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2.3 Examples of Manifolds

We will now discuss some basic examples of manifolds. In each case, the manifold
structure is given by a finite atlas; hence the countability property is immediate. We
will not spend too much time on verifying the Hausdorff property; while it may be
done ‘by hand’, we will later have better ways of doing this.

2.3.1 Spheres

The construction of an atlas for the 2-sphere S2, by stereographic projection, also
works for the n-sphere

ST= {20, )| (O 4+ ()2 =1}

Let U be the subsets obtained by removing (F1,0,...,0). Stereographic projection

defines bijections @ : Uy — R”, where @1 (x%, x!, ..., x") = (u',...,u") with
u = 7Xi
1£x0°
For the transition function one finds (writing u = (u!,... u"))
u
(oo ) () = .
" Juel 2

We leave it as an exercise to check the details. An equivalent atlas, with 2n -+ 2 charts,
is given by the subsets U0+, LU, Uy ,...,U, where

L . _ 4
U ={xesx' >0}, Uy ={xes"x/ <0}

for j =0,...,n, with (p]-i : Uji — R” the projection to the j-th coordinate plane (in
other words, omitting the j-th component x/):

(pji(xo,...,x") = (0, T ).

2.3.2 Real projective spaces

The n-dimensional projective space RP”, is the set of all lines ¢ C R"*!. It may also
be regarded as a quotient space?

RP" = (R"1\{0})/ ~
for the equivalence relation
x~x &3 eR\{0}: X' = Ax.

¥ See the appendix to this chapter for some background on quotient spaces.
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Indeed, any x € R"*1\{0} determines a line, while two points x,x" determine the
same line if and only if they agree up to a non-zero scalar multiple. The equivalence
class of x = (x°, ..., x") under this relation is commonly denoted

] = (...
RP" has a standard atlas

A ={(Uo;90),---,(Un, 0n)}

defined as follows. For j =0,...,n, let
Uj={(":...:x") e RP"| &/ #0}

be the set for which the j-th coordinate is non-zero, and put

0 J=1 i+l n
X X x x
@ Ui =R, (O o) = (= ,...,—j).

R T

x
This is well-defined, since the quotients do not change when all x’ are multiplied by a
fixed scalar. Put differently, given an element [x] € RP" for which the j-th component
x/ is non-zero, we first rescale the representative x to make the j-th component equal
to 1, and then use the remaining components as our coordinates. As an example (with
"= 7 20 72

<p1(7.3.2)f(p1(3.1.3)f(3, 3).
From this description, it is immediate that ¢; is a bijection from U; onto R", with
inverse map

o ) = (s T,

Geometrically, viewing RP" as the set of lines in R"! the subset U i € RP"
consists of those lines ¢ which intersect the affine hyperplane

Hi={xeR"| ¥ =1},

and the map ¢; takes such a line £ to its unique point of intersection £ N H, followed
by the identification H; = R" (dropping the coordinate x/ = 1).

Let us verify that &7 is indeed an atlas. Clearly, the domains U; cover RP", since
any element [x] € RP" has at least one of its components non-zero. For i # j, the
intersection U; NU; consists of elements x with the property that both components
x', x) are non-zero.

Exercise 8. Compute the transition maps ¢; o (pj_l, and verify they are smooth.
(HIDE: ZOf MIT] D66( (0 qIIUBNI2P PEIMEED (PG cyece t < \ guqt > \')

To complete the proof that this atlas (or the unique maximal atlas containing it)
defines a manifold structure, it remains to check the Hausdorff property.

This can be done with the help of Lemma 2.2, but we postpone the proof since
we will soon have a simple argument in terms of smooth functions. See Proposition
3.1 below.
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Remark 2.4. In low dimensions, we have that RP? is just a point, while RP' is a
circle.

Remark 2.5. Geometrically, U; consists of all lines in R"*! meeting the affine hyper-
plane H;, hence its complement consists of all lines that are parallel to H, i.e., the
lines in the coordinate subspace defined by x' = 0. The set of such lines is RP*~!. In
other words, the complement of U; in RP” is identified with Rp 1,

Thus, as sets, RP” is a disjoint union

RP" = R"URP" !,

where R" is identified (by the coordinate map ¢;) with the open subset U,,, and RP"~!
with its complement. Inductively, we obtain a decomposition

RP"=R"'UR" 'U.--URURY,

where R? = {0}. At this stage, it is simply a decomposition into subsets; later it will
be recognized as a decomposition into submanifolds.

