
5 Vector bundles

Definition 5.1. A smooth real vector bundle of rank k over the base
manifold M is a manifold E (called the total space), together with a
smooth surjection fi : E ≠æ M (called the bundle projection), such that

• ’p œ M , fi≠1(p) = Ep has the structure of k-dimensional vector
space,

• Each p œ M has a neighbourhood U and a di�eomorphism � :
fi≠1(U) ≠æ U ◊ Rk (called a local trivialization of E over U) such
that fi

1

(�(fi≠1(x))) = x, where fi
1

: U ◊ Rk ≠æ U is the first
projection, and also that � : fi≠1(x) ≠æ {x} ◊ Rk is a linear map,
for all x œ M .

Given two local trivializations �i : fi≠1(Ui) ≠æ Ui ◊ Rk and �j :
fi≠1(Uj) ≠æ Uj ◊ Rk, we obtain a smooth gluing map �j ¶ �≠1

i : Uij ◊
Rk ≠æ Uij ◊ Rk, where Uij = Ui fl Uj . This map preserves images to
M , and hence it sends (x, v) to (x, gji(v)), where gji is an invertible k ◊ k
matrix smoothly depending on x. That is, the gluing map is uniquely
specified by a smooth map

gji : Uij ≠æ GL(k,R).

These are called transition functions of the bundle, and since they come
from �j ¶ �≠1

i , they clearly satisfy gij = g≠1

ji as well as the “cocycle
condition”

gijgjkgki = Id|UiflUj flUk .

Example 5.2. To build a vector bundle, choose an open cover {Ui} and
form the pieces {Ui ◊ Rk} Then glue these together on double overlaps
{Uij} via functions gij : Uij ≠æ GL(k,R). As long as gij satisfy gij = g≠1

ji

as well as the cocycle condition, the resulting space has a vector bundle
structure.
Example 5.3. Let S2 = U

0

Û U
1

for Ui = R2, as before. Then on
U

01

= R2\{0} = C\{0}, define

g
01

(z) = [zk], k œ Z.

In real coordinates z = rei◊, g
01

(r, ◊) = rk

3
cos(k◊) ≠ sin(k◊)
sin(k◊) cos(k◊)

4
. This

defines a vector bundle Ek ≠æ S2 of rank 2 for each k œ Z (or a complex
vector bundle of rank 1, since g

01

: U
01

≠æ GL(1,C)). Actually, since
the map g

01

is actually holomorphic as a function of z, we have defined
holomorphic vector bundles on CP 1.
Example 5.4 (The tangent bundle). The tangent bundle T M is indeed
a vector bundle, of rank dim M . For any chart (U, Ï) of M , there is
an associated local trivialization (fi≠1(U), �) of T M , and the transition
function gji : Uij ≠æ GL(n,R) between two trivializations obtained from
(Ui, Ïi), (Uj , Ïj) is simply the Jacobian matrix

gji : p ‘æ D(Ïj ¶ Ï≠1

i )(p).
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Just as for the tangent bundle, we can define the analog of a vector-
valued function, where the function has values in a vector bundle:
Definition 5.5. A smooth section of the vector bundle E

fi≠æ M is a
smooth map s : M ≠æ E such that fi ¶ s = IdM . The set of all smooth
sections, denoted �Œ(M, E), is an infinite-dimensional real vector space,
and is also a module over the ring CŒ(M,R).

Having introduced vector bundles, we must define the notion of mor-
phism between vector bundles, so as to form a category.
Definition 5.6. A smooth bundle map between the bundles E

fi≠æ M

and EÕ fiÕ
≠æ M Õ is a pair (f, F ) of smooth maps f : M ≠æ M Õ and

F : E ≠æ EÕ such that fiÕ ¶ F = f ¶ fi and such that F : Ep ≠æ EÕ
f(p)

is
a linear map for all p.
Example 5.7. I claim that the bundles Ek

fi≠æ S2 are all non-isomorphic,
except that Ek is isomorphic to E≠k over the antipodal map S2 ≠æ S2.
Example 5.8. Suppose f : M ≠æ N is a smooth map. Then fú :
T M ≠æ T N is a bundle map covering f , i.e. (fú, f) defines a bundle
map.
Example 5.9 (Pullback bundle). if f : M ≠æ N is a smooth map
and E

