
3 Transversality

We continue to use the constant rank theorem to produce more manifolds,
except now these will be cut out only locally by functions. Globally,
they are cut out by intersecting with another submanifold. You should
think that intersecting with a submanifold locally imposes a number of
constraints equal to its codimension.

The problem is that the intersection of submanifolds need not be a
submanifold; this is why the condition of transversality is so important -
it guarantees that intersections are smooth.

Two subspaces K, L µ V of a vector space V are transverse when
K + L = V , i.e. every vector in V may be written as a (possibly non-
unique) linear combination of vectors in K and L. In this situation one
can easily see that dim V = dim K + dim L ≠ dim K fl L, or equivalently

codim(K fl L) = codimK + codimL. (49)

We may apply this to submanifolds as follows:
Definition 3.1. Let K, L µ M be regular submanifolds such that every
point p œ K fl L satisfies

TpK + TpL = TpM. (50)

Then K, L are said to be transverse submanifolds and we write K fl| L.
Proposition 3.2. If K, L µ M are transverse submanifolds, then K fl L
is either empty, or a submanifold of codimension codimK + codimL.

Proof. Let p œ K flL. Then there are neighbourhoods U, V of p for which
K fl U = f≠1(0) for 0 a regular value of a function f : U ≠æ RcodimK and
L fl V = g≠1(0) for 0 a regular value of a function g : V ≠æ RcodimL.

Then p must be a regular point for (f, g) : U fl V ≠æ RcodimK+codimL,
since the kernel of its derivative at p is the intersection ker Df(p) fl
ker Dg(p), which is exactly TpK fl TpL, which has codimension codimK +
codimL by the transversality assumption, implying D(f, g)(p) is surjec-
tive. Therefore (f, g)≠1(0, 0) = f≠1(0) fl g≠1(0) = K fl L fl U fl V is a
submanifold. Since this is true for all p œ K fl L, we obtain that K fl L is
a submanifold of M , as required. Since Tp(K fl L) = TpK fl TpL, we see
that K fl L has codimension codimL + codimK.

Example 3.3 (Exotic spheres). Consider the following intersections in
C5\0:

S7

k = {z2

1

+z2

2

+z2

3

+z3

4

+z6k≠1

5

= 0}fl{|z
1

|2+|z
2

|2+|z
3

|2+|z
4

|2+|z
5

|2 = 1}.
(51)

This is a transverse intersection, since the complex vector field
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(or its real part, if you prefer), is tangent to the first submanifold but not
to the second (which is a hypersurface). Note that if a complex coordinate
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has real and imaginary parts z = x + iy, then its associated vector field
ˆz = ˆ

ˆz
is given by

ˆ
ˆz

= 1

2

( ˆ
ˆx

≠ i ˆ
ˆy

),
so that ˆz(z) = 1 and ˆz(z̄) = 0.

For k = 1, . . . , 28 the intersection is a smooth manifold homeomorphic
to S7. These exotic 7-spheres were constructed by Brieskorn and represent
each of the 28 di�eomorphism classes on S7.

We may choose to phrase the previous transversality result in a slightly
di�erent way, in terms of the embedding maps k, l for K, L in M . Specif-
ically, we say the maps k, l are transverse in the sense that ’a œ K, b œ L
such that k(a) = l(b) = p, we have im(Dk(a)) + im(Dl(b)) = TpM . The
advantage of this approach is that it makes sense for any maps, not nec-
essarily embeddings.
Definition 3.4. Two maps f : K ≠æ M , g : L ≠æ M of manifolds are
called transverse when im(Df(a)) + im(Dg(b)) = TpM for all a, b, p such
that f(a) = g(b) = p.
Proposition 3.5. If f : K ≠æ M , g : L ≠æ M are transverse smooth
maps, then Kf ◊gL = {(a, b) œ K ◊ L : f(a) = g(b)} is naturally a
smooth manifold equipped with commuting maps
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where i is the inclusion and f fl g : (a, b) ‘æ f(a) = g(b).
The manifold Kf ◊gL of the previous proposition is called the fiber

product of K with L over M , and is a generalization of the intersection
product. It is often denoted simply by K ◊M L, when the maps to M are
clear.

