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Vector fields

5.1 Vector Fields as Derivations

A vector field on a manifold may be regarded as a family of tangent vectors Xp 2 TpM
for p2M, depending smoothly on the base points p2M. One way of making precise
what is meant by ‘depending smoothly’ is the following.

Definition 5.1 (Vector fields – first definition). A collection of tangent vectors
Xp, p 2 M defines a vector field X 2X(M) if and only if for all functions f 2C•(M)
the function p 7! Xp( f ) is smooth. The space of all vector fields on M is denoted
X(M).

We hence obtain a linear map X : C•(M)!C•(M) such that

X( f )(p) = X( f )|p = Xp( f ). (5.1)

Since each Xp satisfy the product rule (at p), it follows that X itself satisfies a product
rule. We can use this as an alternative definition:

Definition 5.2 (Vector fields – second definition). A vector field on M is a linear
map

X : C•(M)!C•(M)

satisfying the product rule,

X( f g) = X( f )g+ f X(g) (5.2)

for f ,g 2C•(M).

Remark 5.1. The condition (5.2) says that X is a derivation of the algebra C•(M)
of smooth functions. More generally, a derivation of an algebra A is a linear map
D : A ! A such that

D(a1a2) = D(a1) a2 +a1 D(a2).
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We can also express the smoothness of the tangent vectors Xp in terms of coordi-
nate charts (U,j). Recall that for any p 2U , and all f 2C•(M), the tangent vector
Xp is expressed as

Xp( f ) =
m

Â
i=1

ai ∂
∂ui

���
u=j(p)

( f �j�1).

The vector a = (a1, . . . ,am) 2 Rm represents Xp in the chart; i.e., (Tpj)(Xp) = a
under the identification Tj(p)j(U) = Rm. As p varies in U , the vector a becomes a
function of p 2U , or equivalently of u = j(p).

Proposition 5.1. The collection of tangent vectors Xp, p 2 M define a vector field if
and only if for all charts (U,j), the functions ai : j(U)! R defined by

Xj�1(u)( f ) =
m

Â
i=1

ai(u)
∂

∂ui ( f �j�1),

are smooth.

Proof. If the ai are smooth functions, then for every f 2C•(M) the function X( f )�
j�1 : j(U)! R is smooth, and hence X( f )|U is smooth. Since this is true for all
charts, it follows that X( f ) is smooth. Conversely, if X is a vector field, and p 2 M
some point in a coordinate chart (U,j), and i 2 {1, . . . ,m} a given index, choose
f 2 C•(M) such that f (j�1(u)) = ui. Then X( f ) �j�1 = ai(u), which shows that
the ai are smooth.

Exercise 59. In the proof, we used that for any coordinate chart (U,j) around
p, one can choose f 2C•(M) such that f �j�1 : j(U)!R coincides with u j

near j(p). Write out the details in the construction of such a function f , using
a choice of ‘bump function’.

In particular, we see that vector fields on open subsets U ✓ Rm are of the form

X = Â
i

ai ∂
∂xi

where ai 2C•(U). Under a diffeomorphism F : U !V, x 7! y=F(x), the coordinate
vector fields transform with the Jacobian

T F(
∂

∂xi ) = Â
j

∂F j

∂xi

���
x=F�1(y)

∂
∂y j

Informally, this ‘change of coordinates’ is often written

∂
∂xi = Â

j

∂y j

∂xi
∂

∂y j .

Here one thinks of the xi and y j as coordinates on the same set, and doesn’t worry
about writing coordinate maps, and one uses the (somewhat sloppy, but convenient)
notation y = y(x) instead of y = F(x).
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Exercise 60. Consider R3 with coordinates x,y,z. Introduce new coordinates
u,v,w by setting

x = euv ; y = ev ; z = uv2w

valid on the region where x � y > 1.