fi≠æ N is a vector bundle over N , then we may form the fiber
product Mf ◊fiE, which then is a bundle over M with local trivializations
(f≠1(Ui), fúgij), where (Ui, gij) is the local transition data for E over N .
This bundle is called the pullback bundle and is denoted by fúE. The
natural projection to E defines a vector bundle map back to E:

fúE

p1

✏✏

p2 // E

fi

✏✏
M

f
// N

There is also a natural pullback map on sections: given a section s œ
�Œ(N, E), the composition s ¶ f gives a map M ≠æ E. This then deter-
mines a smooth map fús : M ≠æ fúE by the universal property of the
fiber product. We therefore obtain a pullback map

fú : �Œ(N, E) ≠æ �Œ(M, fúE).

Example 5.10. If f : M ≠æ N is an embedding, then so is the bundle
map fú : T M ≠æ T N . By the universal property of the fiber product
we obtain a bundle map, also denoted fú, from T M to fúT N . This is a
vector bundle inclusion and fúT N/fúT M = NM is a vector bundle over
M called the normal bundle of M . Note: we haven’t covered subbundles
and quotient bundles in detail. I’ll leave this as an exercise.

5.1 Associated bundles

We now describe a functorial construction of vector bundles, using func-
tors from vector spaces. Consider the category VectR of finite-dimensional
real vector spaces and linear maps. We will describe several functors from
VectR to itself.
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Example 5.11. If V œ VectR, then V ú œ VectR, and if f : V ≠æ W
then fú : W ú ≠æ V ú. Since the composition of duals is the dual of the
composition, duality defines a contravariant functor ú : VectR ≠æ VectR.
Example 5.12. If V, W œ VectR, then V ü W œ VectR, and this defines
a covariant functor VectR ◊ VectR ≠æ VectR.
Example 5.13. If V, W œ VectR, then V ¢ W œ VectR and this again
defines a covariant functor VectR ◊ VectR ≠æ VectR.
Example 5.14. If V œ VectR, then

¢•V = R ü V ü (V ¢ V ) ü · · · ü (¢kV ) ü · · ·

is an infinite-dimensional vector space, with a product a ¢ b. Quotienting
by the double-sided ideal I = Èv ¢ v : v œ V Í, we obtain the exterior
algebra

·•V = R ü V ü ·2V ü · · · ü ·nV,

with n = dim V . The product is customarily denoted (a, b) ‘æ a · b. The
direct sum decompositions above, where ·kV or ¢kV is labeled by the
integer k, are called Z-gradings, and since the product takes ·k ◊ ·l ≠æ
·k+l, these algebras are called Z-graded algebras.

If (v
1

, . . . vn) is a basis for V , then vi1 · · · · · vik for i
1

< · · · < ik form
a basis for ·kV . This space then has dimension

!
n
k

"
, hence the algebra

·•V has dimension 2n.
Note in particular that ·nV has dimension 1, is also called the deter-

minant line det V , and a choice of nonzero element in det V is called an
“orientation” on the vector space V .

Recall that if f : V ≠æ W is a linear map, then ·kf : ·kV ≠æ ·kW
is defined on monomials via

·kf(a
1

· · · · · ak) = f(a
1

) · · · · · f(ak).

In particular, if A : V ≠æ V is a linear map, then for n = dim V ,
the top exterior power ·nA : ·nV ≠æ ·nV is a linear map of a 1-
dimensional space onto itself, and is hence given by a number, called
det A, the determinant of A.

We may now apply any of these functors to vector bundles. The main
observation is that if F is a vector space functor as above, we may apply
it to any vector bundle E

fi≠æ M to obtain a new vector bundle

F (E) = ÛpœM F (Ep).

