
50 3 Smooth maps

3.4 Submanifolds

Let M be a manifold of dimension m. We will define a k-dimensional submanifold
S ✓ M to be a subset that looks locally like Rk ✓ Rm (which we take to be the
coordinate subspace defined by xk+1 = · · ·= xm = 0.

Definition 3.4. A subset S ✓ M is called a submanifold of dimension k  m, if for all
p 2 S there exists a coordinate chart (U,j) around p such that

j(U \S) = j(U)\Rk.

Charts (U,j) of M with this property are called submanifold charts for S.

Remark 3.2.

(a) A chart (U,j) such that U \S = /0 and j(U)\Rk = /0 is considered a submani-
fold chart.

(b) We stress that the existence of submanifold charts is only required for points p
that lie in S. For example, the half-open line S = (0,•) is a submanifold of R (of
dimension 1). There does not exist a submanifold chart containing 0, but this is
not a problem since 0 62 S.

Strictly speaking, a submanifold chart for S is not a chart for S, but is a chart for M
which is adapted to S. On the other hand, submanifold charts restrict to charts for S,
and this may be used to construct an atlas for S:

Proposition 3.4. Suppose S is a submanifold of M. Then S is a k-dimensional mani-
fold in its own right, with atlas consisting of all charts (U \S,j 0) such that (U,j) is
a submanifold chart, and j 0 = p �j|U\S where p : Rm ! Rk is projection onto the
first k-coordinates.

Proof. Let (U,j) and (V,y) be two submanifold charts for S. We have to show that
the charts (U \S,j 0) and (V \S,y 0) are compatible. The map

y 0 �j 0�1 : j 0(U \V \S)! y 0(U \V \S)

is smooth, because it is the restriction of y �j�1 : j(U \V \ S) ! y(U \V \ S)
to the coordinate subspace Rk. Likewise its inverse map is smooth. The Hausdorff
condition follows because any two distinct points p,q 2 S, one can take disjoint
submanifold charts around p,q. (Just take any submanifold charts, and intersect with
the domains of disjoint charts around p,q.)

The proof that S admits a countable atlas is a bit technical. We use the following

Exercise 34. Prove that every open subset of Rm is a union of rational e-balls
Be(x), e > 0. Here, ‘rational’ means that both the center of the ball and its
radius are rational: x 2Qn, e 2Q.
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Our goal is to construct a countable collection of submanifold charts covering
S. (The atlas for S itself is then obtained by restriction.) Start with any countable
atlas (Ua ,ja) for M. Given p 2 S\Ua , we can choose a submanifold chart (V,y)
containing p. Using the above fact, we can choose a rational e-ball with

j(p) 2 Be(x)✓ ja(Ua \V ).

This shows that the subsets of the form j�1
a (Be(x)), with Be(x)✓ ja(Ua) a rational

e-ball such that j�1
a (Be(x)) is contained in some submanifold chart, cover all of S.

Take these to be the domains of a charts (Vb ,yb ), where Vb is one of the j�1
a (Be(x)),

and yb is the restriction of the coordinate maps of a submanifold chart containing
j�1

a (Be(x)). You have shown in Exercise 7 that such a set is a chart, and it is easy to
see that it is in fact a submanifold chart. Then {(Vb ,yb )} is a countable collection
of submanifold charts covering S. (Recall that a countable union of countable sets is
again countable.) ut

Example 3.8 (Open subsets). The m-dimensional submanifolds of an m-dimensional
manifold are exactly the open subsets.

Example 3.9 (Spheres). Let Sn = {x 2 Rn+1| ||x||2 = 1}. Write x = (x0, . . . ,xn), and
regard

Sk ✓ Sn

for k < n as the subset where the last n� k coordinates are zero. These are submani-
folds: The charts (U±,j±) for Sn given by stereographic projection

j±(x0, . . . ,xn) =
1

1± x0 (x
1, . . . ,xn)

are submanifold charts. In fact, the charts U±
i , given by the condition that ±xi > 0,

with j±
i the projection to the remaining coordinates, are submanifold charts as well.