(a) Express u,v,w in terms of x,y,z.
(b) Express the coordinate vector fields ∂

∂u ,
∂
∂v ,

∂
∂w as a combination of the co-

ordinate vector fields ∂
∂x ,

∂
∂y ,

∂
∂ z with coefficients functions of x,y,z.

5.2 Vector Fields as Sections of the Tangent Bundle

The ‘best’ way of describing the smoothness of p 7! Xp is that it is literally a smooth
map into the tangent bundle.

Definition 5.3 (Vector fields – third definition). A vector field on M is a smooth
map X 2C•(M,T M) such that p �X is the identity.

Remark 5.2. In the condition p �X , we take p : T M ! M the canonical projection
map that sends each (p,v) to its base-point p. The condition simply states that at each
point p 2 M we have that X(p) is of the form (p,v) for v 2 TpM; i.e. it expresses the
idea that Xp should “live in” TpM.

It is common practice to use the same symbol X both as a linear map from smooth
functions to smooth functions, or as a map into the tangent bundle. Thus,

X : M ! T M, X : C•(M)!C•(M)

coexist. But if it gets too confusing, one uses a symbol

LX : C•(M)!C•(M)

for the interpretation as a derivation; here the L stands for ‘Lie derivative’ (named
after Sophus Lie). Both viewpoints are useful and important, and both have their
advantages and disadvantages. For instance, from the tangent-bundle viewepoint it is
immediate that vector fields on M restrict to open subsets U ✓ M; this map

X(M)! X(U), X 7! X |U

may seem a little awkward from the derivations viewpoint since C•(U) is not a
subspace of C•(M). (There is a restriction map C•(M) ! C•(U), but no natural
map in the other direction.) On the other hand, the derivations viewpoint gives the
Lie bracket operation discussed below, which seems unexpected from the tangent-
bundle viewpoint.
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Exercise 61. The tangent-bundle viewpoint provides another easy way of spec-
ifying vector fields.

(a) Show that the mapping p 7! (p,0) is a vector field, and write it in coordi-
nates. This is called the zero section. Show that it is an embedding of M
into T M.

(b) Consider Rn and identify TpRn ⇠= Rn. Show that the mapping p 7! (p, p)
is a vector field, write it in coordinates, and draw a picture of it in the case
n = 2.

5.3 Lie brackets

Let M be a manifold. Given vector fields X ,Y : C•(M)!C•(M), the composition
X �Y is not a vector field: For example, if X = Y = ∂

∂x as vector fields on R, then
X �Y = ∂ 2

∂x2 is a second order derivative, which is not a vector field (it does not satisfy
the Leibnitz rule). However, the commutator turns out to be a vector field:

Theorem 5.1. For any two vector fields X ,Y 2 X(M) (regarded as derivations), the
commutator

[X ,Y ] := X �Y �Y �X : C•(M)!C•(M)

is again a vector field.

Exercise 62. Prove the theorem by using the second definition of vector fields.

Remark 5.3. A similar calculation applies to derivations of algebras in general: The
commutator of two derivations is again a derivations.

Definition 5.4. The vector field

[X ,Y ] := X �Y �Y �X

is called the Lie bracket of X ,Y 2 X(M).

It is instructive to see how this works in local coordinates. For open subsets U ✓Rm,
if

X =
m

Â
i=1

ai ∂
∂xi , Y =

m

Â
i=1

bi ∂
∂xi ,

with coefficient functions ai,bi 2 C•(U), the composition X �Y is a second order
differential operators on functions f 2C•(U):

X �Y =
m

Â
i=1

m

Â
j=1

a j ∂bi

∂x j
∂

∂xi +
m

Â
i=1

m

Â
j=1

aib j ∂ 2

∂xi∂x j

Subtracting a similar expression for Y �X , the terms involving second derivatives
cancel, and we obtain
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[X ,Y ] =
m

Â
i=1

m

Â
j=1

⇣
a j ∂bi

∂x j �b j ∂ai

∂x j

⌘ ∂
∂xi .

