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The Tangent Bundle

4.1 Tangent spaces

For embedded submanifolds M ✓Rn, the tangent space TpM at p 2 M can be defined
as the set of all velocity vectors v = ġ(0), where g : J ! M is a smooth curve with
g(0) = p; here J ✓ R is an open interval around 0.

It turns out (not entirely obvious!) that TpM becomes a vector subspace of Rn. (Warn-
ing: In pictures we tend to draw the tangent space as an affine subspace, where the
origin has been moved to p.)

Example 4.1. Consider the sphere Sn ✓Rn+1, given as the set of x such that ||x||2 = 1.
A curve g(t) lies in Sn if and only if ||g(t)||= 1. Taking the derivative of the equation
g(t) · g(t) = 1 at t = 0, we obtain (after dividing by 2, and using g(0) = p)

p · ġ(0) = 0.

That is, TpM consists of vectors v 2Rn+1 that are orthogonal to p 2R3\{0}. It is not
hard to see that every such vector v is of the form ġ(0),⇤ hence that

TpSn = (Rp)?,

the hyperplane orthogonal to the line through p.

⇤ Given v, take g(t) = (p+ tv)/||p+ tv||.
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Exercise 45. What is T0R2? What is T0Rn? How about TpRn for some other
p 2 Rn?

To extend this idea to general manifolds, note that the vector v = ġ(0) defines a
“directional derivative” C•(M)! R:

v : f 7! d
dt |t=0 f (g(t)).

Exercise 46. Fix some p 2 Rn Show that the directional derivative in Rn

v( f ) = lim
t!0

f (p+ tv)� f (p)
t

(for v 2 TpRn ⇠= Rn and f 2 C•(Rn)) has the following properties. For any
v 2 TpM and f ,g 2C•(Rn):

a) v : C• ! R is well-defined (that is, the limit exists for any f 2C•).
b) v : C• ! R is linear: v(l f +µg) = lv( f )+µv(g).
c) v : C• ! R is a derivation: v( f g) = v( f )g+ f v(g).

For a general manifold, we will define TpM as a set of directional derivatives.

Definition 4.1 (Tangent spaces – first definition). Let M be a manifold, p 2 M. The
tangent space TpM is the set of all linear maps v : C•(M)! R of the form

v( f ) = d
dt |t=0 f (g(t))

for some smooth curve g 2C•(J,M) with g(0) = p.

The elements v 2 TpM are called the tangent vectors to M at p.
The following local coordinate description makes it clear that TpM is a linear

subspace of the vector space L(C•(M),R) of linear maps C•(M)!R, of dimension
equal to the dimension of M.

Theorem 4.1. Let (U,j) be a coordinate chart around p. A linear map v : C•(M)!
R is in TpM if and only if it has the form,

v( f ) =
m

Â
i=1

ai ∂ ( f �j�1)

∂ui

���
u=j(p)

for some a = (a1, . . . ,am) 2 Rm.

Proof. Given a linear map v of this form, let g̃ : R! j(U) be a curve with g̃(t) =
j(p)+ ta for |t| sufficiently small. Let g = j�1 � g̃ . Then

d
dt

���
t=0

f (g(t)) = d
dt

���
t=0

( f �j�1)(j(p)+ ta)

=
m

Â
i=1

ai ∂ ( f �j�1)

∂ui

���
u=j(p)

,
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by the chain rule. Conversely, given any curve g with g(0) = p, let g̃ = j � g be the
corresponding curve in j(U) (defined for small |t|). Then eg(0) = j(p), and

d
dt

���
t=0

f (g(t)) = d
dt

���
t=0

( f �j�1)(g̃(t))

=
m

Â
i=1

ai ∂ ( f �j�1)

∂ui |u=g(p),

where a = dg̃
dt

���
t=0

. ut

We can use this result as an alternative definition of the tangent space, namely:

Definition 4.2 (Tangent spaces – second definition). Let (U,j) be a chart around
p. The tangent space TpM is the set of all linear maps v : C•(M)! R of the form

v( f ) =
m

Â
i=1

ai ∂ ( f �j�1)

∂ui

���
u=j(p)

(4.1)

for some a = (a1, . . . ,am) 2 Rm.