Example 3.10 (Projective spaces). For k < n, regard

RPk ✓ RPn

as the subset of all (x0 : . . . : xn) for which xk+1 = . . . = xn = 0. These are submani-
folds, with the standard charts (Ui,ji) for RPn as submanifold charts. (Note that the
charts Uk+1, . . . ,Un don’t meet RPk, but this does not cause a problem.) In fact, the
resulting charts for RPk obtained by restricting these submanifold charts, are just the
standard charts of RPk. Similarly,

CPk ✓ CPn

are submanifolds, and for n < n0 we have Gr(k,n)✓ Gr(k,n0) as a submanifold.

Proposition 3.5. Let F : M ! N be a smooth map between manifolds of dimensions
m and n. Then

graph(F) = {(F(p), p)| p 2 M}✓ N ⇥M

is a submanifold of N ⇥M, of dimension equal to the dimension of M.
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Proof. Given p 2 M, choose charts (U,j) around p and (V,y) around F(p), with
F(U)✓V , and let W =V ⇥U . We claim that (W,k) with

k(q, p) = (j(p), y(q)�y(F(p))) (3.8)

is a submanifold chart for graph(F) ✓ N ⇥M. Note that this is indeed a chart of
N⇥M, because it is obtained from the product chart (V ⇥U,y ⇥j) by composition
with the diffeomorphism y(V )⇥j(U) ! j(U)⇥y(V ), (v,u) 7! (u,v), followed
by the diffeomorphism

j(U)⇥y(V )! k(W ), (u,v) 7! (u,v� eF(u)). (3.9)

where eF = y �F �j�1. Furthermore, the second component in (3.8) vanishes if and
only if F(p) = q. That is,

k(W \graph(F)) = k(W )\Rm

as required. ut

Exercise 35. Prove that the map (3.9) is a diffeomorphism by showing that it is
smooth and injective, and its Jacobian has determinant one.

This result has the following consequence: If a subset of a manifold, S ✓ M, can
be locally described as the graph of a smooth map, then S is a submanifold. In more
detail, suppose that S can be covered by open sets U , such that for each U there is a
diffeomorphism U ! P⇥Q taking S\U to the graph of a smooth map Q ! P, then
S is a submanifold.

Example 3.11. The 2-torus S = f�1(0)✓ R3, where

f (x,y,z) = (
p

x2 + y2 �R)2 + z2 � r2

is a submanifold of R3, since it can locally be expressed as the graph of a function
of x,y, or of y,z, or of x,z.

Exercise 36. 1. Show that on the subset where z > 0, S is the graph of the
smooth function on the annulus {(x,y)| (R� r)2 < x2 + y2 < (R+ r)2},
given as

H(x,y) =
q

r2 � (
p

x2 + y2 �R)2.

2. Derive a similar formula for F(y,z) on the subset where x2 + y2 < R2 and
x > 0.

3. How many open subsets of this kind (where S is given as the graph of a
function of two of the coordinates) are necessary to cover S?
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Example 3.12. More generally, suppose S ✓R3 is given as a level set S = f�1(0) for
a smooth map f 2 C•(R3). (Actually, we only need f to be defined and smooth on
an open neighborhood of S.) Let p 2 S, and suppose

∂ f
∂x

���
p
6= 0.

By the implicit function theorem from multivariable calculus, there is an open neigh-
borhood U ✓R3 of p on which the equation f (x,y,z) = 0 can be uniquely solved for
x. That is,

S\U = {(x,y,z) 2U | x = F(y,z)}
for a smooth function F , defined on a suitable open subset of R2. This shows that S
is a submanifold near p, and in fact we may use y,z as coordinates near p. Similar
arguments apply for ∂ f

∂y |p 6= 0 or ∂ f
∂ z |p 6= 0. Hence, if the gradient

— f = (
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

)

is non-vanishing at all points p 2 S = f�1(0), then S is a 2-dimensional submanifold.
Of course, there is nothing special about 2-dimensional submanifolds of R3, and
below we will put this discussion in a more general framework.