Proof. Consider the graphs �f µ K ◊ M and �g µ L ◊ M . To impose
f(k) = g(l), we can take an intersection with the diagonal submanifold

� = {(k, m, l, m) œ K ◊ M ◊ L ◊ M}. (53)

Step 1. We show that the intersection � = (�f ◊ �g) fl � is transverse.
Let f(k) = g(l) = m so that x = (k, m, l, m) œ �, and note that

Tx(�f ◊ �g) = {((v, Df(v)), (w, Dg(w))), v œ TkK, w œ TlL} (54)

whereas we also have

Tx(�) = {((v, m), (w, m)) : v œ TkK, w œ TlL, m œ TpM} (55)
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By transversality of f, g, any tangent vector mi œ TpM may be written
as Df(vi) + Dg(wi) for some (vi, wi), i = 1, 2. In particular, we may
decompose a general tangent vector to M ◊ M as
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leading directly to the transversality of the spaces (54), (55). This shows
that � is a submanifold of K ◊ M ◊ L ◊ M .
Step 2. The projection map fi : K◊M◊L◊M æ K◊L takes � bijectively
to Kf ◊gL. Since (54) is a graph, it follows that fi|

�

: � æ K ◊ L is an
injective immersion. Since the projection fi is an open map, it also follows
that fi|

�

is a homeomorphism onto its image, hence is an embedding. This
shows that Kf ◊gL is a submanifold of K ◊ L.

Example 3.6. If K
1

= M ◊ Z
1

and K
2

= M ◊ Z
2

, we may view both Ki

as “fibering” over M with fibers Zi. If pi are the projections to M , then
K
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1

◊ Z
2

, hence the name “fiber product”.
Example 3.7. Let L µ M be a submanifold and let f : K æ M be
“transverse to L” in the sense that f is transverse to the embedding ÿL :
L æ M . This means that for each pair (k, l) such that f(k) = l, we have
Df(TkK) + TlL = TlM . Under this condition, the theorem implies that

f≠1(L) = {k œ K : f(k) œ L}

is a smooth submanifold of K (Why?) This is a generalization of the
regular value theorem.
Example 3.8. Consider the Hopf map p : S3 ≠æ S2 given by composing
the embedding S3 µ C2\{0} with the projection fi : C2\{0} ≠æ CP 1 ≥=
S2. Then for any point q œ S2, p≠1(q) ≥= S1. Since p is a submersion, it
is obviously transverse to itself, hence we may form the fiber product

S3 ◊S2 S3,

which is a smooth 4-manifold equipped with a map p fl p to S2 with fibers
(p fl p)≠1(q) ≥= S1 ◊ S1.

These are our first examples of nontrivial fiber bundles, which we shall
explore later.

3.1 Stability

Transversality is a stable condition. In other words, if transversality holds,
it will continue to hold for any small perturbation (of the submanifolds or
maps involved). In a sense, stability says that transversal maps form an
open set, and genericity says that this open set is dense in the space of
maps. To make this precise, we would introduce a topology on the space
of maps, something which we leave for another course.
Definition 3.9. We call a smooth map

F : M ◊ [0, 1] æ N (57)

a smooth homotopy from f
0

to f
1

, where ft = F ¶jt and jt : M æ M◊[0, 1]
is the embedding x ‘æ (x, t).
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Definition 3.10. A property of a smooth map f : M ≠æ N is stable
under perturbations when for any smooth homotopy ft with f

0

= f ,
there exists an ‘ > 0 such that the property holds for all ft with t < ‘.
Proposition 3.11. If M is compact, then the property of f : M æ N
being an immersion (or submersion) is stable under perturbations.