Remark 4.1. From this version of the definition, it is immediate that TpM is an m-
dimensional vector space. It is not immediately obvious from this second definition
that TpM is independent of the choice of coordinate chart, but this follows from the
equivalence with the first definition. Alternatively, one may check directly that the
subspace of L(C•(M),R) characterized by (4.1) does not depend on the chart, by
studying the effect of a change of coordinates.

According to (4.1), any choice of coordinate chart (U,j) around p defines a vector
space isomorphism TpM ⇠=Rm, taking v to a = (a1, . . . ,am). In particular, we see that
if U ✓ Rm is an open subset, and p 2 U , then TpU is the subspace of the space of
linear maps C•(M)! R spanned by the partial derivatives at p. That is, TpU has a
basis

∂
∂x1 |p, . . . ,

∂
∂xm |p

identifying TpU ⌘ Rm. Given

v = Âai ∂
∂xi |p

the coefficients ai are obtained by applying v to the coordinate functions x1, . . . ,xm :
U ! R, that is, ai = v(xi).

We now describe yet another approach to tangent spaces which again charac-
terizes “directional derivatives” in a coordinate-free way, but without reference to
curves g . Note first that every tangent vector satisfies the product rule, also called the
Leibniz rule:

Lemma 4.1. Let v 2 TpM be a tangent vector at p 2 M. Then

v( f g) = f (p)v(g)+ v( f )g(p) (4.2)

for all f ,g 2C•(M).
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Proof. Letting v be represented by a curve g , this follows from

d
dt

���
t=0

⇣
f
�
g(t)

�
g
�
g(t)

�⌘
= f (p)

⇣ d
dt

���
t=0

g
�
g(t)

�⌘
+
⇣ d

dt

���
t=0

f
�
g(t)

�⌘
g(p).

ut

Alternatively, in local coordinates it is just the product rule for partial derivatives. It
turns out that the product rule completely characterizes tangent vectors:

Exercise 47. Suppose that v : C•(M)!R is a linear map satisfying the product
rule (4.2). Prove the following two facts, which will be used in the proof of
Theorem 4.2 below:

a) v vanishes on constants. That is, if f 2 C•(M) is the constant map, then
v( f ) = 0.

b) Suppose f ,g 2C•(M) with f (p) = g(p) = 0. Then v( f g) = 0.

Theorem 4.2. A linear map v : C•(M)!R defines an element of TpM if and only if
it satisfies the product rule (4.2).

The proof of this result will require the following fact from multivariable calcu-
lus:

Lemma 4.2 (Hadamard Lemma). Let U = BR(0) ✓ Rm be an open ball of radius
R > 0 and h 2 C•(U) a smooth function. Then there exist smooth functions hi 2
C•(U) with

h(u) = h(0)+
m

Â
i=1

uihi(u)

for all u 2U. Here hi(0) = ∂h
∂ui (0).

Proof. Let hi be the functions defined for u = (u1, . . . ,um) 2U by

hi(u) =

8
<

:

1
ui

�
h(u1, . . . ,ui,0, . . . ,0)�h(u1, . . . ,ui�1,0,0, . . . ,0)

�
if ui 6= 0

∂h
∂ui (u1, . . . ,ui�1,0,0, . . . ,0) if ui = 0

Using Taylor’s formula with remainder, one sees that these functions are smooth†.
If all ui 6= 0, then the sum Âm

i=1 uihi(u) is a telescoping sum, equal to h(u)�h(0). By
continuity, this result extends to all u. Finally, evaluating the derivative

∂h
∂ui =

∂
∂ui

 
h(0)+

m

Â
i=1

uihi(u)

!
= hi(u)+Â

k
uk ∂hk

∂ui

at u = 0, we see that ∂h
∂ui

��
u=0 = hi(0). ut

† It is a well-known fact from calculus (proved e.g. by using Taylor’s theorem with remain-
der) that if f is a smooth function of a real variable x, then the function g, defined as
g(x) = x�1( f (x)� f (0)) for x 6= 0 and g(0) = f 0(0), is smooth.
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Proof (Theorem 4.2). Let v : C•(M)!R be a linear map satisfying the product rule
(4.2).

