3.5 Smooth maps of maximal rank

Let $F \in C^{\infty}(M, N)$ be a smooth map. Then the fibers (level sets)

$$F^{-1}(q) = \{ x \in M | F(x) = q \}$$

for $q \in N$ need not be submanifolds, in general. Similarly, the image $F(M) \subseteq N$ need not be a submanifold – even if we allow self-intersections. (More precisely, there may be points *p* such that the image $F(U) \subseteq N$ of any open neighborhood *U* of *p* is never a submanifold.) Here are some counter-examples:

- (a) The fibers $f^{-1}(c)$ of the map f(x,y) = xy are hyperbolas for $c \neq 0$, but $f^{-1}(0)$ is the union of coordinate axes. What makes this possible is that the gradient of f is zero at the origin.
- (b) As we mentioned earlier, the image of the smooth map

$$\gamma: \mathbb{R} \to \mathbb{R}^2, \ \gamma(t) = (t^2, t^3)$$

does not look smooth near (0,0) (and replacing \mathbb{R} by an open interval around 0 does not help)[†]. What makes this is possible is that the velocity $\dot{\gamma}(t)$ vanishes for t = 0: the curve described by γ 'comes to a halt' at t = 0, and then turns around.

In both cases, the problems arise at points where the map does not have maximal rank. After reviewing the notion of rank of a map from multivariable calculus we will generalize to manifolds.

3.5.1 The rank of a smooth map

The following discussion will involve some notions from multivariable calculus. Let $U \subseteq \mathbb{R}^m$ and $V \subseteq \mathbb{R}^n$ be open subsets, and $F \in C^{\infty}(U, V)$ a smooth map.

Definition 3.5. *The* derivative of *F* at $p \in U$ is the linear map

$$D_p F: \mathbb{R}^m \to \mathbb{R}^n, \ v \mapsto \frac{d}{dt}\Big|_{t=0} F(p+tv).$$

The rank of F at p is the rank of this linear map:

$$\operatorname{rank}_p(F) = \operatorname{rank}(D_pF).$$

(Recall that the rank of a linear map is the dimension of its range.) Equivalently, $D_p F$ is the $n \times m$ matrix of partial derivatives $(D_p F)_j^i = \frac{\partial F^i}{\partial x^j}\Big|_p$:

$$D_{p}F = \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \Big|_{p} & \frac{\partial F^{1}}{\partial x^{2}} \Big|_{p} & \cdots & \frac{\partial F^{1}}{\partial x^{m}} \Big|_{p} \\ \frac{\partial F^{2}}{\partial x^{1}} \Big|_{p} & \frac{\partial F^{2}}{\partial x^{2}} \Big|_{p} & \cdots & \frac{\partial F^{2}}{\partial x^{m}} \Big|_{p} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial F^{n}}{\partial x^{1}} \Big|_{p} & \frac{\partial F^{n}}{\partial x^{2}} \Big|_{p} & \cdots & \frac{\partial F^{n}}{\partial x^{m}} \Big|_{p} \end{pmatrix}$$

[†] It is not a submanifold, although we have not proved it (yet).

and the rank of *F* at *p* is the rank of this matrix (i.e., the number of linearly independent rows, or equivalently the number of linearly independent columns). Note $\operatorname{rank}_p(F) \leq \min(m, n)$. By the chain rule for differentiation, the derivative of a composition of two smooth maps satisfies

$$D_{p}(F' \circ F) = D_{F(p)}(F') \circ D_{p}(F).$$
(3.10)

In particular, if F' is a diffeomorphism then $\operatorname{rank}_p(F' \circ F) = \operatorname{rank}_p(F)$, and if F is a diffeomorphism then $\operatorname{rank}_p(F' \circ F) = \operatorname{rank}_{F(p)}(F')$.

Definition 3.6. Let $F \in C^{\infty}(M,N)$ be a smooth map between manifolds, and $p \in M$. The rank of F at $p \in M$ is defined as

$$\operatorname{rank}_{p}(F) = \operatorname{rank}_{\varphi(p)}(\psi \circ F \circ \varphi^{-1})$$

for any two coordinate charts (U, φ) around p and (V, ψ) around F(p) such that $F(U) \subseteq V$.

By (3.10), this is well-defined: if we use different charts (U', φ') and (V', ψ') , then the rank of

$$\boldsymbol{\psi}' \circ \boldsymbol{F} \circ (\boldsymbol{\varphi}')^{-1} = (\boldsymbol{\psi}' \circ \boldsymbol{\psi}^{-1}) \circ (\boldsymbol{\psi} \circ \boldsymbol{F} \circ \boldsymbol{\varphi}^{-1}) \circ (\boldsymbol{\varphi} \circ (\boldsymbol{\varphi}')^{-1})$$

at $\varphi'(p)$ equals that of $\psi \circ F \circ \varphi^{-1}$ at $\varphi(p)$, since the two maps are related by diffeomorphisms.