Exercise 9. Find an identification of the space of rotations in R? with the 3-

dimensional projective space RP>.
291G LOLYLION")

qefeLIuGq PA A J0[6 [PIF [OL ||h|| = w° (P6 Acclole ) 9Uq —h qGGLIUING (6
LOYION® TL b X ()° (9KG (UG LOLYION PA U YUB[C ||p|| sroNUq ([P6 OLIEUI6q yXT2
(HIUE: 220CI9(6 [0 YUA b € [§, 9 LO[IHION’ 92 JO[Jome: Tf b = ()’ FIKG (PG [LIAIT]

2.3.3 Complex projective spaces

In a similar fashion to the real projective space, one can define a complex projective
space CP" as the set of complex 1-dimensional subspaces of C"*!. If we identify C
with R, thus C"*! with R*"*2, we have

CP" = (C""1\{0})/ ~

where the equivalence relation is z ~ 7 if and only if there exists a complex A with
7 = Az. (Note that the scalar A is then unique, and is non-zero.) Alternatively, letting
§2n+1 C ¢! = R?"+2 be the ‘unit sphere’ consisting of complex vectors of length
|lz]| = 1, we have

(CPVI — S2i’l+l/ ~,

where 7 ~ z if and only if there exists a complex number A with 7/ = Az. (Note that
the scalar A is then unique, and has absolute value 1.) One defines charts (U, @;)
similarly to those for the real projective space:

Uj:{(z():...:zn)‘zj'?go}7 0 Uj—>(C":]R2”,
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( 0. ‘ n) (ZO ijl Zj+1 Zn)
ez ...127 )= —Zj,... —Zj —Zj ...,—Zj .

) ) )

The transition maps between charts are given by similar formulas as for RP” (just
replace x with z); they are smooth maps between open subsets of C” = R>*. Thus
CP" is a smooth manifold of dimension 2n%. As with RP" there is a decomposition

CP'=Cruct'y...ucuc,

2.3.4 Grassmannians

The set Gr(k,n) of all k-dimensional subspaces of R” is called the Grassmannian of
k-planes in R". (Named after Hermann Grassmann (1809-1877).)

As a special case, Gr(1,n) = RP"~!,
We will show that for general k, the Grassmannian is a manifold of dimension
dim(Gr(k,n)) = k(n—k).

An atlas for Gr(k,n) may be constructed as follows. The idea is to present linear
subspaces of dimension k as graphs of linear maps from R¥ to R*~*. Here R* is
viewed as the coordinate subspace corresponding to a choice of k components from
x=(x',...,x") € R", and R"* the coordinate subspace for the remaining coordi-
nates. To make it precise, we introduce some notation.

For any subset I C {1,...,n} of the set of indices, let

I'={1,...,n}\1
be its complement. Let R! C R” be the coordinate subspace
R/ = {xeR"|x'=0forallicl'}.
If I has cardinality |I| = k, then R € Gr(k,n). Note that R = (R/). Let
Uy = {E € Gr(k,n)| ENR" = {0} }.

§ The transition maps are not only smooth but even holomorphic, making CP" into an exam-
ple of a complex manifold (of complex dimension n).
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Each E € Uj is described as the graph of a unique linear map A; : R — R,
that is,

E={y+Ai(y)lyeR'}.

R

/mi

Exercise 10. Let E be as above. Show that there is a unique linear map Ay :
R/ — R” such that E = {y+A;(y)|y € R'}.

This gives a bijection
¢ : U — Hom(R!,R"), E — ¢;(E) = Ay,

where Hom(F, F’) denotes the space of linear maps from a vector space F to a vector
space F’. Note Hom(R/, RI') =~ RK("—K) because the bases of R! and R identify the
space of linear maps with (n — k) X k-matrices, which in turn is just R¥"=H) by listing
the matrix entries. In terms of A, the subspace E € Uy is the range of the injective
linear map
<1 ): R 5 R @R ~R” 2.1)
Ar

where we write elements of R” as column vectors.