Step 1: If f1 = f2 on some open neighborhood U of p, then v( f1) = v( f2).
Equivalently, letting f = f1 � f2, we show that v( f ) = 0 if f = 0 on U . Choose

a ‘bump function’ c 2 C•(M) with c(p) = 1, with c|M\U = 0. Then f c = 0. The
product rule tells us that

0 = v( f c) = v( f )c(p)+ v(c) f (p) = v( f ).

Step 2: Let (U,j) be a chart around p, with image eU = j(U). Then there is
unique linear map ev : C•(eU) ! R such that ev(ef ) = v( f ) whenever ef agrees with
f �j�1 on some neighborhood of ep.

Given ef , we can always find a function f such that ef agrees with f �j�1 on
some neighborhood of ep. Given another such function g, it follows from Step 1 that
v( f ) = v(g).

Step 3: In a chart (U,j) around p, the map v : C•(M)!R is of the form (4.1).
Since the condition (4.1) does not depend on the choice of chart around p, we

may assume that ep = j(p) = 0, and that eU is an open ball of some radius R > 0
around 0. Define ev as in Step 2. Since v satisfies the product rule on C•(M), the
map ev satisfies the product rule on C•(eU). Given f 2 C•(M), consider the Taylor
expansion of the coordinate expression f̃ = f �j�1 near u = 0:

f̃ (u) = ef (0)+Â
i

ui ∂ f̃
∂ui

���
u=0

+ r̃(u)

The remainder term r̃ is a smooth function that vanishes at u = 0 together with its
first derivatives. By Lemma 4.2, it can be written in the form r̃(u) = Âi uir̃i(u) where
r̃i are smooth functions that vanish at 0. Let us now apply ev to the formula for ef .
Since ev vanishes on products of functions vanishing at 0 (by Exercise 4.1), we have
that ev(er) = 0. Since it also vanishes on constants, we obtain

v( f ) = ev(ef ) = Â
i

ai ∂ f̃
∂ui

���
u=0

,

where we put ai = ev(ui).

To summarize, we have the following alternative definition of tangent spaces:

Definition 4.3 (Tangent spaces – third definition). The tangent space TpM is the
space of linear maps C•(M)! R satisfying the product rule,

v( f g) = f (p)v(g)+ v( f )g(p)

for all f ,g 2C•(M).
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At first sight, this characterization may seem a bit less intuitive then the defini-
tion as directional derivatives along curves. But it has the advantage of being less
redundant – a tangent vector may be represented by many curves. Also, as in the co-
ordinate definition it is immediate that TpM is a linear subspace of the vector space
L(C•(M),R). One may still want to use local charts, however, to prove that this
vector subspace has dimension equal to the dimension of M.

The following remark gives yet another characterization of the tangent space.
Please read it only if you like it abstract – otherwise skip this!

Remark 4.2 (A fourth definition). There is a fourth definition of TpM, as follows.
For any p 2 M, let C•

p (M) denotes the subspace of functions vanishing at p, and let
C•

p (M)2 consist of finite sums Âi fi gi where fi,gi 2 C•
p (M). We have a direct sum

decomposition
C•(M) = R�C•

p (M),

where R is regarded as the constant functions. Since any tangent vector v : C•(M)!
R vanishes on constants, v is effectively a map v : C•