As we saw, submanifolds S of manifolds M are themselves manifolds. They come
with an inclusion map

i : S ! M, p 7! p,

taking any point of S to the same point but viewed as a point of M. Unsurprisingly,
we have:

Proposition 3.6. The inclusion map i : S ! M is smooth.

Exercise 37. Prove the proposition.

This shows in particular that if F 2 C•(M,N) is a smooth map, then its restriction
F |S : S ! N is again smooth. Indeed, F |S = F � i is a composition of smooth maps.
This is useful in practice, because in such cases there is no need to verify smoothness
in the local coordinates of S! For example, the map S2 ! R, (x,y,z) 7! z is smooth
since it is the restriction of a smooth map R3 ! R to the submanifold S2. A related
result, which we leave as an exercise, is the following:

Exercise 38. Let S ✓ M be a submanifold, with inclusion map i, and let F :
Q ! S be a map from another manifold Q. Then F is smooth if and only if i�F
is smooth. (In other words, if and only if F is smooth as a map into M.)

For the following proposition, recall that a subset U of a manifold is open if and
only if for all p2U , and any coordinate chart (V,y) around p, the subset y(U\V )✓
Rm is open. (This does not depend on the choice of chart.)
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Proposition 3.7. Suppose S is a submanifold of M. Then the open subsets of S for its
manifold structure are exactly those of the form U \S, where U is an open subset of
M.

In other words, the topology of S as a manifold coincides with the ‘subspace topol-
ogy’ as a subset of the manifold M.

Proof. We have to show:

U 0 ✓ S is open , U 0 =U \S where U ✓ M is open.

“(”. Suppose U ✓ M is open, and let U 0 =U \S. For any submanifold chart (V,y),
with corresponding chart (V \ S,y 0) for S (where, as before, y 0 = p �y|V\S),
we have that

y 0((V \S)\U 0) = p �y(V \S\U) = p(y(U)\y(V )\Rk).

Now, y(U)\y(V )\Rk is the intersection of the open set y(U)\y(V ) ✓ Rn

with the subspace Rk, hence is open in Rk. Since submanifold charts cover all of
S, this shows that U 0 is open.

“)”. Suppose U 0 ✓ S is open in S. Define

U =
[

V
y�1(y 0(U 0 \V )⇥Rm�k)✓ M,

where the union is over any collection of submanifold charts (V,y) that cover
all of S. Since U 0 is open in S, so is U 0 \V ⌘ U 0 \ (V \ S), by the previous
paragraph. Hence y 0(U 0 \V ) = y 0(U 0 \ (V \S)) is open in Rk, and its cartesian
product with Rm�k is open in Rm. The pre-image y�1(y(U 0 \V )⇥Rm�k) is
thus open in V , hence also in M, and the union over all such sets is open in M.
We are now done by the exercise below. ut

Exercise 39. Fill in the last detail of the proof: Check that U \S =U 0.

Remark 3.3. As a consequence, if a manifold M can be realized as a submanifold
M ✓ Rn, then M is compact with respect to its manifold topology if and only if it
is compact as a subset of Rn, if and only if it is a closed and bounded subset of Rn.
This can be used to give quick proofs of the facts that the real or complex projective
spaces, as well as the real or complex Grassmannians, are all compact.

Remark 3.4. Sometimes, the result can be used to show that certain subsets are not
submanifolds. Consider for example the subset

S = {(x,y) 2 R2| xy = 0}✓ R2

given as the union of the coordinate axes. If S were a 1-dimensional submanifold,
then there would exist an open neighborhood U 0 of p = (0,0) in S which is dif-
feomorphic to an open interval. But for any open subset U ✓ R2 containing p, the
intersection U 0 = U \ S cannot possibly be an open interval, since (U \ S)\{p} has
at least four connected components, while removing a point from an open interval
gives only two connected components.


