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2.8 Appendix

2.8.1 Countability

A set X is countable if it is either finite (possibly empty), or there exists a bijective
map f: N — X. We list some basic facts about countable sets:

e N,Z,Q are countable, R is not countable.

If X1, X, are countable, then the cartesian product X; x X, is countable.

If X is countable, then any subset of X is countable.

If X is countable, and f : X — Y is surjective, then Y is countable.

If (X;)ies are countable sets, indexed by a countable set I, then the (disjoint)
union Ll;c;X; is countable.

2.8.2 Equivalence relations

We will make extensive use of equivalence relations; hence it may be good to review
this briefly. A relation from a set X to a set Y is simply a subset

RCYxX.

We write x ~g y if and only if (y,x) € R. When R is understood, we write x ~ y. If
Y = X we speak of a relation on X.

Example 2.12. Any map f: X — Y defines a relation, given by its graph Gry =
{(f(x),x)|x € X}. In this sense relations are generalizations of maps; for example,
they are often used to describe ‘multi-valued’ maps.

Remark 2.10. Given another relation S C Z x Y, one defines a composition SoR C
Z x X, where
SoR={(z,x)| IyeY: (z,y) €S, (y.x) ER}.

Our conventions are set up in such a way thatif f: X —Y and g: Y — Z are two
maps, then Grgor = Grg o Gry.

Example 2.13. On the set X = R we have relations >, >, <, <,=. But there is also
the relation defined by the condition x ~ x’' < x' — x € Z, and many others.

A relation ~ on a set X is called an equivalence relation if it has the following
properties,

1. Reflexivity: x ~x forall x € X,
2. Symmetry: x ~y =y~ x,
3. Transitivity: x ~y, y~Z7=x~Z.

Given an equivalence relation, we define the equivalence class of x € X to be the
subset

] ={yeX|x~y}.
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Note that X is a disjoint union of its equivalence classes. We denote by X/ ~ the
set of equivalence classes. That is, all the elements of a given equivalence class are
lumped together and represent a single element of X/ ~. One defines the quotient
map

g: X—>X/~, x— .

By definition, the quotient map is surjective.
Remark 2.11. There are two other useful ways to think of equivalence relations:

e An equivalence relation R on X amounts to a decomposition X = Ll;c;X; as a
disjoint union of subsets. Given R, one takes X; to be the equivalence classes;
given the decomposition, one defines R = {(y,x) e X x X|Fi € I : x,y € X;}.

e An equivalence relation amounts to a surjective map g : X — Y. Indeed, given
R one takes Y := X/ ~ with ¢ the quotient map; conversely, given ¢ one defines

R={(nx) € X xX|q(x)=q(y)}.

Remark 2.12. Often, we will not write out the entire equivalence relation. For exam-
ple, if we say “the equivalence relation on S* given by x ~ —x”, then it is understood
that we also have x ~ x, since reflexivity holds for any equivalence relation. Similarly,
when we say “the equivalence relation on R generated by x ~ x+ 17, it is understood
that we also have x ~ x4 2 (by transitivity: x ~x+1 ~x+2) as well as x ~ x— 1
(by symmetry), hence x ~ x+ k for all k € Z. (Any relation Rg C X x X extends to
a unique smallest equivalence relation R; one says that R is the equivalence relation
generated by Ry.)

Example 2.14. Consider the equivalence relation on S? given by
(6,3,2) ~ (=%, =, —2)-

The equivalence classes are pairs of antipodal points; they are in 1-1 correspondence
with lines in R3. That is, the quotient space S?/ ~ is naturally identified with RP?,

Example 2.15. The quotient space R/ ~ for the equivalence relation x ~ x+1 on R
is naturally identified with S'. If we think of S! as a subset of R, the quotient map is
given by ¢ — (cos(2nt),sin(27t)).

Example 2.16. Similarly, the quotient space for the equivalence relation on R? given
by (x,y) ~ (x+k,y+1) for k,I € Z is the 2-torus T>.

Example 2.17. Let E be a k-dimensional real vector space. Given two ordered bases
(e1,...,ex) and (¢e],...,e), there is a unique invertible linear transformation A : E —
E with A(e;) = €. The two ordered bases are called equivalent if det(A) > 0. One
checks that equivalence of bases is an equivalence relation. There are exactly two
equivalence classes; the choice of an equivalence class is called an orientation on E.
For example, R”" has a standard orientation defined by the standard basis (ey, ..., e,).
The opposite orientation is defined, for example, by (—ej,es,...,e,). A permuta-
tion of the standard basis vectors defines the standard orientation if and only if the
permutation is even.