p (M) ! R. By the product
rule, v vanishes on the subspace C•

p (M)2 ✓C•
p (M). Thus v descends to a linear map

C•
p (M)/C•

p (M)2 ! R, i.e. an element of the dual space (C•
p (M)/C•

p (M)2)⇤. The
map

TpM ! (C•
p (M)/C•

p (M)2)⇤

just defined is an isomorphism, and can therefore be used as a definition of TpM.
This may appear very fancy on first sight, but really just says that a tangent vector is
a linear functional on C•(M) that vanishes on constants and depends only on the first
order Taylor expansion of the function at p. Furthermore, this viewpoint lends itself
to generalizations which are relevant to algebraic geometry and non-commutative
geometry: The ‘vanishing ideals’ C•

p (M) are the maximal ideals in the algebra of
smooth functions, with C•

p (M)2 their second power (in the sense of products of ide-
als). Thus, for any maximal ideal I in a commutative algebra A one may regard
(I /I 2)⇤ as a ‘tangent space’.

After this lengthy discussion of tangent spaces, observe that the velocity vec-
tors of curves are naturally elements of the tangent space. Indeed, let J ✓ R be an
open interval, and g 2C•(J,M) a smooth curve. Then for any t0 2 J, the tangent (or
velocity) vector

ġ(t0) 2 Tg(t0)M.

at time t0 is given in terms of its action on functions by

(ġ(t0))( f ) =
d
dt

���
t=t0

f (g(t))

We will also use the notation dg
dt (t0) or dg

dt |t0 to denote the velocity vector.
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4.2 The Tangent Map

4.2.1 Definition of the tangent map, basic properties

For smooth maps F 2 C•(U,V ) between open subsets U ✓ Rm and V ✓ Rn of Eu-
clidean spaces, and any given p 2 U , we considered the derivative to be the linear
map

DpF : Rm ! Rn, a 7! d
dt

���
t=0

F(p+ ta).

The following definition generalizes the derivative to smooth maps between mani-
folds.

Definition 4.4. Let M,N be manifolds and F 2C•(M,N). For any p 2 M, we define
the tangent map to be the linear map

TpF : TpM ! TF(p)N

given by �
TpF(v)

�
(g) = v(g�F)

for v 2 TpM and g 2C•(N).

We leave it as an exercise to check that the right hand side does indeed define a
tangent vector:

Exercise 48. Show that for all v 2 TpM, the map g 7! v(g�F) satisfies the prod-
uct rule at q = F(p), hence defines an element of TqN.

Proposition 4.1. If v 2 TpM is represented by a curve g : J ! M, then (TpF)(v) is
represented by the curve F � g .

Exercise 49. Prove Proposition 4.1.

Remark 4.3 (Pull-backs, push-forwards). For smooth maps F 2 C•(M,N), one can
consider various ‘pull-backs’ of objects on N to objects on M, and ‘push-forwards’ of
objects on M to objects on N. Pull-backs are generally denoted by F⇤, push-forwards
by F⇤. For example, functions on N pull back

g 2C•(N)  F⇤g = g�F 2C•(M).

Curves on M push forward:

g : J ! M  F⇤g = F � g : J ! N.

Tangent vectors to M also push forward,

v 2 TpM  F⇤(v) = (TpF)(v).

The definition of the tangent map can be phrased in these terms as (F⇤v)(g)= v(F⇤g).
Note also that if v is represented by the curve g , then F⇤v is represented by the curve
F⇤g .
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Proposition 4.2 (Chain rule). Let M,N,Q be manifolds. Under composition of maps
F 2C•(M,N) and F 0 2C•(N,Q),

Tp(F 0 �F) = TF(p)F 0 �TpF.

Exercise 50. Prove Proposition 4.2. Give two different proofs: one using the
action of tangent vectors on functions, and one using Proposition 4.1.

Exercise 51. a) Show that the tangent map of the identity map idM : M ! M
at p 2 M is the identity map on the tangent space:

Tp idM = idTpM.

b) Show that if F 2 C•(M,N) is a diffeomorphism, then TpF is a linear iso-
morphism, with inverse

(TpF)�1 = (TF(p)F�1).

c) Suppose that F 2 C•(M,N) is a constant map, that is, F(M) = {q} for
some element q 2 N. Show that TpF = 0 for all p 2 M.