Proof. If ft, t œ [0, 1] is a smooth homotopy of the immersion f
0

, then in
any chart around the point p œ M , the derivative Df

0

(p) has a m◊m sub-
matrix with nonvanishing determinant, for m = dim M . By continuity,
this m ◊ m submatrix must have nonvanishing determinant in a neigh-
bourhood around (p, 0) œ M ◊ [0, 1]. We can cover M ◊ {0} by a finite
number of such neighbourhoods, since M is compact. Choose ‘ such that
M ◊ [0, ‘) is contained in the union of these intervals, giving the result.
The proof for submersions is identical.

Corollary 3.12. If K is compact and f : K æ M is transverse to the
closed submanifold L µ M (this just means that f is transverse to the em-
bedding ÿ : L æ M), then the transversality is stable under perturbations
of f .

Proof. Let F : K ◊ [0, 1] æ M be a homotopy with f
0

= f . We show that
K has an open cover by neighbourhoods in which ft is transverse for t in
a small interval; we then use compactness to obtain a uniform interval.

First the points which do not intersect L: F ≠1(M \ L) is open in
K ◊ [0, 1] and contains (K \ f≠1(L)) ◊ {0}. So, for each p œ K \ f≠1(L),
there is a neighbourhood Up µ K of p and an interval Ip = [0, ‘p) such
that F (Up ◊ Ip) fl L = ?.

Now, the points which do intersect L: L is a submanifold, so for each
p œ f≠1(L), we can find a neighbourhood V µ M containing f(p) and a
submersion Â : V æ Rl cutting out L fl V . Transversality of f and L is
then the statement that Âf is a submersion at p. This implies there is a
neighbourhood Ũp of (p, 0) in K◊[0, 1] where Âft is a submersion. Choose
an open subset (containing (p, 0)) of the form Up ◊ Ip, for Ip = [0, ‘p).

By compactness of K, choose a finite subcover of {Up}pœK ; the small-
est ‘p in the resulting subcover gives the required interval in which ft

remains transverse to L.

Remark 3.13. Transversality of two maps f : M æ N , g : M Õ æ N can
be expressed in terms of the transversality of f ◊ g : M ◊ M Õ æ N ◊ N to
the diagonal �N µ N ◊N . So, if M and M Õ are compact, we get stability
for transversality of f, g under perturbations of both f and g.
Remark 3.14. Local di�eomorphism and embedding are also stable
properties.

3.2 Sard’s theorem

Not only is transversality stable, it is actually generic, meaning that even
if it does not hold, it can be made to hold by a small perturbation. The
fundamental idea which allows us to prove that transversality is a generic
condition is a the theorem of Sard showing that critical values of a smooth
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map f : M ≠æ N (i.e. points q œ N for which the map f and the inclusion
ÿ : q Òæ N fail to be transverse maps) are rare. The following proof is
taken from Milnor, based on Pontryagin.

The meaning of “rare” will be that the set of critical values is of mea-
sure zero, which means, in Rm, that for any ‘ > 0 we can find a sequence of
balls in Rm, containing f(C) in their union, with total volume less than
‘. Some easy facts about sets of measure zero: the countable union of
measure zero sets is of measure zero, the complement of a set of measure
zero is dense.

We begin with an elementary lemma describing the behaviour of measure-
zero sets under di�erentiable maps.
Lemma 3.15. Let Im = [0, 1]m be the unit cube, and f : Im ≠æ Rn a
C1 map. If m < n then f(Im) has measure zero. If m = n and A µ Im

has measure zero, then f(A) has measure zero.

Proof. If f œ C1, its derivative is bounded on Im, so for all x, y œ Im we
have

||f(y) ≠ f(x)|| Æ K||y ≠ x||, (58)
for a constant3 K > 0 depending only on f . So, the image of a ball
of radius r in Im is contained in a ball of radius Kr, which has volume
proportional to rn.

If A µ Im has measure zero, then for each ‘ we have a countable
covering of A by balls of radius rk with total volume cm

q
k

rm
k < ‘. We

deduce that f(Ai) is covered by balls of radius Krk with total volume
Kncn

q
k

rn
k ; since n Ø m this goes to zero as ‘ æ 0. We conclude that

f(A) is of measure zero.
If m < n then f defines a C1 map Im◊In≠m ≠æ Rn by pre-composing

with the projection map to Im. Since Im ◊ {0} µ Im ◊ In≠m clearly has
measure zero, its image must also.

