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2.4 Oriented manifolds

The compatibility condition between charts (U,j) and (V,y) on a set M is that
the map y �j�1 : j(U \V ) ! y(U \V ) is a diffeomorphism. In particular, the
Jacobian matrix D(y �j�1) of the transition map is invertible, and hence has non-
zero determinant. If the determinant is > 0 everywhere, then we say (U,j),(V,y) are
oriented-compatible. An oriented atlas on M is an atlas such that any two of its charts
are oriented-compatible; a maximal oriented atlas is one that contains every chart
that is oriented-compatible with all charts in this atlas. An oriented manifold is a set
with a maximal oriented atlas, satisfying the Hausdorff and countability conditions
as in definition 2.7. A manifold is called orientable if it admits an oriented atlas.

The notion of an orientation on a manifold will become crucial later, since in-
tegration of differential forms over manifolds is only defined if the manifold is ori-
ented.

Example 2.8. The spheres Sn are orientable. To see this, consider the atlas with
the two charts (U+,j+) and (U�,j�), given by stereographic projections. (Sec-
tion 2.3.1.) Here j�(U+ \U�) = j+(U+ \U�) = Rn\{0}, with transition map
j� �j�1

+ (u) = u/||u||2. The Jacobian matrix D(j� �j�1
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Its determinant is �||u||�2n (see exercise below).k Hence, the given atlas is not an
oriented atlas. But this is easily remedied: Simply compose one of the charts, say
U�, with the map (u1,u2, . . . ,un) 7! (�u1,u2, . . . ,un); then with the resulting new
coordinate map fj� the atlas (U+,j+),(U�,fj�) will be an oriented atlas.

Exercise 13. Calculate the determinant of the matrix with entries (2.2).

(Hint: Check that u is an eigenvector of the matrix, as is any vector orthogonal
to u. Alternatively, use that the Jacobian determinant must be invariant under
rotations in u-space.)

Example 2.9. We will show in Chapter 6 that RPn is orientable if and only if n is
odd or n = 0. More generally, Gr(k,n) is orientable if and only if n is even or n = 1.
The complex projective spaces CPn and complex Grassmannians GrC(k,n) are all
orientable. This follows because the transition maps for their standard charts, as maps
between open subsets of Cm, are actually complex-holomorphic, and this implies that
as real maps, their Jacobian has positive determinant. See the following exercise.

k Actually, to decide the sign of the determinant, one does not have to compute the determi-
nant everywhere. If n > 1, since Rn\{0}, it suffices to compute the determinant at just one
point, e.g. u = (1,0, . . . ,0).
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Exercise 14. Let A 2 MatC(n) be a complex n⇥n-matrix, and AR 2 MatR(2n)
the same matrix regarded as a real-linear transformation of R2n ⇠= Cn. Show
that

detR(AR) = |detC(A)|2.

(Hint: You may want to start with the case n = 1, and next consider the case
that A is upper triangular.)

2.5 Open subsets

Let M be a set equipped with an m-dimensional maximal atlas A = {(Ua ,ja)}.

Definition 2.8. A subset U ✓ M is open if and only if for all charts (Ua ,ja) 2 A
the set ja(U \Ua) is open.

To check that a subset U is open, it is not actually necessary to verify this condition
for all charts. As the following proposition shows, it is enough to check for any col-
lection of charts whose union contains U . In particular, we may take A in definition
2.8 to be any atlas, not necessarily a maximal atlas.

Proposition 2.1. Given U ✓ M, let B ✓ A be any collection of charts whose union
contains U. Then U is open if and only if for all charts (Ub ,jb ) from B, the sets
jb (U \Ub ) are open.

Proof. In what follows, we reserve the index b to indicate charts (Ub ,jb ) from B.
Suppose jb (U \Ub ) is open for all such b . Let (Ua ,ja) be a given chart in the
maximal atlas A . We have that

ja(U \Ua) =
[

b
ja(U \Ua \Ub )

=
[

b
(ja �j�1

b )
�
jb (U \Ua \Ub )

�

=
[
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b )
�
jb (Ua \Ub )\jb (U \Ub )

�
.

Since B ✓ A , all jb (Ua \Ub ) are open. Hence the intersection with jb (U \Ub )

is open, and so is the pre-image under the diffeomorphism ja �j�1
b . Finally, we use

that a union of open sets is again open. This proves the ‘if’ part; the ‘only if’ part is
obvious. ut

If A is an atlas on M, and U ✓ M is open, then U inherits an atlas by restriction:

AU = {(U \Ua ,ja |U\Ua )}.
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Exercise 15. Verify that if A is a maximal atlas, then so is AU , and if this
maximal atlas A satisfies the countability and Hausdorff properties, then so
does AU .

This then proves:

Proposition 2.2. An open subset of a manifold is again a manifold.

The collection of open sets of M with respect to an atlas has properties similar to
those for Rn:

Proposition 2.3. Let M be a set with an m-dimensional maximal atlas. The collection
of all open subsets of M has the following properties:

• /0,M are open.
• The intersection U \U 0 of any two open sets U,U 0 is again open.
• The union

S
i Ui of an arbitrary collection Ui, i 2 I of open sets is again open.