4.2.2 Coordinate description of the tangent map

To get a better understanding of the tangent map, let us first consider the special case
where F 2 C•(U,V ) is a smooth map between open subsets U ✓ Rm and V ✓ Rn.
For p 2U , the tangent space TpU is canonically identified with Rm, using the basis

∂
∂x1

���
p
, . . . ,

∂
∂xm

���
p
2 TpU

of the tangent space (cf. Remark 4.1). Similarly, TF(p)V ⇠= Rn, using the basis given
by partial derivatives ∂

∂y j |F(p). Using this identifications, the tangent map becomes a
linear map TpF : Rm !Rn, i.e. it is given by an n⇥m-matrix. This matrix is exactly
the Jacobian:
Proposition 4.3. Let F 2C•(U,V ) be a smooth map between open subsets U ✓ Rm

and V ✓Rn. For all p 2 M, the tangent map TpF is just the derivative (i.e., Jacobian
matrix) DpF of F at p.

Proof. For g 2C•(V ), we calculate
⇣
(TpF)

� ∂
∂xi

���
p

�⌘
(g) =

∂
∂xi

���
p
(g�F)

=
n

Â
j=1

∂g
∂y j

���
F(p)

∂F j

∂xi

���
p

=
⇣ n

Â
j=1

∂F j

∂xi

���
p

∂
∂y j

���
F(p)

⌘
(g).
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This shows

(TpF)
� ∂

∂xi

���
p

�
=

n

Â
j=1

∂F j

∂xi

���
p

∂
∂y j

���
F(p)

.

Hence, in terms of the given bases of TpU and TF(p)V , the matrix of the linear map

TpF has entries ∂F j

∂xi

���
p
.

Remark 4.4. For F 2 C•(U,V ), it is common to write y = F(x), and accordingly
write ( ∂y j

∂xi )i, j for the Jacobian. In these terms, the derivative reads as

TpF
⇣ ∂

∂xi

���
p

⌘
= Â

j

∂y j

∂xi

���
p

∂
∂y j

���
F(p)

.

This formula is often used for explicit calculations.

Exercise 52. Consider R2 with coordinates x,y. Introduce a new coordinate
system, polar coordinates r,q given by

x = r cosq , y = r sinq

on the open set (r,q) 2 (0,•)⇥ (�p,p). Express the tangent vectors

∂
∂ r

����
p
,

∂
∂q

����
p

as a combination of the tangent vectors

∂
∂x

����
p
,

∂
∂y

����
p

(with coefficients are C• functions of x,y).

For a general smooth map F 2 C•(M,N), we obtain a similar description once
we pick coordinate charts. Given p 2 M, choose charts (U,j) around p and (V,y)
around F(p), with F(U)✓V . Let eU = j(U), eV = y(V ), and put

eF = y �F �j�1 : eU ! eV .

Since the coordinate map j : U ! Rm is a diffeomorphism onto eU , It gives an
isomorphism (cf. Exercise 51)

Tpj : TpU ! Tj(p) eU = Rm.

Similarly, TF(p)y gives an isomorphism of TF(p)V with Rn. Note also that since
U ✓ M is open, we have that TpU = TpM. We obtain,

Tj(p) eF = TF(p)y �TpF � (Tpj)�1.
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which may be depicted in a commutative diagram

Rm
Dj(p) eF

// Rn

TpM = TpU

⇠=Tpj

OO

TpF
// TF(p)V = TF(p)N

⇠= TF(p)y

OO

Now that we have recognized TpF as the derivative expressed in a coordinate-
free way, we may liberate some of our earlier definitions from coordinates:

Definition 4.5. Let F 2C•(M,N).

