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Manifolds

It is one of the goals of these lectures to develop the theory of manifolds in intrinsic
terms, although we may occasionally use immersions or embeddings into Euclidean
space in order to illustrate concepts. In physics terminology, we will formulate the
theory of manifolds in terms that are ‘manifestly coordinate-free’.

2.1 Atlases and charts

As we mentioned above, the basic feature of manifolds is the existence of ‘local
coordinates’. The transition from one set of coordinates to another should be smooth.
We recall the following notions from multivariable calculus.

Definition 2.1. Let U ✓ Rm and V ✓ Rn be open subsets. A map F : U ! V is
called smooth if it is infinitely differentiable. The set of smooth functions from U to
V is denoted C•(U,V ). The map F is called a diffeomorphism from U to V if it is
invertible and the inverse map F�1 : V !U is again smooth.

Example 2.1. The exponential map exp : R!R, x 7! exp(x) = ex is smooth. It may
be regarded as a map onto R>0 = {y|y > 0}, and is a diffeomorphism

exp : R! R>0

with inverse exp�1 = log (the natural logarithm). Similarly,

tan : {x 2 R|�p/2 < x < p/2}! R

is a diffeomorphism, with inverse arctan.

Definition 2.2. For a smooth map F 2C•(U,V ) between open subsets U ✓ Rm and
V ✓Rn, and any x2U, one defines the Jacobian matrix DF(x) to be the n⇥m-matrix
of partial derivatives
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Its determinant is called the Jacobian determinant of F at x. In the expression above,
we are using the standard coordinates (x1, . . . ,xm) on Rm and we view F as a vector-
valued function with n components F1, . . . ,Fn, each of which is a real-valued func-
tion Fi : U ! R.

Recall that the inverse function theorem states that if F 2 C•(U,V ) has invert-
ible Jacobian at a point x 2 U , then there is an open neighbourhood Ux ✓ U of x
such that F(Ux) ✓ V is open and F : Ux ! F(Ux) is a diffeomorphism. One also
has a formula for the Jacobian of the inverse map F�1: at the point F(x) we have
(D(F�1))(F(x)) = (DF(x))�1.

The following definition formalizes the concept of introducing local coordinates.

Definition 2.3 (Charts). Let M be a set.

1. An m-dimensional (coordinate) chart (U,j) on M is a subset U ✓ M together
with a map j : U !Rm, such that j(U)✓Rm is open and j is a bijection from
U to j(U).

2. Two charts (U,j) and (V,y) are called compatible if the subsets j(U \V ) and
y(U \V ) are open, and the transition map

y �j�1 : j(U \V )! y(U \V )

is a diffeomorphism.

As a special case, charts with U \V = /0 are always compatible.

Exercise 1. The bijection requirement on j plays an important role. Prove the
following (we shall use the properties below without further comment in future
chapters):
Let f : A ! B, and suppose C,D ✓ A, and E,F ✓ B.

1. Show that f (C[D) = f (C)[ f (D).
2. Give an example where f (C\D) 6= f (C)\ f (D). Is there any relation be-

tween the two sides of the inequality? Likewise, for f (C \ D) 6= f (C) \
f (D).

3. Show that if f is injective, then f (C\D) = f (C)\ f (D) and f (C \D) =
f (C)\ f (D).

Exercise 2. Is compatibility of charts an equivalence relation?
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Let (U,j) be a coordinate chart. Given a point p 2 U , and writing j(p) =
(u1, . . . ,um), we say that the ui are the coordinates of p in the given chart⇤. (Letting p
vary, these become real-valued functions p 7! ui(p); they are simply the component
functions of j .) The transition maps y �j�1 amount to a change of coordinates.
Here is a picture of a ‘coordinate change’:

Definition 2.4 (Atlas). Let M be a set. An m-dimensional atlas on M is a collection
of coordinate charts A = {(Ua ,ja)} such that

1. The Ua cover all of M, i.e.,
S

a Ua = M.
2. For all indices a,b , the charts (Ua ,ja) and (Ub ,jb ) are compatible.