Remark 3.16. If we considered the case n < m, the resulting sum of
volumes may be larger in Rn. For example, the projection map R2 ≠æ R
given by (x, y) ‘æ x clearly takes the set of measure zero y = 0 to one of
positive measure.

A subset A µ M of a manifold is said to have measure zero when its
image in each chart of an atlas has measure zero. Lemma 3.15, together
with the fact that a manifold is second countable, implies that the prop-
erty is independent of the choice of atlas, and that it is preserved under
equidimensional maps:
Corollary 3.17. Let f : M æ N be a C1 map of manifolds where
dim M = dim N . Then the image f(A) of a set A µ M of measure
zero also has measure zero.
Corollary 3.18 (Baby Sard). Let f : M æ N be a C1 of manifolds where
dim M < dim N . Then f(M) (i.e. the set of critical values) has measure
zero in N .
Remark 3.19. Note that this implies that space-filling curves are not
C1.

3

This is called a Lipschitz constant.
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Now we investigate the measure of the critical values of a map f :
M æ N where dim M = dim N . The set of critical points need not have
measure zero, but we shall see that

The variation of f is constrained along its critical locus

since this is where Df drops rank. In fact, the set of

critical values has measure zero.

Theorem 3.20 (Equidimensional Sard). Let f : M æ N be a C1 map of
n-manifolds, and let C µ M be the set of critical points. Then f(C) has
measure zero.

Proof. It su�ces to show result for the unit cube mapping to Euclidean
space (using second countability, we can cover M by countable collection
of charts (Ui, Ïi)iœI with the property that (Ï≠1

i (In))iœI covers M . Since
a countable union of measure zero sets is measure zero, we obtain the
result). Let f : In ≠æ Rn a C1 map, and let K be the Lipschitz constant
for f on In, i.e.

||f(x) ≠ f(y)|| Æ K|x ≠ y|, ’x, y œ In. (59)

Let c be a critical point, so that the image of Df(c) is a proper subspace
of Rn. Choose a hyperplane containing this subspace, translate it to f(c),
and call it H. Then

d(f(x), H) Æ ||f(x) ≠ f lin

c (x)||, (60)

where f lin

c (x) = f(c)+Dcf(x≠c) is the linear approximation to f at c. By
the definition of the derivative, for each c œ C, we have that ’‘ > 0, ÷” > 0
such that

||f(x) ≠ f lin

c (x)|| < ‘||x ≠ c|| for all x s.t. ||x ≠ c|| < ”.

Because f is C1 and C is compact, we conclude that ’‘ > 0, ÷” > 0 such
that the inequality above holds for all c œ C.

Now we apply this: if c œ C and ||x ≠ c|| Æ ”, then f(x) is within
a distance ‘” from H and within a distance K” of f(c), so lies within a
parallelopiped of volume

(2‘”)(2K”)n≠1. (61)

Now subdivide In into hn cubes of edge length h≠1 with h su�ciently
large that h≠1

Ô
n < ”. Apply the argument for each small cube, in which

||x ≠ c|| Æ h≠1

Ô
n < ”. The number of cubes containing critical points is

at most hn, so this gives a total volume for f(C) less than

(2‘h≠1

Ô
n)(2Kh≠1

Ô
n)n≠1(hn) = 2nK‘nn/2. (62)

Since ‘ can be chosen arbitrarily small, f(C) has measure zero.

The argument above will not work for dim N < dim M ; we need more
control on the function f . In particular, one can find a C1 function I2 ≠æ
R which fails to have critical values of measure zero. (Hint: find a C1

function f : R æ R with critical values containing the Cantor set C µ
[0, 1]. Compose f◊f with the sum R◊R æ R and note that C+C = [0, 2].)
As a result, Sard’s theorem in general requires more di�erentiability of f .
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Theorem 3.21 (Big Sard’s theorem). Let f : M ≠æ N be a Ck map
of manifolds of dimension m, n, respectively. Let C be the set of critical
points. Then f(C) has measure zero if k > m

n
≠ 1.