• The rank of F at p 2 M, denoted rankp(F), is the rank of the linear map TpF.
• F has maximal rank at p if rankp(F) = min(dimM,dimN).
• F is a submersion if TpF is surjective for all p 2 M,
• F is an immersion if TpF is injective for all p 2 M,
• F is a local diffeomorphism if TpF is an isomorphism for all p 2 M.
• p 2 M is a critical point of F is TpF does not have maximal rank at p.
• q2N is a regular value of F if TpF is surjective for all p2 F�1(q) (in particular,

if q 62 F(M)).
• q 2 N is a singular value (sometimes called critical value) if it is not a regular

value.

Exercise 53. As an example of the advantage of an intrinsic (i.e. coordinate
free) definition, use this new definitions to show that the compositions of two
submersions is again a submersion, and that the composition of two immersions
is an immersion.

4.2.3 Tangent spaces of submanifolds

Suppose S ✓ M is a submanifold, and p 2 S. Then the tangent space TpS is canon-
ically identified as a subspace of TpM. Indeed, since the inclusion i : S ,! M is an
immersion, the tangent map is an injective linear map,

Tpi : TpS ! TpM,

and we identify TpS with the subspace given as the image of this map‡. As a special
case, we see that whenever M is realized as a submanifold of Rn, then its tangent
spaces TpM may be viewed as subspaces of TpRn = Rn.

Proposition 4.4. Let F 2 C•(M,N) be a smooth map, having q 2 N as a regular
value, and let S = F�1(q). For all p 2 S,

TpS = ker(TpF),

as subspaces of TpM.
‡ Hopefully, the identifications are not getting too confusing: S gets identified with i(S)✓ M,

hence also p 2 S with its image i(p) in M, and TpS gets identified with (Tpi)(TpS)✓ TpM.
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Proof. Let m = dimM, n = dimN. Since TpF is surjective, its kernel has dimension
m� n. By the normal form for submersions, this is also the dimension of S, hence
of TpS. It is therefore enough to show that TpS ✓ ker(TpF). Letting i : S ! M be he
inclusion, we have to show that

TpF �Tpi = Tp(F � i)

is the zero map. But F � i is a constant map, taking all points of S to the constant
value q 2 N. The tangent map to a constant map is just zero (Exercise 51). Hence
Tp(F � i) = 0. ut

As a special case, we can describe the tangent spaces to level sets:

Corollary 4.1. Suppose V ✓ Rn is open, and q 2 Rk is a regular value of F 2
C•(M,Rk), defining an embedded submanifold M = F�1(q). For all p 2 M, the tan-
gent space TpM ✓ TpRn = Rn is given as

TpM = ker(TpF)⌘ ker(DpF).

Example 4.2. Recall that at the beginning of the chapter we have calculated TpSn

directly from the curves definition of the tangent space. Here is another way of doing
so. We Let F : Rn+1 !R be the map F(x) = x ·x = (x0)2 + · · ·+(xn)2. Then, for all
p 2 F�1(1) = Sn,

(DpF)(a) =
d
dt

���
t=0

F(p+ ta) =
d
dt

���
t=0

(p+ ta) · (p+ ta) = 2p ·a,

hence
TpSn = {a 2 Rn+1| a · p = 0}= span(p)?.

As another typical application, suppose that S ✓ M is a submanifold, and f 2
C•(S) is a smooth function given as the restriction f = h|S of a smooth function
h 2C•(M). Consider the problem of finding the critical points p 2 S of f , that is,

Crit( f ) = {p 2 S| Tp f = 0}.

Letting i : S ! M be the inclusion, we have f = h|S = h� i, hence Tp f = Tph�Tpi.
It follows that Tp f = 0 if and only if Tph vanishes on the range of Tpi, that is on TpS:

Crit( f ) = {p 2 S| TpS ✓ ker(Tph)}.

If M =Rm, then Tph is just the Jacobian Dph, whose kernel is sometimes rather easy
to compute – in any case this approach tends to be much faster than a calculation in
charts.

Exercise 54. Find the critical points of

f : S2 ! R, f (x,y,z) = xy.