Example 2.2 (An atlas on the 2-sphere). Let S2 ✓ R3 be the unit sphere, consisting
of all (x,y,z) 2 R3 satisfying the equation x2 + y2 + z2 = 1. We shall define an atlas
with two charts (U+,j+) and (U�,j�). Let n = (0,0,1) be the north pole, let s =
(0,0,�1) be the south pole, and put

U+ = S2 \{s}, U� = S2 \{n}.

Regard R2 as the coordinate subspace of R3 on which z = 0. Let

j+ : U+ ! R2, p 7! j+(p)

be stereographic projection from the south pole. That is, j+(p) is the unique point
of intersection of R2 with the affine line passing through p and s. Similarly,

j� : U� ! R2, p 7! j�(p)

is stereographic projection from the north pole, where j�(p) is the unique point of
intersection of R2 with the affine line passing through p and n. A picture of j�, with
p0 = j�(p) (the picture uses capital letters):

⇤ Note the convention of indexing by superscripts; be careful not to confuse indices with
powers.



14 2 Manifolds

Exercise 3. Let p=(x,y,z). Find explicit formulas for j+(x,y,z) and j�(x,y,z).

Both j± : U± !R2 are bijections onto R2. Let us verify this in detail for the map
j+. Given (u,v) we may solve the equation (u,v) = j+(x,y,z), using the condition
that x2 + y2 + z2 = 1 and z >�1. One has

u2 + v2 =
x2 + y2

(1+ z)2 =
1� z2

(1+ z)2 =
(1� z)(1+ z)

(1+ z)2 =
1� z
1+ z

,

from which one obtains

z =
1� (u2 + v2)

1+(u2 + v2)
,

and since x = u(1+ z), y = v(1+ z) one obtains

j�1
+ (u,v) =

⇣ 2u
1+(u2 + v2)

,
2v

1+(u2 + v2)
,

1� (u2 + v2)

1+(u2 + v2)

⌘
.

For the map j�, we obtain by a similar calculation

j�1
� (u,v) =

⇣ 2u
1+(u2 + v2)

,
2v

1+(u2 + v2)
,
(u2 + v2)�1
1+(u2 + v2)

⌘
.

(Actually, it is also clear from the geometry that j�1
+ ,j�1

� only differ by the sign of
the z-coordinate.) Note that j+(U+\U�) = R2\{(0,0)}. The transition map on the
overlap of the two charts is

(j� �j�1
+ )(u,v) =

⇣ u
u2 + v2 ,

v
u2 + v2

⌘

which is smooth on R2\{(0,0)} as required. ut

Here is another simple, but less familiar example where one has an atlas with two
charts.

Example 2.3 (Affine lines in R2). A line in a vector space E is the same as a 1-
dimensional subspace. By an affine line, we mean a subset ` ✓ E, such that the set
of differences {v�w |v,w 2 `} is a 1-dimensional subspace. Put differently, ` is ob-
tained by adding a fixed vector v0 to all elements of a 1-dimensional subspace. In
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plain terms, an affine line is simply a straight line that does not necessarily pass
through the origin.

Let M be a set of affine lines in R2. Let U ✓ M be the subset of lines that are
not vertical, and V ✓ M the lines that are not horizontal. Any ` 2 U is given by an
equation of the form

y = mx+b,

where m is the slope and b is the y-intercept. The map j : U !R2 taking ` to (m,b)
is a bijection. On the other hand, lines in V are given by equations of the form

x = ny+ c,

and we also have the map y : V !R2 taking such ` to (n,c). The intersection U \V
are lines ` that are neither vertical nor horizontal. Hence, j(U \V ) is the set of all
(m,b) such that m 6= 0, and similarly y(U \V ) is the set of all (n,c) such that n 6= 0.

