
4.2 Vector fields vs. derivations

The space CŒ(M,R) of smooth functions on M is not only a vector
space but also a ring, with multiplication (fg)(p) := f(p)g(p). Given
a smooth map Ï : M ≠æ N of manifolds, we obtain a natural operation
Ïú : CŒ(N,R) ≠æ CŒ(M,R), given by f ‘æ f ¶ Ï. This is called the
pullback of functions, and defines a homomorphism of rings.

The association M ‘æ CŒ(M,R) and Ï ‘æ Ïú is therefore a con-
travariant functor from the category of manifolds to the category of rings,
and is the basis for algebraic geometry, the algebraic representation of
geometrical objects.

It is easy to see from this that any di�eomorphism Ï : M ≠æ M defines
an automorphism Ïú of CŒ(M,R), but actually all automorphisms are of
this form (Exercise!).

The concept of derivation of an algebra A is the infinitesimal version
of an automorphism of A. That is, if „t : A ≠æ A is a family of auto-
morphisms of A starting at Id, so that „t(ab) = „t(a)„t(b), then the map
a ‘æ d

dt
|t=0

„t(a) is a derivation.
Definition 4.12. A derivation of the R-algebra A is a R-linear map D :
A ≠æ A such that D(ab) = (Da)b + a(Db). The space of all derivations
is denoted Der(A).

If automorphisms of CŒ(M,R) correspond to di�eomorphisms, then
it is natural to ask what derivations correspond to. We now show that
they correspond to vector fields.

The vector fields X(M) form a vector space over R of infinite dimension
(unless M is a finite set). They also form a module over the ring of smooth
functions CŒ(M,R) via pointwise multiplication: for f œ CŒ(M,R) and
X œ X(M), fX : x ‘æ f(x)X(x) is a smooth vector field.

The important property of vector fields which we are interested in is
that they act as derivations of the algebra of smooth functions. Locally, it
is clear that a vector field X =

q
i
ai ˆ

ˆxi gives a derivation of the algebra
of smooth functions, via the formula X(f) =

q
i
ai ˆf

ˆxi , since

X(fg) =
ÿ

i

ai( ˆf
ˆxi g + f ˆg

ˆxi ) = X(f)g + fX(g).

We wish to verify that this local action extends to a well-defined global
derivation on CŒ(M,R).
Definition 4.13. The di�erential of a function f œ CŒ(M,R) is the
function on T M given by composing T f : T M æ TR with the second
projection p

2

: TR = R ◊ R æ R:

df = p
2

¶ T f (78)

To remove any confusion, df evaluates at the point (x, v) œ T M to
give the derivative of f at x in the direction v:

df(x, v) = Df |x(v).
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Definition 4.14. Let X be a vector field. Then we define

X(f) = df ¶ X.

This is called the directional (or Lie) derivative of f along X.
In coordinates, if X =

q
aiˆ/ˆxi, then X(f) =

q
aiˆf/ˆxi, coin-

ciding with the usual directional derivative mentioned above. This shows
that f ‘æ X(f) has the derivation property (since it satisfies it locally),
but we can alternatively see that it is a derivation by using the property

d(fg) = fdg + gdf

of the di�erential of a product (here fdg is really (fiúf)dg).
Theorem 4.15. The map X ‘æ (f ‘æ X(f)) is an isomorphism

X(M) æ Der(CŒ(M,R)).

Proof. First we prove the result for an open set U µ Rn. Let D be
a derivation of CŒ(U,R) and define the smooth functions ai = D(xi).
Then we claim D =

q
i
ai ˆ

ˆxi . We prove this by testing against smooth
functions. Any smooth function f on Rn may be written

f(x) = f(0) +
ÿ

i

xigi(x),

with gi(0) = ˆf
ˆxi (0) (simply take gi(x) =

s
1

0

ˆf
ˆxi (tx)dt). Translating the

origin to y œ U , we obtain for any z œ U

f(z) = f(y) +
ÿ

i

(xi(z) ≠ xi(y))gi(z), gi(y) = ˆf
ˆxi (y).

Applying D, we obtain

Df(z) =
ÿ

i

(Dxi)gi(z) ≠
ÿ

i

(xi(z) ≠ xi(y))Dgi(z).

Letting z approach y, we obtain

Df(y) =
ÿ

i

ai ˆf
ˆxi (y) = X(f)(y),

as required.
To prove the global result, let (Vi µ Ui, Ïi) be a regular covering and ◊i

an associated partition of unity. Then for each i, ◊iD : f ‘æ ◊iD(f) is also
a derivation of CŒ(M,R). This derivation defines a unique derivation
Di of CŒ(Ui,R) such that Di(f |Ui ) = (◊iDf)|Ui , since for any point
p œ Ui, a given function g œ CŒ(Ui,R) may be replaced with a function
g̃ œ CŒ(M,R) which agrees with g on a small neighbourhood of p, and we
define (Dig)(p) = ◊i(p)Dg̃(p). This definition is independent of g̃, since if
h

1

= h
2

on an open set W , Dh
1

= Dh
2

on that open set (let Â = 1 in a
neighbourhood of p and vanish outside W ; then h

1

≠h
2

= (h
1

≠h
2

)(1≠Â)
and applying D we obtain zero in W ).
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The derivation Di is then represented by a vector field Xi, which must
vanish outside the support of ◊i. Hence it may be extended by zero to
a global vector field which we also call Xi. Finally we observe that for
X =

q
i
Xi, we have

X(f) =
ÿ

i

Xi(f) =
ÿ

i

Di(f) = D(f),

as required.

45


