood U of Y in RN that is the di�eomorphic image
under E of an open subset V µ NY of the form

V = {(y, v) œ NY : |v| < ”(y)},

for some positive continuous function ” : M ≠æ R.
If U µ RN is such a tubular neighbourhood of Y , then there does exist

a positive continuous function ‘ : Y ≠æ R such that U‘ = {x œ RN :
÷y œ Y with |x ≠ y| < ‘(y)} is contained in U . This is simply

‘(y) = sup{r : B(y, r) µ U},

which is continuous since ’‘ > 0, ÷x œ U for which ‘(y) Æ |x ≠ y| + ‘. For
any other yÕ œ Y , this is Æ |y ≠ yÕ| + |x ≠ yÕ| + ‘. Since |x ≠ yÕ| Æ ‘(yÕ),
we have |‘(y) ≠ ‘(yÕ)| Æ |y ≠ yÕ| + ‘.
Theorem 4.11 (Tubular neighbourhood theorem). Every regular sub-
manifold of RN has a tubular neighbourhood.
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Proof. First we show that E is a local di�eomorphism near y œ Y µ NY .
if ÿ is the embedding of Y in RN , and ÿÕ : Y ≠æ NY is the embedding in
the normal bundle, then E ¶ÿÕ = ÿ, hence we have DE ¶DÿÕ = Dÿ, showing
that the image of DE(y) contains TyY . Now if ÿ is the embedding of NyY
in RN , and ÿÕ : NyY ≠æ NY is the embedding in the normal bundle,
then E ¶ ÿÕ = ÿ. Hence we see that the image of DE(y) contains NyY , and
hence the image is all of TyRN . Hence E is a di�eomorphism on some
neighbourhood

V”(y) = {(yÕ, vÕ) œ NY : |yÕ ≠ y| < ”, |vÕ| < ”}, ” > 0.

Now for y œ Y let r(y) = sup{” : E|V”(y)

is a di�eomorphism} if this is
Æ 1 and let r(y) = 1 otherwise. The function r(y) is continuous, since if
|y ≠ yÕ| < r(y), then V”(yÕ) µ Vr(y)

(y) for ” = r(y) ≠ |y ≠ yÕ|. This means
that r(yÕ) Ø ”, i.e. r(y)≠r(yÕ) Æ |y≠yÕ|. Switching y and yÕ, this remains
true, hence |r(y) ≠ r(yÕ)| Æ |y ≠ yÕ|, yielding continuity.

Finally, let V = {(y, v) œ NY : |v| < 1

2

r(y)}. We show that E
is injective on V . Suppose (y, v), (yÕ, vÕ) œ V are such that E(y, v) =
E(yÕ, vÕ), and suppose wlog r(yÕ) Æ r(y). Then since y + v = yÕ + vÕ, we
have

|y ≠ yÕ| = |v ≠ vÕ| Æ |v| + |vÕ| Æ 1

2

r(y) + 1

2

r(yÕ) Æ r(y).
Hence y, yÕ are in Vr(y)

(y), on which E is a di�eomorphism. The required
tubular neighbourhood is then U = E(V ).
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