The following discussion will focus on maps of maximal rank. We have that

$$\operatorname{rank}_p(F) \leq \min(\dim M, \dim N)$$

for all $p \in M$; the map *F* is said to have *maximal rank* at *p* if rank_{*p*}(*F*) = min(dim*M*, dim*N*). A point $p \in M$ is called a *critical point* for *F* if rank_{*p*}(*F*) < min(dim*M*, dim*N*).

Exercise 40.

1. Consider the lemniscate of Gerono: $f : \mathbb{R} \to \mathbb{R}^2$

 $\theta \mapsto (\cos \theta, \sin \theta \cos \theta).$

Find its critical points. What is rank_{*p*}(*f*) for *p* not a critical point? 2. Consider the map $g : \mathbb{R}^3 \to \mathbb{R}^4$

$$(x, y, z) \mapsto (yz, xy, xz, x^2 + 2y^2 + 3z^2).$$

Find its critical points, and for each critical point p compute rank_p(F).

3.5.2 Local diffeomorphisms

In this section we will consider the case $\dim M = \dim N$. Our 'workhorse theorem' from multivariable calculus is going to be the following fact.

Theorem 3.1 (Inverse Function Theorem for \mathbb{R}^m). Let $F \in C^{\infty}(U, V)$ be a smooth map between open subsets of \mathbb{R}^m , and suppose that the derivative D_pF at $p \in U$ is invertible. Then there exists an open neighborhood $U_1 \subseteq U$ of p such that F restricts to a diffeomorphism $U_1 \rightarrow F(U_1)$.

Remark 3.5. The theorem tells us that for a smooth bijection, a sufficient condition for smoothness of the inverse map is that the differential (i.e., the *first* derivative) is invertible everywhere. It is good to see, in just one dimension, how this is possible. Given an invertible smooth function y = f(x), with inverse x = g(y), and using $\frac{d}{dy} = \frac{dx}{dx} \frac{d}{dx}$, we have

$$g'(y) = \frac{1}{f'(x)},$$

$$g''(y) = -\frac{f''(x)}{f'(x)^3},$$

$$g'''(y) = -\frac{-f'''(x)}{f'(x)^4} + 3\frac{f''(x)^2}{f'(x)^5}$$

and so on; only powers of f'(x) appear in the denominator.

Theorem 3.2 (Inverse function theorem for manifolds). Let $F \in C^{\infty}(M,N)$ be a smooth map between manifolds of the same dimension m = n. If $p \in M$ is such that rank_p(F) = m, then there exists an open neighborhood $U \subseteq M$ of p such that F restricts to a diffeomorphism $U \to F(U)$.

Proof. Choose charts (U, φ) around p and (V, ψ) around F(p) such that $F(U) \subseteq V$. The map

$$\widetilde{F} = \psi \circ F \circ \varphi^{-1} : \widetilde{U} := \varphi(U) \to \widetilde{V} := \psi(V)$$

has rank *m* at $\varphi(p)$. Hence, by the inverse function theorem for \mathbb{R}^m , after replacing \widetilde{U} with a smaller open neighborhood of $\varphi(p)$ (equivalently, replacing *U* with a smaller open neighborhood of *p*) the map \widetilde{F} becomes a diffeomorphism from \widetilde{U} onto $\widetilde{F}(\widetilde{U}) = \psi(F(U))$. It then follows that

$$F = \psi^{-1} \circ \widetilde{F} \circ \varphi : U \to V$$

is a diffeomorphism $U \to F(U)$. \Box

A smooth map $F \in C^{\infty}(M, N)$ is called a *local diffeomorphism* if dim $M = \dim N$, and F has maximal rank everywhere. By the theorem, this is equivalent to the condition that every point p has an open neighborhood U such that F restricts to a diffeomorphism $U \to F(U)$. It depends on the map in question which of these two conditions is easier to verify.

Exercise 41. Show that the map $\mathbb{R} \to S^1$, $t \mapsto (\cos(2\pi t), \sin(2\pi t))$ is a local diffeomorphism.

Example 3.13. The quotient map $\pi : S^n \to \mathbb{R}P^n$ is a local diffeomorphism. Indeed, one can see (using suitable coordinates) that π restricts to diffeomorphisms from each $U_i^{\pm} = \{x \in S^n | \pm x^j > 0\}$ to the standard chart U_j .