(a) Write f = h� i for the appropriate map h. Then find Tph = Dph.
(b) Examine what happens when Dph = 0.
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(c) Suppose Dph 6= 0. Find kerTph, and find when does TpS2 ✓ ker(Tph).
(d) Summarize your finding by listing the critical points (you should have

found six of them).

Exercise 55. Let S ✓ R3 be a surface. Show that p 2 S is a critical point of the
function f 2C•(S) given by f (x,y,z) = z, if and only if TpS is the xy-plane.

Exercise 56. Show that the equations

x2 + y = 0 , x2 + y2 + z3 +w4 + y = 1

define a two dimensional submanifold S of R4, and find the equation of the
tangent space at the point (x0,y0,z0,w0) = (�1,�1,�1,�1).

(a) Reduce the problem to showing that (0,1) is a regular value of a certain
function F 2C•(R4,R2).

(b) Compute TpF = DpF , and find the critical points of F . Show that (0,1) is
a regular value.

(c) Compute DpF at (�1,�1,�1,�1) and use Corollary 4.1 to find the equa-
tion of the tangent space.

Example 4.3. We had discussed various matrix Lie groups G as examples of mani-
folds. By definition, these are submanifolds G ✓ MatR(n), consisting of invertible
matrices with the properties

A,B 2 G ) AB 2 G, A 2 G ) A�1 2 G.

The tangent space to the identity (group unit) for such matrix Lie groups G turns out
to be important; it is commonly denoted by lower case Fraktur letters:

g= TIG.

Some concrete examples:

1. The matrix Lie group

GL(n,R) = {A 2 MatR(n)| det(A) 6= 0}

of all invertible matrices is an open subset of MatR(n), hence

gl(n,R) = MatR(n)

is the entire space of matrices.
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2. For the group O(n), consisting of matrices with F(A) := A>A = I, we have com-
puted TAF(X) = X>A+AX>. For A = I, the kernel of this map is

o(n) = {X 2 MatR(n)| X> =�X}.

3. For the group SL(n,R) = {A 2 MatR(n)| det(A) = 1}, given as the level set
F�1(1) of the function det : MatR(n)! R, we calculate

DAF(X)=
d
dt

���
t=0

F(A+tX)=
d
dt

���
t=0

det(A+tX)=
d
dt

���
t=0

det(I+tA�1X)= tr(A�1X),

where tr : MatR(n) ! R is the trace (sum of diagonal entries). (See exercise
below.) Hence

sl(n,R) = {X 2 MatR(n)| tr(X) = 0}.

Exercise 57. Show that for every X 2 MatR(n),

d
dt
��
t=0 det(I + tX) = tr(X).

Hint: Use that every matrix is similar to an upper triangular matrix, and that
both determinant and trace are invariant under change of basis.

4.2.4 Example: Steiner’s surface revisited

As we discussed in Section 3.5.4, Steiner’s ‘Roman surface’ is the image of the map

RP2 ! R3, (x : y : z) 7! 1
x2 + y2 + z2 (yz, xz, xy).

(We changed notation from a,b ,g to x,y,z.) Given a point p 2 RP2, is the map an
immersion on an open neighborhood of p? To investigate this question, one can ex-
press the map in local charts, and compute the resulting Jacobian matrix. While this
approach is perfectly fine, the resulting expressions will become rather complicated.
A simpler approach is to consider the composition with the local diffeomorphism
p : S2 ! RP2, given as

S2 ! R3, (x,y,z) 7! (yz, xz, xy).

In turn, this map is the restriction F |S2 of the map

F : R3 ! R3, (x,y,z) 7! (yz, xz, xy).

We have Tp(F |S2) = TpF |TpS2 , hence ker(Tp(F |S2)) = ker(TpF)\TpS2.
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Exercise 58.

(a) Compute TpF = DpF , and find its determinant. Conclude that the kernel is
empty except when one of the coordinates is 0.

(b) Suppose p lies in the yz-plane. Find the kernel of DpF , and ker(TpF)\TpS.
Repeat with p lying in the xz-plane, and the xy-plane.