Exercise 4. Describe the transition maps y �j�1, j�1 �y and show they are
smooth.

We conclude that U,V define an 2-dimensional atlas on M.

Question: What is the resulting surface?

As a first approximation, we may take an m-dimensional manifold to be a set
with an m-dimensional atlas. This is almost the right definition, but we will make
a few adjustments. A first criticism is that we may not want any particular atlas as
part of the definition: For example, the 2-sphere with the atlas given by stereographic
projections onto the xy-plane, and the 2-sphere with the atlas given by stereographic
projections onto the yz-plane, should be one and the same manifold: S2. To resolve
this problem, we will use the following notion.

Definition 2.5. Suppose A = {(Ua ,ja)} is an m-dimensional atlas on M, and let
(U,j) be another chart. Then (U,j) is said to be compatible with A if it is compat-
ible with all charts (Ua ,ja) of A .

Example 2.4. On the 2-sphere S2, we had constructed the atlas

A = {(U+,j+), (U�,j�)}

given by stereographic projection. Consider the chart (V,y), with domain V the set of
all (x,y,z) 2 S2 such that y < 0, with y(x,y,z) = (x,z). To check that it is compatible
(U+,j+), note that U+\V =V , and

j+(U+\V ) = {(u,v)| v < 0}, y(U+\V ) = {(x,z)| x2 + z2 < 1}.

Exercise 5. Find explicit formulas for y �j�1
+ and j+ �y�1. Conclude that

(V,y) is compatible with (U+,j+).
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Note that (U,j) is compatible with the atlas A = {(Ua ,ja)} if and only if the
union A [{(U,j)} is again an atlas on M. This suggests defining a bigger atlas, by
using all charts that are compatible with the given atlas. In order for this to work, we
need the new charts to be compatible not only with the charts of A , but also with
each other.

Lemma 2.1. Let A = {(Ua ,ja)} be a given atlas on the set M. If two charts
(U,j), (V,y) are compatible with A , then they are also compatible with each other.

Proof. For every chart Ua , the sets ja(U \Ua) and ja(V \Ua) are open, hence
their intersection is open. This intersection is

ja(U \Ua)\ja(V \Ua) = ja(U \V \Ua).

Since j �j�1
a : ja(U \Ua)! j(U \Ua) is a diffeomorphism, it follows that

j(U \V \Ua) = (j �j�1
a )

�
ja(U \V \Ua)

�

is open. Taking the union over all a , we see that

j(U \V ) =
[

a
j(U \V \Ua)

is open. A similar argument applies to y(U \V ). The transition map y � j�1 :
j(U \V )! y(U \V ) is smooth since for all a , its restriction to j(U \V \Ua) is
a composition of two smooth maps ja �j�1 : j(U \V \Ua)�! ja(U \V \Ua)
and y � j�1

a : ja(U \V \Ua) �! y(U \V \Ua). Likewise, the composition
j �y�1 : y(U \V )! j(U \V ) is smooth. ut

Exercise 6. One of the steps in the proof above is missing a justification. Find
it and fix it.
(Hint: Recall the first exercise of the chapter.)

Theorem 2.1. Given an atlas A = {(Ua ,ja)} on M, let fA be the collection of all
charts (U,j) that are compatible with A . Then fA is itself an atlas on M, containing
A . In fact, fA is the largest atlas containing A .

Proof. Note first that fA contains A , since the set of charts compatible with A
contains the charts from the atlas A itself. In particular, the charts in fA cover M.
By the lemma above, any two charts in fA are compatible. Hence fA is an atlas. If
(U,j) is a chart compatible with all charts in fA , then in particular it is compatible
with all charts in A ; hence (U,j) 2 fA by the definition of fA . This shows that fA
cannot be extended to a larger atlas.