Example 3.14. Let *M* be a manifold with a countable open cover $\{U_{\alpha}\}$, and let

$$Q = \bigsqcup_{\alpha} U_{\alpha}$$

be the *disjoint* union. Then the map $\pi : Q \to M$, given on $U_{\alpha} \subseteq Q$ by the inclusion into *M*, is a local diffeomorphism. Since π is surjective, it determines an equivalence relation on *Q*, with π as the quotient map and $M = Q / \sim$.

We leave it as an exercise to show that if the U_{α} 's are the domains of coordinate charts, then Q is diffeomorphic to an open subset of \mathbb{R}^m . This then shows that any manifold is realized as a quotient of an open subset of \mathbb{R}^m , in such a way that the quotient map is a local diffeomorphism.

Exercise 42. Continuing with the notation of the last example above, show that if the U_{α} 's are the domain of coordinate charts, then Q is diffeomorphic to an open subset of \mathbb{R}^m .

3.5.3 Level sets, submersions

The inverse function theorem is closely related to the *implicit function theorem*, and one may be obtained as a consequence of the other. (We have chosen to take the inverse function theorem as our starting point.)

Proposition 3.8. Suppose $F \in C^{\infty}(U, V)$ is a smooth map between open subsets $U \subseteq \mathbb{R}^m$ and $V \subseteq \mathbb{R}^n$, and suppose $p \in U$ is such that the derivative D_pF is surjective. Then there exists an open neighborhood $U_1 \subseteq U$ of p and a diffeomorphism $\kappa : U_1 \rightarrow \kappa(U_1) \subseteq \mathbb{R}^m$ such that

$$(F \circ \kappa^{-1})(u^1, \dots, u^m) = (u^{m-n+1}, \dots, u^m)$$

for all $u = (u^1, ..., u^m) \in \kappa(U_1)$.

Thus, in suitable coordinates F is given by a projection onto the last n coordinates.

Although it belongs to multivariable calculus, let us recall how to get this result from the inverse function theorem.

Proof. The idea is to extend *F* to a map between open subsets of \mathbb{R}^m , and then apply the inverse function theorem.

By assumption, the derivative D_pF has rank equal to *n*. Hence it has *n* linearly independent columns. By re-indexing the coordinates of \mathbb{R}^m (this permutation is itself a change of coordinates) we may assume that these are the last *n* columns. That is, writing

$$D_p F = \left(C, D\right)$$

where *C* is the $n \times (m - n)$ -matrix formed by the first m - n columns and *D* the $n \times n$ -matrix formed by the last *n* columns, the square matrix *D* is invertible. Write elements $x \in \mathbb{R}^m$ in the form x = (x', x'') where x' are the first m - n coordinates and x'' the last *n* coordinates. Let

$$G: U \to \mathbb{R}^m, x = (x', x'') \mapsto (x', F(x)).$$

Then the derivative $D_p G$ has block form

$$D_p G = \begin{pmatrix} I_{m-n} & 0 \\ C & D \end{pmatrix},$$

(where I_{m-n} is the square $(m-n) \times (m-n)$ matrix), and is therefore invertible. Hence, by the inverse function theorem there exists a smaller open neighborhood U_1 of p such that G restricts to a diffeomorphism $\kappa : U_1 \to \kappa(U_1) \subseteq \mathbb{R}^m$. We have,

$$G \circ \kappa^{-1}(u', u'') = (u', u'')$$

for all $(u', u'') \in \kappa(U_1)$. Since *F* is just *G* followed by projection to the x'' component, we conclude

$$F \circ \kappa^{-1}(u', u'') = u''.$$

Again, this result has a version for manifolds:

Theorem 3.3. Let $F \in C^{\infty}(M,N)$ be a smooth map between manifolds of dimensions $m \ge n$, and suppose $p \in M$ is such that $\operatorname{rank}_p(F) = n$. Then there exist coordinate charts (U, φ) around p and (V, ψ) around F(p), with $F(U) \subseteq V$, such that

$$(\boldsymbol{\psi} \circ F \circ \boldsymbol{\varphi}^{-1})(\boldsymbol{u}', \boldsymbol{u}'') = \boldsymbol{u}''$$

for all $u = (u', u'') \in \varphi(U)$. In particular, for all $q \in V$ the intersection

 $F^{-1}(q) \cap U$

is a submanifold of dimension m - n.

Proof. Start with coordinate charts (U, φ) around p and (V, ψ) around F(p) such that $F(U) \subseteq V$. Apply Proposition 3.8 to the map $\widetilde{F} = \psi \circ F \circ \varphi^{-1}$: $\varphi(U) \to \psi(V)$, to define a smaller neighborhood $\varphi(U_1) \subseteq \varphi(U)$ and change of coordinates κ so that $\widetilde{F} \circ \kappa^{-1}(u', u'') = u''$. After renaming $(U_1, \kappa \circ \varphi|_{U_1})$ as (U, φ) we have the desired charts for F. The last part of the theorem follows since (U, φ) becomes a submanifold chart for $F^{-1}(q) \cap U$ (after shifting φ by $\psi(q) \in \mathbb{R}^n$). \Box

Definition 3.7. Let $F \in C^{\infty}(M,N)$. A point $q \in N$ is called a regular value of $F \in C^{\infty}(M,N)$ if for all $x \in F^{-1}(q)$, one has $\operatorname{rank}_{x}(F) = \dim N$. It is called a critical value (sometimes also singular value) if it is not a regular value.