(This calculation applies to general manifolds, by taking local coordinates.) The sig-
nificance of the Lie bracket will become clear later. At this stage, let us give some
examples.

Exercise 63. Compute the Lie bracket [X ,Y ] for the following vector fields in
R2:

(a) X1 =
∂
∂x , Y1 =

∂
∂y .

(b) X2 =
∂
∂x , Y2 = (1+ x2) ∂

∂y
(c) Notice that X2 and Y2 are linearly independent everywhere. Is it possible

to introduce coordinates (u,v) = j(x,y), such that in the new coordinates,
these vector fields are the coordinate vector fields ∂

∂u ,
∂
∂v ?

Note: When calculating Lie brackets X �Y �Y �X of vector fields X ,Y in local
coordinates, it is not necessary to work out the second order derivatives – we know
in advance that these are going to cancel out!

Exercise 64. Consider the following two vector fields on R2, on the open subset
where xy > 0,

X =
x
y

∂
∂x

+
∂
∂y

, Y = 2
p

xy
∂
∂x

(a) Compute their Lie bracket [X ,Y ].
(b) Define a change of coordinates u,v by

x = uv2 ; y = u.

Express the coordinate vector fields ∂
∂u and ∂

∂v in terms of the coordinate
vector fields ∂

∂x and ∂
∂y (with coefficients functions of x,y).

Example 5.1. Consider the same problem for the vector fields

X = x
∂
∂y

� y
∂
∂x

, Y = x
∂
∂x

+ y
∂
∂y

.

This time, we may verify that [X ,Y ] = 0. Introduce polar coordinates,

x = r cosq , y = r sinq .

(this is a well-defined coordinate chart for r > 0 and �p < q < p). We have ⇤

⇤ In the following, we are using somewhat sloppy notation. Given (q ,r) = j(x,y), we should
more properly write j⇤X ,j⇤Y for the vector fields in the new coordinates.
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∂
∂ r

=
∂x
∂ r

∂
∂x

+
∂y
∂ r

∂
∂y

=
1
r

Y

and
∂

∂q
=

∂x
∂q

∂
∂x

+
∂y
∂q

∂
∂y

= X

Hence X = ∂
∂q , Y = r ∂

∂ r . To get this into the desired form, we make another change
of coordinates r = f (r) in such a way that Y becomes ∂

∂r . Since

∂
∂ r

=
∂r
∂ r

∂
∂r

= f 0(r)
∂

∂r

we want f 0(r) = 1
r , thus f (r) = ln(r). So, r = er . Hence, the desired change of

coordinates is
x = er cosq , y = er sinq .

Definition 5.5. Let S ✓ M be a submanifold. A vector field X 2 X(M) is called tan-
gent to S if for all p 2 S, the tangent vector Xp lies in TpS ✓ TpM. (Thus X restricts
to a vector field X |S 2 X(S).)

Exercise 65.

(a) Show that the three vector fields

X = y
∂
∂ z

� z
∂
∂y

, Y = z
∂
∂x

� x
∂
∂ z

, Z = x
∂
∂y

� y
∂
∂x

on R3 are tangent to the 2-sphere S2.
(b) Compute the bracket [X ,Y ], [Y,Z], [Z,X ] and show that the resulting vector

fields are again tangent to the 2-sphere.

Proposition 5.2. If two vector fields X ,Y 2 X(M) are tangent to a submanifold S ✓
M, then their Lie bracket is again tangent to S.

Proposition 5.2 can be proved by using the coordinate expressions of X ,Y in subman-
ifold charts. But we will postpone the proof for now since there is a much shorter,
coordinate-independent proof (see the next section).

Exercise 66. Consider the vector fields on R3,

X =
∂
∂x

, Y =
∂
∂y

+ x
∂
∂ z

.

Show that there cannot exist a surface S ✓R3 such that both X and Y are tangent
to S.
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Hint: compute the bracket and show that the three fields form a basis.