Definition 2.6. An atlas A is called maximal if it is not properly contained in any
larger atlas. Given an arbitrary atlas A , one calls fA (as in Theorem 2.1) the maxi-
mal atlas determined by A .
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Remark 2.1. Although we will not need it, let us briefly discuss the notion of equiv-
alence of atlases. (For background on equivalence relations, see the appendix to this
chapter, Section 2.9.2.) Two atlases A = {(Ua ,ja)} and A 0 = {(U 0

a ,j 0
a)} are called

equivalent if every chart of A is compatible with every chart in A 0. For example,
the atlas on the 2-sphere given by the two stereographic projections to the xy-plane
is equivalent to the atlas A 0 given by the two stereographic projections to the yz-
plane. Using Lemma 2.1, one sees that equivalence of atlases is indeed an equiv-
alence relation. (In fact, two atlases are equivalent if and only if their union is an
atlas.) Furthermore, two atlases are equivalent if and only if they are contained in the
same maximal atlas. That is, any maximal atlas determines an equivalence class of
atlases, and vice versa.

2.2 Definition of manifold

As our next approximation towards the definition of manifolds, we can take an m-
dimensional manifold to be a set M together with an m-dimensional maximal atlas.
This is already quite close to what we want, but for technical reasons we would like
to impose two further conditions.

First of all, we insist that M can be covered by countably many coordinate charts.
In most of our examples, M is in fact covered by finitely many coordinate charts. This
countability condition is used for various arguments involving a proof by induction.

Example 2.5. A simple non-example that is not countable: Let M = R, with A =
{(Ua ,ja)} the 0-dimensional maximal (!) atlas, where each Ua consists of a single
point, and ja : Ua ! {0} is the unique map to R0 = {0}. Compatibility of charts is
obvious. But M cannot be covered by countably many of these charts. Thus, we will
not consider R to be a zero-dimensional manifold.

Secondly, we would like to avoid the following type of example.

Example 2.6. Let X be a disjoint union of two copies of the real line R. We denote
the two copies by R⇥{1} and R⇥{�1}, just so that we can tell them apart. Define
an equivalence relation on X generated by

(x,1)⇠ (x0,�1) , x0 = x < 0,

and let M = X/⇠ the set of equivalence classes. That is, we ‘glue’ the two real lines
along their negative real axes (taking care that no glue gets on the origins of the axes).
Here is a (not very successful) attempt to sketch the resulting space:
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As a set, M is a disjoint union of R<0 with two copies of R�0. Let p : X ! M be the
quotient map, and let

U = p(R⇥{1}), V = p(R⇥{�1})

the images of the two real lines. The projection map X !R, (x,±1) 7! x is constant
on equivalence classes, hence it descends to a map f : M !R; let j : U !R be the
restriction of f to U and y : V ! R the restriction to V . Then

j(U) = y(V ) = R, j(U \V ) = y(U \V ) = R<0,

and the transition map is the identity map. Hence, A = {(U,j), (V,y)} is an atlas
for M. A strange feature of M with this atlas is that the points

p = j�1({0}), q = y�1({0})

are ‘arbitrarily close’, in the sense that if I,J ✓ R are any open subsets containing 0,
the intersection of their pre-images is non-empty:

j�1(I)\y�1(J) 6= /0.

Yet, p 6= q! There is no really satisfactory way of drawing M (our picture above is
inadequate), since it cannot be realized as a submanifold of any Rn.

Since such a behaviour is inconsistent with the idea of a manifold that ‘locally looks
like Rn’ (where, e.g. every converging sequence has a unique limit), we shall in-
sist that for any two distinct points p,q 2 M, there are always disjoint coordinate
charts separating the two points. This is called the Hausdorff condition, after Felix
Hausdorff (1868-1942).
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Definition 2.7. An m-dimensional manifold is a set M, together with a maximal atlas
A = {(Ua ,ja)} with the following properties:

1. (Countability condition) M is covered by countably many coordinate charts in
A . That is, there are indices a1,a2, . . . with

M =
[

i

Uai .