Proof. All of these properties follow from similar properties of open subsets in Rm.
For instance, if U,U 0 are open, then

ja((U \U 0)\Ua) = ja(U \Ua)\ja(U 0 \Ua)

is an intersection of open subsets of Rm, hence it is open and therefore U \U 0 is
open. ut

These properties mean, by definition, that the collection of open subsets of M define
a topology on M. This allows us to adopt various notions from topology:

1. A subset A ✓ M is called closed if its complement M\A is open.
2. M is called connected if the only subsets A ✓ M that are both closed and open

are A = /0 and A = M.
3. If U is an open subset and p 2 U , then U is called an open neighborhood of p.

More generally, if A ✓ U is a subset contained in M, then U is called an open
neighborhood of A.

The Hausdorff condition in the definition of manifolds can now be restated as the
condition that any two distinct points p,q in M have disjoint open neighborhoods. (It
is not necessary to take them to be domains of coordinate charts.)

It is immediate from the definition that domains of coordinate charts are open.
Indeed, this gives an alternative way of defining the open sets:

Exercise 16. Let M be a set with a maximal atlas. Show that a subset U ✓ M is
open if and only if it is either empty, or is a union U =

S
i2I Ui where the Ui are

domains of coordinate charts.
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2.6 Compact subsets

Another important concept from topology that we will need is the notion of com-
pactness. Recall (e.g. Munkres, Chapter 1 § 4) that a subset A ✓ Rm is compact if it
has the following property: For every collection {Ua} of open subsets of Rm whose
union contains A, the set A is already covered by finitely many subsets from that col-
lection. One then proves the important result (see Munkres, Theorems 4.2 and 4.9)

Theorem 2.2 (Heine-Borel). A subset A ✓ Rm is compact if and only if it is closed
and bounded.

While ‘closed and bounded’ is a simpler characterization of compactness to work
with, it does not directly generalize to manifolds (or other topological spaces), while
the original definition does:

Definition 2.9. Let M be a manifold.⇤⇤ A subset A✓M is compact if it has the follow-
ing property: For every collection {Ua} of open subsets of M whose union contains
A, the set A is already covered by finitely many subsets from that collection.

In short, A ✓ M is compact if every open cover admits a finite subcover.

Proposition 2.4. If A ✓ M is contained in the domain of a coordinate chart (U,j),
then A is compact in M if and only if j(A) is compact in Rn.

Proof. Suppose j(A) is compact. Let {Ua} be an open cover of A. Taking intersec-
tions with U , it is still an open cover (since A ✓U). Hence

A ✓
[

a
(U \Ua),

and therefore
j(A)✓

[

a
j(U \Ua).

Since j(A) is compact, there are indices a1, . . . ,aN such that

j(A)✓ j(U \Ua1)[ . . .[j(U \UaN ).

But then
A ✓ (U \Ua1)[ . . .[ (U \UaN )✓Ua1 [ . . .[UaN .

The converse is proved similarly. ut

Exercise: Complete the proof, by working out the details for the other direction.

The proposition is useful, since we can check compactness of j(A) by using the
Heine-Borel criterion. For more general subsets of M, we can often decide compact-
ness by combining this result with the following:
⇤⇤ More generally, the same definition is used for arbitrary topological spaces – e.g., sets with

an atlas.
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Proposition 2.5. If A1, . . . ,Ak ✓M is a finite collection of compact subsets, then their
union A = A1 [ . . .[Ak is again compact.

Proof. If {Ua} is an open cover of A, then in particular it is an open cover of each
of the sets A1, . . . ,Ak. For each Ai, we can choose a finite subcover. The collection of
all Ua ’s such that appear in at least one of these subcovers, for i = 1, . . .k are then a
finite subcover for A.

Example 2.10. Let M = Sn. The closed upper hemisphere {x 2 Sn| x0 � 0} is com-
pact, because is contained in the coordinate chart (U+,j+) for stereographic projec-
tion, and its image under j+ is the closed and bounded subset {u 2 Rn| ||u||  1}.
Likewise the closed lower hemisphere is compact, and hence Sn itself (as the union
of upper and lower hemispheres) is compact.

Example 2.11. Let {(Ui,ji)| i = 0, . . . ,n} be the standard atlas for RPn. Let

Ai = {(x0 : . . . : xn) 2 RPn| ||x||2  (n+1)x2
i }.

Then Ai ✓ Ui (since necessarily xi 6= 0 for elements of Ai). Furthermore,
Sn

i=0 Ai =
RPn: Indeed, given any (x0 : · · · : xn) 2 RPn, let i be an index for which |xi| is maxi-
mal. Then ||x||2  (n+1)x2

i (since the right hand side is obtained from the left hand
side by replacing each (x j)2 with (xi)2 � (x j)2)), hence (x0 : · · · : xn) 2 Ai. Finally,
one checks that ji(Ai) ✓ Rn is a closed ball of radius

p
n+1, and in particular is

compact.