Note that regular values are only possible if $\dim N \leq \dim M$. Note also that all points of *N* that are not in the image of the map *F* are considered regular values. We may restate Theorem 3.3 as follows:

Theorem 3.4 (Regular Value Theorem). For any regular value $q \in N$ of a smooth map $F \in C^{\infty}(M, N)$, the level set $S = F^{-1}(q)$ is a submanifold of dimension

$$\dim S = \dim M - \dim N.$$

Example 3.15. The *n*-sphere S^n may be defined as the level set $F^{-1}(1)$ of the function $F \in C^{\infty}(\mathbb{R}^{n+1}, \mathbb{R})$ given by

$$F(x^0,...,x^n) = (x^0)^2 + \dots + (x^n)^2.$$

The derivative of *F* is the $1 \times (n+1)$ -matrix of partial derivatives, that is, the gradient ∇F :

$$D_p F = (2x^0, \dots, 2x^n).$$

For $x \neq 0$ this has maximal rank. Note that any nonzero real number q is a regular value since $0 \notin F^{-1}(q)$. Hence all the level sets $F^{-1}(q)$ for $q \neq 0$ are submanifolds.

Exercise 43. Let 0 < r < R. Show that

$$F(x, y, z) = (\sqrt{x^2 + y^2} - R)^2 + z^2$$

has r^2 as a regular value. (The corresponding level set the 2-torus.)

Example 3.16. The *orthogonal group* O(n) is the group of matrices $A \in Mat_{\mathbb{R}}(n)$ satisfying $A^{\top} = A^{-1}$. We claim that O(n) is a submanifold of $Mat_{\mathbb{R}}(n)$. To see this, consider the map

$$F: \operatorname{Mat}_{\mathbb{R}}(n) \to \operatorname{Sym}_{\mathbb{R}}(n), A \mapsto A^{\top}A,$$

where $\operatorname{Sym}_{\mathbb{R}}(n) \subseteq \operatorname{Mat}_{\mathbb{R}}(n)$ denotes the subspace of symmetric matrices. We want to show that the identity matrix *I* is a regular value of *F*. We compute the differential $D_AF : \operatorname{Mat}_{\mathbb{R}}(n) \to \operatorname{Sym}_{\mathbb{R}}(n)$ using the definition[‡]

[‡] Note that it would have been confusing to work with the description of $D_A F$ as a matrix of partial derivatives.

$$(D_A F)(X) = \frac{d}{dt}\Big|_{t=0} F(A+tX)$$

= $\frac{d}{dt}\Big|_{t=0} ((A^\top + tX^\top)(A+tX))$
= $A^\top X + X^\top A.$

To see that this is surjective, for $A \in F^{-1}(I)$, we need to show that for any $Y \in \text{Sym}_{\mathbb{R}}(n)$ there exists a solution of

$$A^{\top}X + X^{\top}A = Y.$$

Using $A^{\top}A = F(A) = I$ we see that $X = \frac{1}{2}AY$ is a solution. We conclude that *I* is a regular value, and hence that $O(n) = F^{-1}(I)$ is a submanifold. Its dimension is

$$\dim \mathcal{O}(n) = \dim \operatorname{Mat}_{\mathbb{R}}(n) - \dim \operatorname{Sym}_{\mathbb{R}}(n) = n^2 - \frac{1}{2}n(n+1) = \frac{1}{2}n(n-1).$$

Note that it was important here to regard *F* as a map to $Sym_{\mathbb{R}}(n)$; for *F* viewed as a map to $Mat_{\mathbb{R}}(n)$ the identity would *not* be a regular value.

Exercise 44. In using the regular value theorem we have implicitly assumed that $\text{Sym}_{\mathbb{R}}(n)$ is a manifold. Prove that this is indeed the case.

Definition 3.8. A smooth map $F \in C^{\infty}(M,N)$ is a submersion if $\operatorname{rank}_p(F) = \dim N$ for all $p \in M$.

Thus, for a submersion all level sets $F^{-1}(q)$ are submanifolds.

Example 3.17. Local diffeomorphisms are submersions; here the level sets $F^{-1}(q)$ are discrete points, i.e. 0-dimensional manifolds.