If (Ui) is an atlas for M and E has local trivializations (Ui ◊ Rk), glued
together via gji : Uij ≠æ GL(k,R), then F (E) may be given the local
trivialization (Ui ◊ F (Rk)), glued together via F (gji). This new vector
bundle F (E) is called the “associated” vector bundle to E, given by the
functor F .
Example 5.15. If E ≠æ M is a vector bundle, then Eú ≠æ M is the
dual vector bundle. If E, F are vector bundles then E ü F is called the
direct or “Whitney” sum, and has rank rk E + rk F . E ¢ F is the tensor
product bundle, which has rank rk E · rk F .
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Example 5.16. If E ≠æ M is a vector bundle of rank n, then ¢kE and
·kE are its tensor power bundles, of rank nk and

!
n
k

"
, respectively. The

top exterior power ·nE has rank 1, and is hence a line bundle. If this
line bundle is trivial (i.e. isomorphic to M ◊ R) then E is said to be an
orientable bundle.
Example 5.17. Starting with the tangent bundle T M ≠æ M , we may
form the cotangent bundle T úM , the bundle of tensors of type (r, s),
¢rT M ¢ ¢sT úM .

We may also form the bundle of multivectors ·kT M , which has sec-
tions �Œ(M, ·kT M) called multivector fields.

Finally, we may form the bundle of k-forms, ·kT úM , whose sections
�Œ(M, ·kT úM) = �k(M) are called di�erential k-forms, and will occupy
us for some time.

We have now produced several vector bundles by applying functors to
the tangent bundle. We are familiar with vector fields, which are sections
of T M , and we know that a vector field is written locally in coordinates
(x1, . . . , xn) as

X =
ÿ

i

ai ˆ
ˆxi ,

with coe�cients ai smooth functions.
There is an easy way to produce examples of 1-forms in �1(M), using

smooth functions f . We note that the action X ‘æ X(f) defines a dual
vector at each point of M , since (X(f))p depends only on the vector Xp

and not the behaviour of X away from p. Recall that X(f) = Df
2

(X).
Definition 5.18. The exterior derivative of a function f , denoted df , is
the section of T úM given by the fiber projection Df

2

.
Since dxi( ˆ

ˆxj ) = ”i
j , we see that (dx1, . . . , dxn) is the dual basis to

( ˆ
ˆx1 , . . . , ˆ

ˆxn ). Therefore, a section of T úM has local expression

› =
ÿ

i

›idxi,

for ›i smooth functions, given by ›i = ›( ˆ
ˆxi ). In particular, the exterior

derivative of a function df can be written

df =
ÿ

i

ˆf
ˆxi dxi.

A section of the tensor bundle ¢rT M ¢ ¢sT úM can be written as

� =
ÿ

i1,··· ,ir
j1,··· ,js

ai1···ir
j1···js

ˆ
ˆxi1 ¢ · · · ¢ ˆ

ˆxir
¢ dxj1 ¢ · · · ¢ dxjs ,

where ai1···ir
j1···js

are nr+s smooth functions.
A general di�erential form fl œ �k(M) can be written

fl =
ÿ

i1<···<ik

fli1···ik dxi1 · · · · · dxik
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6 Di�erential forms

There are several properties of di�erential forms which make them indis-
pensible: first, the k-forms are intended to give a notion of k-dimensional
volume (this is why they are multilinear and skew-symmetric, like the
determinant) and in a way compatible with the boundary map (this leads
to the exterior derivative, which we define below). Second, they behave
well functorially, as we see now.

Given a smooth map f : M ≠æ N , we obtain bundle maps fú :
T M ≠æ T N and hence fú := ·k(fú)ú : ·kT úN ≠æ ·kT úM . Hence we
have the diagram

·kT úM

fiM

✏✏

·kT úN

fiN

✏✏

fú
oo

M
f

// N

The interesting thing is that if fl œ �k(N) is a di�erential form on N ,
then it is a section of fiN . Composing with f, fú, we obtain a section
fúfl := fú ¶ fl ¶ f of fiM . Hence we obtain a natural map

�k(N) fú
≠æ �k(M).

Such a natural map does not exist (in either direction) for multivector
fields, for instance.

Suppose that fl œ �k(N) is given in a coordinate chart by

fl =
ÿ

fli1···ik dyi1 · · · · · dyik .