Proof. As before, it su�ces to show for f : Im ≠æ Rn. We do an induction
on m – note that the theorem holds for m = 0.

Define C
1

µ C to be the set of points x for which Df(x) = 0. Define
Ci µ Ci≠1

to be the set of points x for which Djf(x) = 0 for all j Æ i. So
we have a descending sequence of closed sets:

C ∏ C
1

∏ C
2

∏ · · · ∏ Ck. (63)

We will show that f(C) has measure zero by showing
1. f(Ck) has measure zero,
2. each successive di�erence f(Ci\Ci+1

) has measure zero for i Ø 1,
3. f(C\C

1

) has measure zero.
Step 1: For x œ Ck, Taylor’s theorem gives the estimate

||f(x + t) ≠ f(x)|| Æ c||t||k+1, (64)

where c depends only on Im and f .
Subdivide Im into hm small cubes with edge h≠1; then any point in

in the small cube I
0

containing x may be written as x + t with ||t|| Æ
h≠1

Ô
m. As a result, f(I

0

) is contained by a cube of edge ah≠(k+1), with
a = 2cm(k+1)/2 independent of the small cube size. At most hm cubes are
necessary to cover Ck, and their images have total volume less than

hm(ah≠(k+1))n = anhm≠(k+1)n. (65)

Assuming that k > m
n

≠ 1, this tends to 0 as we increase the number of
cubes.
Step 2: For each x œ Ci\Ci+1

, i Ø 1, there is a i + 1th partial, say wlog
ˆi+1f

1

/ˆx
1

· · · ˆxi+1

, which is nonzero at x. Therefore the function

w(x) = ˆif
1

/ˆx
2

· · · ˆxi+1

(66)

vanishes on Ci but its partial derivative ˆw/ˆx
1

is nonvanishing near x.
Then

(w(x), x
2

, . . . , xm) (67)
forms an alternate coordinate system in a neighbourhood V around x by
the inverse function theorem (the change of coordinates is of class Ck),
and we have trapped Ci inside a hyperplane. The restriction of f to w = 0
in V is clearly critical on Ci fl V and so by induction on m we have that
f(Ci fl V ) has measure zero. Cover Ci \ Ci+1

by countably many such
neighbourhoods V .
Step 3: Let x œ C\C

1

. Note that we won’t necessarily be able to trap
C in a hypersurface. But, since there is some partial derivative, wlog
ˆf

1

/ˆx
1

, which is nonzero at x, so defining w = f
1

, we have that

(w(x), x
2

, . . . , xm) (68)
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is an alternative coordinate system in some neighbourhood V of x (the
coordinate change is a di�eomorphism of class Ck). In these coordinates,
the hyperplanes w = t in the domain are sent into hyperplanes y

1

= t in
the codomain, and so f can be described as a family of maps ft whose
domain and codomain has dimension reduced by 1. Since w = f

1

, the
derivative of f in these coordinates can be written

Df =
3

1 0
ú Dft

4
, (69)

and so a point xÕ = (t, p) in V is critical for f if and only if p is critical for
ft. Therefore, the critical values of f consist of the union of the critical
values of ft on each hyperplane y

1

= t in the codomain. Since the domain
of ft has dimension reduced by one, by induction it has critical values of
measure zero. So the critical values of f intersect each hyperplane in a set
of measure zero, and by Fubini’s theorem this means they have measure
zero. Cover C \ C

1

by countably many such neighbourhoods.

Remark 3.22. Note that f(C) is measurable, since it is the countable
union of compact subsets (the set of critical values is not necessarily closed,
but the set of critical points is closed and hence a countable union of
compact subsets, which implies the same of the critical values.)