Example 3.18. Recall that $\mathbb{C}P^n$ can be regarded as a quotient of S^{2n+1} . Using charts, one can check that the quotient map $\pi : S^{2n+1} \to \mathbb{C}P^n$ is a submersion. Hence its fibers $\pi^{-1}(q)$ are 1-dimensional submanifolds. Indeed, as discussed before these fibers are circles. As a special case, the Hopf fibration $S^3 \to S^2$ is a submersion.

Remark 3.6. (For those who are familiar with quaternions.) Let $\mathbb{H} = \mathbb{C}^2 = \mathbb{R}^4$ be the quaternion numbers. The unit quaternions are a 3-sphere S^3 . Generalizing the definition of $\mathbb{R}P^n$ and $\mathbb{C}P^n$, there are also quaternion projective spaces, $\mathbb{H}P^n$. These are quotients of the unit sphere inside \mathbb{H}^{n+1} , hence one obtains submersions

$$S^{4n+3} \to \mathbb{H}P^n$$

the fibers of this submersion are diffeomorphic to S^3 . For n = 1, one can show that $\mathbb{H}P^1 = S^4$, hence one obtains a submersion

 $\pi: S^7 \rightarrow S^4$

with fibers diffeomorphic to S^3 .

3.5.4 Example: The Steiner surface

In this section, we will give more lengthy examples, investigating the smoothness of level sets.

Example 3.19 (Steiner's surface). Let $S \subseteq \mathbb{R}^3$ be the solution set of

$$y^2 z^2 + x^2 z^2 + x^2 y^2 = xyz.$$

in \mathbb{R}^3 . Is this a smooth surface in \mathbb{R}^3 ? (We use *surface* as another term for 2*dimensional manifold*; by a *surface in M* we mean a 2-dimensional submanifold.) Actually, we can easily see that it's *not*. If we take one of x, y, z equal to 0, then the equation holds if and only if one of the other two coordinates is 0. Hence, the intersection of *S* with the set where xyz = 0 (the union of the coordinate hyperplanes) is the union of the three coordinate axes.

Hence, let us rephrase the question: Letting $U \subseteq \mathbb{R}^3$ be the subset where $xyz \neq 0$, is $S \cap U$ is surface? To investigate the problem, consider the function

$$f(x, y, z) = y^2 z^2 + x^2 z^2 + x^2 y^2 - xyz$$

The differential (which in this case is the same as the gradient) is the 1×3 -matrix

$$D_{(x,y,z)}f = \left(2x(y^2 + z^2) - yz \quad 2y(z^2 + x^2) - zx \quad 2z(x^2 + y^2) - xy\right)$$

This vanishes if and only if all three entries are zero. Vanishing of the first entry gives, after dividing by $2xy^2z^2$, the condition

$$\frac{1}{z^2} + \frac{1}{y^2} = \frac{1}{2xyz};$$

we get similar conditions after cyclic permutation of x, y, z. Thus we have

$$\frac{1}{z^2} + \frac{1}{y^2} = \frac{1}{x^2} + \frac{1}{z^2} = \frac{1}{y^2} + \frac{1}{x^2} = \frac{1}{2xyz},$$

with a unique solution $x = y = z = \frac{1}{4}$. Thus, $D_{(x,y,z)}f$ has maximal rank (i.e., it is nonzero) except at this point. But this point doesn't lie on *S*. We conclude that $S \cap U$ is a submanifold. How does it look like? It turns out that there is a nice answer. First, let's divide the equation for $S \cap U$ by *xyz*. The equation takes on the form

$$xyz(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}) = 1.$$
 (3.11)

The solution set of (??) is cantoned in the set of all (x, y, z) such that xyz > 0. On this subset, we introduce new variables

$$\alpha = \frac{\sqrt{xyz}}{x}, \ \beta = \frac{\sqrt{xyz}}{y}, \ \gamma = \frac{\sqrt{xyz}}{z};$$

the old variables x, y, z are recovered as

$$x = \beta \gamma, y = \alpha \gamma, z = \alpha \beta.$$

In terms of α , β , γ , Equation (3.11) becomes the equation $\alpha^2 + \beta^2 + \gamma^2 = 1$. Actually, it is even better to consider the corresponding points

$$(\alpha:\beta:\gamma)=(\frac{1}{x}:\frac{1}{y}:\frac{1}{z})\in\mathbb{R}\mathrm{P}^2,$$

because we could take either square root of *xyz* (changing the sign of all α, β, γ doesn't affect *x*, *y*, *z*). We conclude that the map $U \to \mathbb{R}P^2$, $(x, y, z) \mapsto (\frac{1}{x} : \frac{1}{y} : \frac{1}{z})$ restricts to a diffeomorphism from $S \cap U$ onto

$$\mathbb{R}\mathbf{P}^2 \setminus \{ (\boldsymbol{\alpha} : \boldsymbol{\beta} : \boldsymbol{\gamma}) \mid \boldsymbol{\alpha}\boldsymbol{\beta}\boldsymbol{\gamma} = 0 \}.$$