Now choose a coordinate chart for M with coordinates x1, . . . xm. What
is the local expression for fúfl? We need only compute fúdyi. We use
a notation where fk denotes the kth component of f in the coordinates
(y1, . . . yn), i.e. fk = yk ¶ f .

fúdyi( ˆ
ˆxj ) = dyi(fú

ˆ
ˆxj ) (79)

= dyi(
ÿ

k

ˆfk

ˆxj
ˆ

ˆyk
) (80)

= ˆfi

ˆxj . (81)

Hence we conclude that

fúdyi =
ÿ

j

ˆfi

ˆxj dxj .

Finally we compute

fúfl =
ÿ

i1<···<ik

fúfli1···ik fú(dyi1 ) · · · · · fú(dyik ) (82)

=
ÿ

i1<···<ik

(fli1···ik ¶ f)
ÿ

j1

· · ·
ÿ

jk

ˆfi1
ˆxj1 · · · ˆfik

ˆxjk
dxj1 · · · · dxjk . (83)
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6.1 The exterior derivative

Di�erential forms are equipped with a natural di�erential operator, which
extends the exterior derivative of functions to all forms: d : �k(M) ≠æ
�k+1(M). The exterior derivative is uniquely specified by the following
requirements: first, it satisfies d(df) = 0 for all functions f . Second, it is
a graded derivation of the algebra of exterior di�erential forms of degree
1, i.e.

d(– · —) = d– · — + (≠1)|–|– · d—.

This allows us to compute its action on any 1-form d(›idxi) = d›i · dxi,
and hence, in coordinates, we have

d(fldxi1 · · · · · dxik ) =
ÿ

k

ˆfl

ˆxk dxk · dxi1 · · · · · dxik .

Extending by linearity, this gives a local definition of d on all forms.
Does it actually satisfy the requirements? this is a simple calculation: let
·p = dxi1 · · · · · dxip and ·q = dxj1 · · · · · dxjq . Then

d((f·p)·(g·q)) = d(fg·p··q) = (gdf+fdg)··p··q = d(f·p)·g·q+(≠1)pf·p·d(g·q),

as required.
Therefore we have defined d, and since the definition is coordinate-

independent, we can be satisfied that d is well-defined.
Definition 6.1. d is the unique degree +1 graded derivation of �•(M)
such that df(X) = X(f) and d(df) = 0 for all functions f .
Example 6.2. Consider M = R3. For f œ �0(M), we have

df = ˆf
ˆx1 dx1 + ˆf

ˆx2 dx2 + ˆf
ˆx3 dx3.

Similarly, for A = A
1

dx1 + A
2

dx2 + A
3

dx3, we have

dA = ( ˆA2
ˆx1 ≠ ˆA1

ˆx2 )dx1 ·dx2 +( ˆA3
ˆx1 ≠ ˆA1

ˆx3 )dx1 ·dx3 +( ˆA3
ˆx2 ≠ ˆA2

ˆx3 )dx2 ·dx3

Finally, for B = B
12

dx1 · dx2 + B
13

dx1 · dx3 + B
23

dx2 · dx3, we have

dB = ( ˆB12
ˆx3 ≠ ˆB13

ˆx2 + ˆB23
ˆx1 )dx1 · dx2 · dx3.

Definition 6.3. The form fl œ �•(M) is called closed when dfl = 0 and
exact when fl = d· for some · .
Example 6.4. A function f œ �0(M) is closed if and only if it is constant
on each connected component of M : This is because, in coordinates, we
have

df = ˆf
ˆx1 dx1 + · · · + ˆf

ˆxn dxn,

and if this vanishes, then all partial derivatives of f must vanish, and
hence f must be constant.
Theorem 6.5. The exterior derivative of an exact form is zero, i.e. d ¶
d = 0. Usually written d2 = 0.
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Proof. The graded commutator [d
1

, d
2

] = d
1

¶ d
2

≠ (≠1)|d1||d2|d
2

¶ d
1

of
derivations of degree |d

1

|, |d
2

| is always (why?) a derivation of degree
|d

1

| + |d
2

|. Hence we see [d, d] = d ¶ d ≠ (≠1)1·1d ¶ d = 2d2 is a derivation
of degree 2 (and so is d2). Hence to show it vanishes we must test on
functions and exact 1-forms, which locally generate forms since every form
is of the form fdxi1 · · · · · dxik .

But d(df) = 0 by definition and this certainly implies d2(df) = 0,
showing that d2 = 0.

52


