2.8 Appendix

2.8.1 Countability

A set *X* is *countable* if it is either finite (possibly empty), or there exists a bijective map $f : \mathbb{N} \to X$. We list some basic facts about countable sets:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable, \mathbb{R} is not countable.
- If X_1, X_2 are countable, then the cartesian product $X_1 \times X_2$ is countable.
- If *X* is countable, then any subset of *X* is countable.
- If *X* is countable, and $f: X \to Y$ is surjective, then *Y* is countable.
- If (X_i)_{i∈I} are countable sets, indexed by a countable set I, then the (disjoint) union ⊔_{i∈I}X_i is countable.

2.8.2 Equivalence relations

We will make extensive use of *equivalence relations*; hence it may be good to review this briefly. A *relation* from a set X to a set Y is simply a subset

$$R \subseteq Y \times X.$$

We write $x \sim_R y$ if and only if $(y, x) \in R$. When *R* is understood, we write $x \sim y$. If Y = X we speak of a *relation on X*.

Example 2.12. Any map $f : X \to Y$ defines a relation, given by its graph $Gr_f = \{(f(x), x) | x \in X\}$. In this sense relations are generalizations of maps; for example, they are often used to describe 'multi-valued' maps.

Remark 2.10. Given another relation $S \subseteq Z \times Y$, one defines a composition $S \circ R \subseteq Z \times X$, where

$$S \circ R = \{(z,x) \mid \exists y \in Y : (z,y) \in S, (y,x) \in R\}.$$

Our conventions are set up in such a way that if $f: X \to Y$ and $g: Y \to Z$ are two maps, then $\operatorname{Gr}_{g \circ f} = \operatorname{Gr}_g \circ \operatorname{Gr}_f$.

Example 2.13. On the set $X = \mathbb{R}$ we have relations $\geq, >, <, \leq, =$. But there is also the relation defined by the condition $x \sim x' \Leftrightarrow x' - x \in \mathbb{Z}$, and many others.

A relation \sim on a set *X* is called an *equivalence relation* if it has the following properties,

- 1. Reflexivity: $x \sim x$ for all $x \in X$,
- 2. Symmetry: $x \sim y \Rightarrow y \sim x$,
- 3. Transitivity: $x \sim y, y \sim z \Rightarrow x \sim z$.

Given an equivalence relation, we define the *equivalence class* of $x \in X$ to be the subset

$$[x] = \{ y \in X \mid x \sim y \}.$$

36 2 Manifolds

Note that X is a disjoint union of its equivalence classes. We denote by X/\sim the set of equivalence classes. That is, all the elements of a given equivalence class are lumped together and represent a single element of X/\sim . One defines the *quotient map*

$$q: X \to X/\sim, x \mapsto [x].$$

By definition, the quotient map is surjective.

Remark 2.11. There are two other useful ways to think of equivalence relations:

- An equivalence relation *R* on *X* amounts to a decomposition *X* = ⊔_{i∈I}*X_i* as a disjoint union of subsets. Given *R*, one takes *X_i* to be the equivalence classes; given the decomposition, one defines *R* = {(*y*,*x*) ∈ *X* × *X*|∃*i* ∈ *I* : *x*, *y* ∈ *X_i*}.
- An equivalence relation amounts to a surjective map $q: X \to Y$. Indeed, given R one takes $Y := X / \sim$ with q the quotient map; conversely, given q one defines $R = \{(y, x) \in X \times X | q(x) = q(y)\}.$

Remark 2.12. Often, we will not write out the entire equivalence relation. For example, if we say "*the equivalence relation on S*² *given by x* ~ -x", then it is understood that we also have *x* ~ *x*, since reflexivity holds for any equivalence relation. Similarly, when we say "*the equivalence relation on* \mathbb{R} *generated by x* ~ *x* + 1", it is understood that we also have *x* ~ *x* + 2 (by transitivity: *x* ~ *x* + 1 ~ *x* + 2) as well as *x* ~ *x* - 1 (by symmetry), hence *x* ~ *x* + *k* for all $k \in \mathbb{Z}$. (Any relation $R_0 \subseteq X \times X$ extends to a unique smallest equivalence relation *R*; one says that *R* is the equivalence relation generated by *R*₀.)

Example 2.14. Consider the equivalence relation on S^2 given by

$$(x,y,z) \sim (-x,-y,-z)$$

The equivalence classes are pairs of antipodal points; they are in 1-1 correspondence with lines in \mathbb{R}^3 . That is, the quotient space S^2/\sim is naturally identified with $\mathbb{R}P^2$.

Example 2.15. The quotient space \mathbb{R}/\sim for the equivalence relation $x \sim x + 1$ on \mathbb{R} is naturally identified with S^1 . If we think of S^1 as a subset of \mathbb{R} , the quotient map is given by $t \mapsto (\cos(2\pi t), \sin(2\pi t))$.

Example 2.16. Similarly, the quotient space for the equivalence relation on \mathbb{R}^2 given by $(x, y) \sim (x+k, y+l)$ for $k, l \in \mathbb{Z}$ is the 2-torus T^2 .

Example 2.17. Let *E* be a *k*-dimensional real vector space. Given two ordered bases (e_1, \ldots, e_k) and (e'_1, \ldots, e'_k) , there is a unique invertible linear transformation $A : E \to E$ with $A(e_i) = e'_i$. The two ordered bases are called *equivalent* if det(A) > 0. One checks that equivalence of bases is an equivalence relation. There are exactly two equivalence classes; the choice of an equivalence class is called an *orientation* on *E*. For example, \mathbb{R}^n has a standard orientation defined by the standard basis (e_1, \ldots, e_n) . The opposite orientation is defined, for example, by $(-e_1, e_2, \ldots, e_n)$. A permutation of the standard basis vectors defines the standard orientation if and only if the permutation is even.