To check that the charts are compatible, suppose E € Uy NUy, and let A; and A;
be the linear maps describing E in the two charts. We have to show that the map

@709, : Hom(R',R") — Hom(R’,R”), A; = ¢/(E) — A; = ¢;(E)

is smooth. By assumption, E is described as the range of (2.1) and also as the range
of a similar map for J. Here we are using the identifications R’ @ R’ = R" and
R/ @R’ = R". It is convenient to describe everything in terms of R’ ® R’ . Let

<a b) : R'oR' - R @R’
cd

be the matrix corresponding to the identification R/ @R/ " 5 R" followed by the in-
verse of R @R’ — R". For example, c is the inclusion R/ — R” as the correspond-
ing coordinate subspace, followed by projection to the coordinate subspace R’ Ul
We then get the condition that the injective linear maps

1 Put differently, the matrix is the permutation matrix ‘renumbering’ the coordinates of R”.
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ab L\ o1 J J LY. o J J
(Cd)(A])'RHREBR’ (AJ).]R%R@]R

have the same range. In other words, there is an isomorphism S : R/ — R’ such that

(ca) ()= (4)s

as maps R — R/ ¢ R/ '. We obtain

a+bA; _ S
c+dA; ] T \AyS

Using the first row of this equation to eliminate the second row of this equation, we
obtain the formula
AJ = (C+dA1) (Cl+bA1)7l.

The dependence of the right hand side on the matrix entries of A; is smooth, by
Cramer’s formula for the inverse matrix. It follows that the collection of all ¢y :
U — R¥"=0) defines on Gr(k,n) the structure of a manifold of dimension k(n — k).
The number of charts of this atlas equals the number of subsets I C {1,...,n} of
cardinality k, that is, it is equal to (’Z) (The Hausdorff property may be checked
in a similar fashion to RP". Alternatively, given distinct E1, E» € Gr(k,n), choose a
subspace F € Gr(k,n) such that F has zero intersection with both E, E>. (Such a
subspace always exists.) One can then define a chart (U, @), where U is the set of
subspaces E transverse to F, and ¢ realizes any such map as the graph of a linear
map F — F*. Thus ¢ : U — Hom(F,F'). As above, we can check that this is
compatible with all the charts (U;, ¢7). Since both Ej, E; are in this chart U, we are
done by Lemma 2.2.)

Exercise 11. Prove the parenthetical remark above: If £, E; € Gr(k,n) are dis-
tinct, show that there exists F € Gr(k,n) such that F-NE; = F-NE; = {0}.

Remark 2.6. As already mentioned, Gr(1,n) = RP"~!. One can check that our sys-
tem of charts in this case is the standard atlas for RP"~!.

Exercise 12. This is a preparation for the following remark. Recall that a linear
map II : R" — R” is an orthogonal projection onto some subspace E C R"
if IT(x) = x for x € E and II(x) = 0 for x € E*. Show that a square matrix
P € Matg (n) is the matrix of an orthogonal projection if and only if it has the
properties

P'=Pand PP=P.

What is the matrix of the orthogonal projection onto E-?
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Remark 2.7. For any k-dimensional subspace E C R”, let ITF : R" — R" be the linear
map given by orthogonal projection onto E, and let Pr € Matg (n) be its matrix. By
the exercise,

Py = Pg, PcPp =P,

Conversely, any square matrix P with the properties P’ = P, PP = P with rank(P) =
k is the orthogonal projection onto a subspace {Px| x € R"} C R”". This identifies the
Grassmannian Gr(k,n) with the set of orthogonal projections of rank k. In summary,
we have an inclusion

Gr(k,n) — Matg (n) =R", E s Pp.

By construction, this inclusion take values in the subspace Symg (1) & R 1)/2 of
symmetric n X n-matrices.

Remark 2.8. For all k, there is an identification Gr(k,n) = Gr(n — k,n) (taking a k-
dimensional subspace to the orthogonal subspace).

Remark 2.9. Similar to RP? = §2 / ~, the quotient modulo antipodal identification,
one can also consider
M= ($*xS8%)/~

the quotient space by the equivalence relation
(x7xl) ~ (—.X, _xl)'

It turns out that this manifold M is the same as Gr(2,4), where ‘the same’ is meant
in the sense that there is a bijection of sets identifying the atlases. Note that this is
the first genuinely new manifold, since Gr(1,4) = RP?, and Gr(3,4) = Gr(1,4) by
the previous remark.

Question: What about the other Gr(k,n) with n < 4?

2.3.5 Complex Grassmannians

Similar to the case of projective spaces, one can also consider the complex Grass-
mannian Gre (k,n) of complex k-dimensional subspaces of C". It is a manifold of
dimension 2k(n — k), which can also be regarded as a complex manifold of complex
dimension k(n — k).