2. (Hausdorff condition) For any two distinct points p,q 2 M there are coordinate
charts (Ua ,ja) and (Ub ,jb ) in A such that p 2Ua , q 2Ub , and

Ua \Ub = /0.

The charts (U,j) 2 A are called (coordinate) charts on the manifold M.

Before giving examples, let us note the following useful fact concerning the Haus-
dorff condition. We shall use the following result:

Exercise 7. Suppose (U,j) is a chart, with image eU = j(U)✓Rm. Let V ✓U
be a subset such that eV = j(V )✓ eU is open, and let y = j|V be the restriction
of j . Prove that (V,y) is again a chart, and is compatible with (U,j). Further-
more, if (U,j) is a chart from an atlas A , then (V,y) is compatible with that
atlas.

Lemma 2.2. Let M be a set with a maximal atlas A = {(Ua ,ja)}, and suppose
p,q 2 M are distinct points contained in a single coordinate chart (U,j) 2A . Then
we can find indices a,b such that p 2Ua , q 2Ub , with Ua \Ub = /0.

Proof. Let (U,j) be as in the lemma. Since

ep = j(p), eq = j(q)

are distinct points in eU ✓ Rm, we can choose disjoint open subsets eUa and eUb ✓ eU
containing ep=j(p) and eq=j(q), respectively.† Let Ua , Ub ✓U be their preimages

† For instance, take these subsets to be the elements in eU of distance less than ||ep� eq||/2
from ep and eq, respectively.
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(why are they contained in U?), and take ja = j|Ua , jb = j|Ub . Then (Ua ,ja) and
(Ub ,jb ) are charts in A , with disjoint chart domains, and by construction we have
that p 2Ua and q 2Ub . ut

Example 2.7. Consider the 2-sphere S2 with the atlas given by the two coordinate
charts (U+,j+) and (U�,j�). This atlas extends uniquely to a maximal atlas. The
countability condition is satisfied, since S2 is already covered by two charts. The
Hausdorff condition is satisfied as well: Given distinct points p,q 2 S2, if both are
contained in U+ or both in U�, we can apply the lemma. The only remaining case is
if one point (say p) is the north pole and the other (say q) the south pole. But here
we can construct Ua ,Ub by replacing U+ and U� with the open upper hemisphere
and open lower hemisphere, respectively. Alternatively, we can use the chart given
by stereographic projection to the xz plane, noting that this is also in the maximal
atlas.

Remark 2.2. As we explained above, the Hausdorff condition rules out some strange
examples that don’t quite fit our idea of a space that is locally like Rn. Nevertheless,
so-called non-Hausdorff manifolds (with non-Hausdorff more properly called not
necessarily Hausdorff ) do arise in some important applications. Much of the theory
can be developed without the Hausdorff property, but there are some complications.
For instance, initial value problems for vector fields need not have unique solutions
for non-Hausdorff manifolds.

Remark 2.3 (Charts taking values in ‘abstract’ vector spaces). In the definition of an
m-dimensional manifold M , rather than letting the charts (Ua ,ja) take values in Rm

we could just as well let them take values in m-dimensional real vector spaces Ea :

ja : Ua ! Ea .

Transition functions are defined as before, except they now take an open subset of
Eb to an open subset of Ea . A choice of basis identifies Ea = Rm, and takes us back
to the original definition.

As far as the definition of manifolds is concerned, nothing has been gained by
adding this level of abstraction. However, it often happens that the Ea ’s are given to
us ‘naturally’. For example, if M is a surface inside R3, one would typically use xy-
coordinates, or xz-coordinates, or yz-coordinates on appropriate chart domains. It can
then be useful to regard the xy-plane, xz-plane, and yz-plane as the target spaces of
the coordinate maps, and for notational reasons it may be convenient not to associate
them with a single R2.