(c) What are the critical points of the map RP2 !R3? (You should have found
a total of six critical points.)

4.3 The Tangent Bundle

In the next chapter we define vector fields as a family of tangent vectors, one for each
point on the manifold Xp 2 TpM, depending smoothly on the base point p 2 M. This
allows us to study dynamics on the manifold, demonstrating the utility of the concept
of tangent spaces. Another advantage of this concept is that now we have a vector
space associated to each point of the manifold. This allows us to extend many of
the natural constructions of linear algebra to manifolds. For example, in Riemannian
geometry one defines an inner product h·, ·ip on TpM for each point of the manifold
p 2 M, depending smoothly on the base point p 2 M. This allows the introduction of
many familiar geometric concepts like angles and distances.

The philosophy behind these constructions is that they are defined locally, for
each TpM, but “patch together” globally by requiring smooth dependence on the base
point p 2 M. There are several ways to make the concept of “smooth dependence
on base points” rigorous, and we will see some of them in the next chapter. The
most elegant is one is simply to use our existing definition of a smooth function
between manifolds by turning the collection of all tangent spaces into a manifold.
That manifold is called the tangent bundle.

Proposition 4.5. For any manifold M of dimension m, the tangent bundle

T M =
G

p2M
TpM

(disjoint union of vector spaces) is a manifold of dimension 2m. The map

p : T M ! M

taking v 2 TpM to the base point p, is a smooth submersion, with fibers the tangent
spaces.

Proof. The idea is simple: Take charts for M, and use the tangent map to get charts
for T M. For any open subset U of M, we have

TU =
G

p2U
TpM = p�1(U).
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(Note TpU = TpM.) Every chart (U,j) for M, with j : U ! Rm, gives vector space
isomorphisms

Tpj : TpM ! Tj(p)Rm = Rm

for all p 2U . The collection of all maps Tpj for p 2U gives a bijection,

T j : TU ! j(U)⇥Rm, v 7! (j(p),(Tpj)(v))

for v 2 TpU ✓ TU . The images of these bijections are the open subsets

(T j)(TU) = j(U)⇥Rm ✓ R2m,

hence they define charts. We take the collection of all such charts as an atlas for T M:

TU
T j
//

p
✏✏

j(U)⇥Rm

(u,v)7!u
✏✏

U j
// j(U)

We need to check that the transition maps are smooth. If (V,y) is another coordinate
chart with U \V 6= /0, the transition map for TU \TV = T (U \V ) = p�1(U \V ) is
given by,

T y � (T j)�1 : j(U \V )⇥Rm ! y(U \V )⇥Rm. (4.3)

But Tpy � (Tpj)�1 = Tj(p)(y �j�1) is just the derivative (Jacobian matrix) for the
change of coordinates y �j�1; hence (4.3) is given by

(x,a) 7!
⇣
(y �j�1)(x), Dx(y �j�1)(a)

⌘

Since the Jacobian matrix depends smoothly on x, this is a smooth map. This shows
that any atlas A = {(Ua ,ja)} for M defines an atlas {(TUa ,T ja)} for T M. Taking
A to be countable the atlas for T M is countable. The Hausdorff property is easily
checked as well. ut

Proposition 4.6. For any smooth map F 2C•(M,N), the map

T F : T M ! T N

given on TpM as the tangent maps TpF : TpM ! TF(p)N, is a smooth map.

Proof. Given p 2 M, choose charts (U,j) around p and (V,y) around F(p), with
F(U) ✓ V . Then (TU,T j) and (TV,T y) are charts for T M and T N, respectively,
with T F(TU)✓ TV . Let eF = y �F �j�1 : j(U)! y(V ). The map

T eF = T y �T F � (T j)�1 : j(U)⇥Rm ! y(V )⇥Rn

is given by
(x,a) 7!

⇣
(eF)(x), Dx(eF)(a)

⌘
.

It is smooth, by smooth dependence of the differential Dx eF on the base point. Con-
sequently, T F is smooth, ut