In a similar way, one can prove compactness of CPn, Gr(k,n), GrC(k,n). How-
ever, soon we will have a simpler way of verifying compactness, by showing that
they are closed and bounded subsets of RN for a suitable N.

Proposition 2.6. Let M be a set with a maximal atlas. If A ✓ M is compact, and
C ✓ M is closed, then A\C is compact.

Proof. Let {Ua} be an open cover of A\C. Together with the open subset M\C,
these cover A. Since A is compact, there are finitely many indices a1, . . . ,aN with

A ✓ (M\C)[Ua1 [ . . .[UaN .

Hence A\C ✓Ua1 [ . . .[UaN . ut
The following fact uses the Hausdorff property (and holds in fact for any Haus-

dorff topological space).
Proposition 2.7. If M is a manifold, then every compact subset A ✓ M is closed.

Proof. Suppose A ✓ M is compact. Let p 2 M\A be given. For any q 2 A, there
are disjoint open neighborhoods Vq of q and Uq of p. The collection of all Vq for
q 2 A are an open cover of A, hence there exists a finite subcover Vq1 , . . . ,Vqk . The
intersection U =Uq1 \ . . .\Uqk is an open subset of M with p 2 M and not meeting
Vq1 [ . . .[Vqk , hence not meeting A. We have thus shown that every p 2 M\A has an
open neighborhood U ✓ M\A. The union over all such open neighborhoods for all
p 2 M\A is all of M\A, which hence is open. It follows that A is closed. ut
Exercise: Let M be the non-Hausdorff manifold from Example 2.6. Find a compact
subset A ✓ M that is not closed.
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2.7 Building New Manifolds

2.7.1 Disjoint Union

Given manifolds M,M0 of the same dimensions m, with atlases {(Ua ,ja)} and
{(U 0

b ,j
0
b )}, the disjoint union N = MtM0 is again an m-dimensional manifold with

atlas {Ua ,ja)}[{U 0
b ,j

0
b )}. This manifold N is not much more interesting than con-

sidering M and M0 separately, but is the first step towards “gluing” M and M0 in an
interesting way, which often results in genuinely new manifold (more below).

2.7.2 Products

Given manifolds M,M0 of dimensions m,m0 (not necessarily the same), with atlases
{(Ua ,ja)} and {(U 0

b ,j
0
b )}, the cartesian product M⇥M0 is a manifold of dimension

m + m0. An atlas is given by the product charts Ua ⇥U 0
b with the product maps

ja ⇥j 0
b : (x,x0) 7! (ja(x),j 0

b (x
0)). For example, the 2-torus T 2 = S1 ⇥S1 becomes

a manifold in this way, and likewise the n-torus

T n = S1 ⇥ · · ·⇥S1.

Question: One may repeat both of the constructions above recursively, a finite num-
ber of times. Recall that the countable union of countable sets is countable (see Ap-
pendix). Can we therefore repeat this construction a countable number of times?

2.7.3 Quotients

When we constructed RPn, we did so by defining an equivalence relation on Rn. On
the other hand, the double-origin non-example 2.6 was also defined by considering
an equivalence relation on RtR. In one case the result was a manifold, and in the
other it was not. The non-example actually shows us what may fail: the quotient may
fail to be Hausdorff. We will revisit quotient construction at the end of Chapter 3,
after we have developed more tools. The remainder of the section is aimed toward
students with background in basic point-set topology.

Exercise 17. Let T be a Hausdorff topological space. Let R be an equivalence
relation on T , and T 0 = T/R the set of equivalence classes. There is a natural
quotient map p : T ! T 0 taking each element to its equivalence class.
Recall that the quotient topology on T 0 is defined as follows: U 0 ✓ T 0 is open
iff p�1(U 0) is open in T .
Suppose p is an open map (that is p(U) is open in T 0 for any open set U of T ).
Show that if R ✓ T ⇥T is closed, then T 0 is Hausdorff.

Suppose {Ua}•
a=1 is some countable collection of open sets in Rn. By the pre-

vious section, each Ua is an n-manifold. Further suppose that for each two indices
a,b we have a diffeomorphism jab : Ua \Ub ! Ua \Ub satisfying the following
conditions:
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• jaa is the identity map.
• For any three indices a,b ,g we have

jab �jbg = jag .

Exercise 18. Let M =
F

a Ua . Define the following relation on M. Let x,y 2 M
and suppose x 2Ua , y 2Ub (not necessarily distinct). Say

x ⇠ y () jab (x) = y.

Show that this is an equivalence relation on M.
Equip M/⇠ with the quotient topology. Suppose you knew that M/⇠ is Haus-
dorff; show there is a natural manifold structure on M/ ⇠ making it an n-
dimensional manifold.

Every manifold can be constructed as in the exercise above; where the Ui’s are
simply the chart domains, and the jab are the transition functions. However, not ev-
ery such construction results in a manifold; once again the problem is the Hausdorff
condition, which we assumed in the Exercise above.