To show the consequence of Fubini’s theorem directly, we can use the
following argument. First note that for any covering of [a, b] by intervals,
we may extract a finite subcovering of intervals whose total length is
Æ 2|b ≠ a|. To see this, first choose a minimal subcovering {I

1

, . . . , Ip},
numbered according to their left endpoints. Then the total overlap is at
most the length of [a, b]. Therefore the total length is at most 2|b ≠ a|.

Now let B µ Rn be compact, so that we may assume B µ Rn≠1 ◊[a, b].
We prove that if BflPc has measure zero in the hyperplane Pc = {xn = c},
for any constant c œ [a, b], then it has measure zero in Rn.

If BflPc has measure zero, we can find a covering by open sets Ri
c µ Pc

with total volume < ‘. For su�ciently small –c, the sets Ri
c◊[c≠–c, c+–c]

cover B fl
t

zœ[c≠–c,c+–c]

Pz (since B is compact). As we vary c, the sets
[c ≠ –c, c + –c] form a covering of [a, b], and we extract a finite subcover
{Ij} of total length Æ 2|b ≠ a|.

Let Ri
j be the set Ri

c for Ij = [c≠–c, c+–c]. Then the sets Ri
j ◊Ij form

a cover of B with total volume Æ 2‘|b ≠ a|. We can make this arbitrarily
small, so that B has measure zero.
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3.3 Brouwer’s fixed point theorem

Corollary 3.23. Let M be a compact manifold with boundary. There is
no smooth map f : M ≠æ ˆM leaving ˆM pointwise fixed. Such a map
is called a smooth retraction of M onto its boundary.

Proof. Such a map f must have a regular value by Sard’s theorem, let this
value be y œ ˆM . Then y is obviously a regular value for f |ˆM = Id as
well, so that f≠1(y) must be a compact 1-manifold with boundary given by
f≠1(y)flˆM , which is simply the point y itself. Since there is no compact
1-manifold with a single boundary point, we have a contradiction.

For example, this shows that the identity map Sn æ Sn may not be
extended to a smooth map f : B(0, 1) æ Sn.
Lemma 3.24. Every smooth map of the closed n-ball to itself has a fixed
point.

Proof. Let Dn = B(0, 1). If g : Dn æ Dn had no fixed points, then
define the function f : Dn æ Sn≠1 as follows: let f(x) be the point in
Sn≠1 nearer to x on the line joining x and g(x).

This map is smooth, since f(x) = x + tu, where

u = ||x ≠ g(x)||≠1(x ≠ g(x)), (70)

and t is the positive solution to the quadratic equation (x+tu)·(x+tu) = 1,
which has positive discriminant b2 ≠ 4ac = 4(1 ≠ |x|2 + (x · u)2). Such a
smooth map is therefore impossible by the previous corollary.

Theorem 3.25 (Brouwer fixed point theorem). Any continuous self-map
of Dn has a fixed point.

Proof. The Weierstrass approximation theorem says that any continuous
function on [0, 1] can be uniformly approximated by a polynomial function
in the supremum norm ||f ||Œ = supxœ[0,1]

|f(x)|. In other words, the
polynomials are dense in the continuous functions with respect to the
supremum norm. The Stone-Weierstrass is a generalization, stating that
for any compact Hausdor� space X, if A is a subalgebra of C0(X,R) such
that A separates points (’x, y, ÷f œ A : f(x) ”= f(y)) and contains a
nonzero constant function, then A is dense in C0.

Given this result, approximate a given continuous self-map g of Dn by
a polynomial function pÕ so that ||pÕ ≠g||Œ < ‘ on Dn. To ensure pÕ sends
Dn into itself, rescale it via

p = (1 + ‘)≠1pÕ. (71)

Then clearly p is a Dn self-map while ||p ≠ g||Œ < 2‘. If g had no fixed
point, then |g(x) ≠ x| must have a minimum value µ on Dn, and by
choosing 2‘ = µ we guarantee that for each x,

|p(x) ≠ x| Ø |g(x) ≠ x| ≠ |g(x) ≠ p(x)| > µ ≠ µ = 0. (72)

Hence p has no fixed point. Such a smooth function can’t exist and hence
we obtain the result.
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