The image of the map

$$\mathbb{R}\mathrm{P}^2 \to \mathbb{R}^3, \ (\alpha:\beta:\gamma) \mapsto \frac{1}{|\alpha|^2 + |\beta|^2 + |\gamma|^2} (\beta\gamma, \alpha\beta, \alpha\gamma).$$

is called *Steiner's surface*, even though it is not a submanifold (not even an *immersed* submanifold). Here is a picture:

Note that the subset of $\mathbb{R}P^2$ defined by $\alpha\beta\gamma = 0$ is a union of three $\mathbb{R}P^1 \cong S^1$, each of which maps into a coordinate axis (but not the entire coordinate axis). For example, the circle defined by $\alpha = 0$ maps to the set of all (0,0,z) with $-\frac{1}{2} \le z \le \frac{1}{2}$. In any case, *S* is the Steiner surface together with the three coordinate axes.

Example 3.20. Let $S \subseteq \mathbb{R}^4$ be the solution set of

$$y^{2}x^{2} + x^{2}z^{2} + x^{2}y^{2} = xyz, \quad y^{2}x^{2} + 2x^{2}z^{2} + 3x^{2}y^{2} = xyzw.$$

Again, this cannot quite be a surface because it contains the coordinate axes for x, y, z. Closer investigation shows that S is the union of the three coordinate axes, together with the image of an injective map

$$\mathbb{R}P^2 \to \mathbb{R}^4, \ (\alpha:\beta:\gamma) \mapsto \frac{1}{\alpha^2 + \beta^2 + \gamma^2} (\beta\gamma, \alpha\beta, \alpha\gamma, \alpha^2 + 2\beta^2 + 3\gamma^2).$$

It turns out (see Section 4.2.4 below) that the latter is a submanifold, which realizes $\mathbb{R}P^2$ as a surface in \mathbb{R}^4 .

3.5.5 Immersions

We next consider maps $F: M \to N$ of maximal rank between manifolds of dimensions $m \le n$. Once again, such a map can be put into a 'normal form': By choosing suitable coordinates it becomes linear.

Proposition 3.9. Suppose $F \in C^{\infty}(U,V)$ is a smooth map between open subsets $U \subseteq \mathbb{R}^m$ and $V \subseteq \mathbb{R}^n$, and suppose $p \in U$ is such that the derivative D_pF is injective. Then there exist smaller neighborhoods $U_1 \subseteq U$ of p and $V_1 \subseteq V$ of F(p), with $F(U_1) \subseteq V_1$, and a diffeomorphism $\chi : V_1 \to \chi(V_1)$, such that

$$(\boldsymbol{\chi} \circ F)(\boldsymbol{u}) = (\boldsymbol{u}, 0) \in \mathbb{R}^m \times \mathbb{R}^{n-m}$$

Proof. Since D_pF is injective, it has *m* linearly independent rows. By re-indexing the rows (which amounts to a change of coordinates on *V*), we may assume that these are the first *m* rows.

That is, writing

$$D_p F = \begin{pmatrix} A \\ C \end{pmatrix}$$

where A is the $m \times m$ -matrix formed by the first m rows and C is the $(n-m) \times m$ -matrix formed by the last n-m rows, the square matrix A is invertible. Consider the map

$$H: U \times \mathbb{R}^{n-m} \to \mathbb{R}^n, (x, y) \mapsto F(x) + (0, y)$$

Then

$$D_{(p,0)}H = \begin{pmatrix} A & 0 \\ C & I_{n-m} \end{pmatrix}$$

is invertible. Hence, by the inverse function theorem for \mathbb{R}^n , H is a diffeomorphism from some neighborhood of (p,0) in $U \times \mathbb{R}^{n-m}$ onto some neighborhood V_1 of H(p,0) = F(p), which we may take to be contained in V. Let

3.5 Smooth maps of maximal rank 65

$$\chi: V_1 \to \chi(V_1) \subseteq U \times \mathbb{R}^{n-m}$$

be the inverse; thus

$$(\boldsymbol{\chi} \circ H)(x, y) = (x, y)$$

for all $(x, y) \in \chi(V_1)$. Replace U with the smaller open neighborhood

$$U_1 = F^{-1}(V_1) \cap U$$

of *p*. Then $F(U_1) \subseteq V_1$, and

$$(\boldsymbol{\chi} \circ F)(\boldsymbol{u}) = (\boldsymbol{\chi} \circ H)(\boldsymbol{u}, 0) = (\boldsymbol{u}, 0)$$

for all $u \in U_1$. \Box

The manifolds version reads as follows:

Theorem 3.5. Let $F \in C^{\infty}(M,N)$ be a smooth map between manifolds of dimensions $m \leq n$, and $p \in M$ a point with $\operatorname{rank}_p(F) = m$. Then there are coordinate charts (U, φ) around p and (V, ψ) around F(p) such that $F(U) \subseteq V$ and

 $(\boldsymbol{\psi} \circ \boldsymbol{F} \circ \boldsymbol{\varphi}^{-1})(\boldsymbol{u}) = (\boldsymbol{u}, \boldsymbol{0}).$

In particular, $F(U) \subseteq N$ is a submanifold of dimension m.

Proof. Once again, this is proved by introducing charts around p, F(p) to reduce to a map between open subsets of \mathbb{R}^m , \mathbb{R}^n , and then use the multivariable version of the result to obtain a change of coordinates, putting the map into normal form. \Box

Definition 3.9. A smooth map $F : M \to N$ is an immersion if rank_p $(F) = \dim M$ for all $p \in M$.

Example 3.21. Let $J \subseteq \mathbb{R}$ be an open interval. A smooth map $\gamma : J \to M$ is also called a *smooth curve*. We see that the image of γ is an immersed submanifold, provided that rank_p(γ) = 1 for all $p \in M$. In local coordinates (U, φ) , this means that $\frac{d}{dt}(\varphi \circ \gamma)(t) \neq 0$ for all t with $\gamma(t) \in U$. For example, the curve $\gamma(t) = (t^2, t^3)$ fails to have this property at t = 0.

Example 3.22 (Figure eight). The map

$$\gamma: \mathbb{R} \to \mathbb{R}^2, t \mapsto (\sin(t), \sin(2t))$$

is an immersion; the image is a figure eight.

(Indeed, for all $t \in \mathbb{R}$ we have $D_t \gamma \equiv \dot{\gamma}(t) \neq 0$.)

Example 3.23 (Immersion of the Klein bottle). The Klein bottle admits a 'figure eight' immersion into \mathbb{R}^3 , obtained by taking the figure eight in the *x*-*z*-plane, moving in the *x*-direction by R > 1, and then rotating about the *z*-axis while at the same time rotating the figure eight, so that after a full turn $\varphi \mapsto \varphi + 2\pi$ the figure eight has performed a half turn.

We can regard this procedure as a composition of the following maps:

$$F_1: (t, \varphi) \mapsto (\sin(t), \sin(2t), \varphi) = (u, v, \varphi),$$

$$F_2: (u, v, \varphi) \mapsto \left(u\cos(\frac{\varphi}{2}) + v\sin(\frac{\varphi}{2}), v\cos(\frac{\varphi}{2}) - u\sin(\frac{\varphi}{2}), \varphi\right) = (a, b, \varphi)$$

$$F_3: (a, b, \varphi) \mapsto ((a+R)\cos\varphi, (a+R)\sin\varphi, b) = (x, y, z).$$

Here F_1 is the figure eight in the u - v-plane (with φ just a bystander). F_2 rotates the u - v-plane as it moves in the direction of φ , by an angle of $\varphi/2$; thus $\varphi = 2\pi$ corresponds to a half-turn. The map F_3 takes this family of rotating u, v-planes, and wraps it around the circle in the x - y-plane of radius R, with φ now playing the role of the angular coordinate.

The resulting map $F = F_3 \circ F_2 \circ F_1$: $\mathbb{R}^2 \to \mathbb{R}^3$ is given by $F(t, \varphi) = (x, y, z)$, where with

$$\begin{aligned} x &= \left(R + \cos\left(\frac{\varphi}{2}\right) \sin(t) + \sin\left(\frac{\varphi}{2}\right) \sin(2t) \right) \cos\varphi, \\ y &= \left(R + \cos\left(\frac{\varphi}{2}\right) \sin(t) + \sin\left(\frac{\varphi}{2}\right) \sin(2t) \right) \sin\varphi, \\ z &= \cos\left(\frac{\varphi}{2}\right) \sin(2t) - \sin\left(\frac{\varphi}{2}\right) \sin(t) \end{aligned}$$

is an immersion. To verify that this is an immersion, it would be cumbersome to work out the Jacobian matrix directly. It is much easier to use that *F* is obtained as a composition $F = F_3 \circ F_2 \circ F_1$ of the three maps considered above, where F_1 is an immersion, F_2 is a diffeomorphism, and F_3 is a local diffeomorphism from the open subset where |a| < R onto its image.

Since the right hand side of the equation for F does not change under the transformations

3.5 Smooth maps of maximal rank 67

$$(t, \varphi) \mapsto (t + 2\pi, \varphi), \quad (t, \varphi) \mapsto (-t, \varphi + 2\pi),$$

this descends to an immersion of the Klein bottle. It is straightforward to check that this immersion of the Klein bottle is injective, except over the 'central circle' corresponding to t = 0, where it is 2-to-1.

Note that under the above construction, any point of the figure eight creates a circle after two'full turns', $\varphi \mapsto \varphi + 4\pi$. The complement of the circle generated by the point $t = \pi/2$ consists of two subsets of the Klein bottle, generated by the parts of the figure eight defined by $-\pi/2 < t < \pi/2$, and by $\pi/2 < t < 3\pi/2$. Each of these is a 'curled-up' immersion of an open Möbius strip. (Remember, it is possible to remove a circle from the Klein bottle to create two Möbius strips!) The point t = 0 also creates a circle; its complement is the subset of the Klein bottle generated by $0 < t < 2\pi$. (Remember, it is possible to remove a circle from a Klein bottle to create one Möbius strip.) We can also remove one copy of the figure eight itself; then the 'rotation' no longer matters and the complement is an open cylinder. (Remember, it is possible to remove a circle from a Klein bottle to create a cylinder.)

Example 3.24. Let *M* be a manifold, and $S \subseteq M$ a *k*-dimensional submanifold. Then the inclusion map $\iota : S \to M$, $x \mapsto x$ is an immersion. Indeed, if (V, ψ) is a submanifold chart for *S*, with $p \in U = V \cap S$, $\varphi = \psi|_{V \cap S}$ then

$$(\boldsymbol{\psi} \circ F \circ \boldsymbol{\varphi}^{-1})(\boldsymbol{u}) = (\boldsymbol{u}, \boldsymbol{0}),$$

which shows that

$$\operatorname{rank}_{\varphi}(F) = \operatorname{rank}_{\varphi(p)}(\psi \circ F \circ \varphi^{-1}) = k.$$

By an *embedding*, we will mean an immersion given as the inclusion map for a submanifold. Not every injective immersion is an embedding; the following picture gives a counter-example:

In practice, showing that an injective smooth map is an immersion tends to be easier than proving that its image is a submanifold. Fortunately, for compact manifolds we have the following fact:

Theorem 3.6. If *M* is a compact manifold, then every injective immersion $F : M \to N$ is an embedding as a submanifold S = F(M).

Proof. Let $p \in M$ be given. By Theorem 3.5, we can find charts (U, φ) around p and (V, ψ) around F(p), with $F(U) \subseteq V$, such that $\widetilde{F} = \psi \circ F \circ \varphi^{-1}$ is in normal form: i.e., $\widetilde{F}(u) = (u, 0)$. We would like to take (V, ψ) as a submanifold chart for S = F(M), but this may not work yet since $F(M) \cap V = S \cap V$ may be strictly larger

than $F(U) \cap V$. Note however that $A := M \setminus U$ is compact, hence its image F(A) is compact, and therefore closed (here we are using that N is Haudorff). Since F is injective, we have that $p \notin F(A)$. Replace V with the smaller open neighborhood $V_1 = V \setminus (V \cap F(A))$. Then $(V_1, \psi|_{V_1})$ is the desired submanifold chart.

Remark 3.7. Some authors refer to injective immersions $t: S \rightarrow M$ as 'submanifolds' (thus, a submanifold is taken to be a map rather than a subset). To clarify, 'our' submanifolds are sometimes called 'embedded submanifolds' or 'regular submanifolds'.

Example 3.25. Let A, B, C be distinct real numbers. We will leave it as a homework problem to verify that the map

$$F: \mathbb{R}P^2 \to \mathbb{R}^4, \ (\alpha:\beta:\gamma) \mapsto (\beta\gamma,\alpha\gamma,\alpha\beta, A\alpha^2 + B\beta^2 + C\gamma^2),$$

where we use representatives (α, β, γ) such that $\alpha^2 + \beta^2 + \gamma^2 = 1$, is an injective immersion. Hence, by Theorem 3.6, it is an embedding of $\mathbb{R}P^2$ as a submanifold of \mathbb{R}^4 .

To summarize the outcome from the last few sections: If $F \in C^{\infty}(M, N)$ has maximal rank near $p \in M$, then one can always choose local coordinates around p and around F(p) such that the coordinate expression of F becomes a linear map of maximal rank. (This simple statement contains the inverse and implicit function theorems from multivariable calculus are special cases.)

Remark 3.8. This generalizes further to maps of *constant rank.* In fact, if $\operatorname{rank}_p(F)$ is independent of p on some open subset U, then for all $p \in U$ one can choose coordinates in which F becomes linear.