Exercise 67. Verify the Jacobi identity holds for any three vector fields X ,Y,Z 2
X(M):

[X , [Y,Z]]+ [Z, [X ,Y ]]+ [Y, [Z,X ]] = 0.

5.4 Related vector fields

Definition 5.6. Let F 2 C•(M,N) be a smooth map. Vector fields X 2 X(M) and
Y 2 X(N) are called F-related, written as

X ⇠F Y,

if
TpF(Xp) = YF(p)

for all p 2 M.

Exercise 68.

(a) Suppose F : M ! N is a diffeomorphism. Show that X ⇠F Y if and only if
Y = F⇤X . (In particular, if N = M, then an equation X ⇠F X means that X
is invariant under F .)

(b) Suppose S ✓ M is an embedded submanifold, and i : S ,! M the inclusion
map. Let X 2 X(S) and Y 2 X(M). Show that

X ⇠i Y

if and only if Y is tangent to S, with X as its restriction. (In particular, 0⇠i Y
if and only if Y vanishes along the submanifold S.)

(c) Suppose F : M ! N is a submersion, and X 2 X(M). Show that X ⇠F 0 if
and only if X is tangent to the fibers of F .

Example 5.2. Let p : Sn !RPn be the quotient map. Then X ⇠p Y if and only if the
vector field X is invariant under the transformation F : Sn ! Sn, x 7! �x (that is,
T F �X = X �F , and with Y the induced vector field on the quotient.

The F-relation of vector fields also has a simple interpretation in terms of the
‘differential operator’ picture.

Proposition 5.3. One has X ⇠F Y if and only if for all g 2C•(N),

X(g�F) = Y (g)�F.
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In terms of the pull-back notation, with F⇤g = g �F for g 2 C•(N), this means X �
F⇤ = F⇤ �Y :

C•(M)
X
// C•(M)

C•(N)

F⇤

OO

Y
// C•(N)

F⇤

OO

Proof. The condition X(g�F) = Y (g)�F says that

(TpF(Xp))(g) = YF(p)(g)

for all p 2 M. ut

The key fact concerning related vector fields is the following.

Theorem 5.2. Let F 2C•(M,N) For vector fields X1,X2 2X(M) and Y1,Y2 2X(M),
we have

X1 ⇠F Y1, X2 ⇠F Y2 ) [X1,X2]⇠F [Y1,Y2].

Exercise 69. Use the differential operator picture to prove Theorem 5.2.

Exercise 70. Prove Proposition 5.2: If two vector fields Y1,Y2 are tangent to a
submanifold S ✓ M then their Lie bracket [Y1,Y2] is again tangent to S, and the
Lie bracket of their restriction is the restriction of the Lie brackets.

Exercise 71. Show that in the description of vector fields as sections of the
tangent bundle, two vector fields X 2 X(M), Y 2 X(M) are F-related if and
only if the following diagram commutes:

T M T F // T N

M
F
//

X

OO

N

Y

OO

5.5 Flows of vector fields

For any curve g : J ! M, with J ✓ R an open interval, and any t 2 J, the velocity
vector

ġ(t)⌘ dg
dt

2 Tg(t)M

is defined as the tangent vector, given in terms of its action on functions as
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(ġ(t))( f ) =
d
dt

f (g(t)).

(The dot signifies a t-derivative.) The curve representing this tangent vector for a
given t, in the sense of our earlier definition, is the shifted curve t 7! g(t+t). Equiv-
alently, one may think of the velocity vector as the image of ∂

∂ t |t 2 TtJ ⇠=R under the
tangent map Ttg:

ġ(t) = (Ttg)(
∂
∂ t

|t).

Definition 5.7. Suppose X 2X(M) is a vector field on a manifold M. A smooth curve
g 2C•(J,M), where J ✓ R is an open interval, is called a solution curve to X if

ġ(t) = Xg(t) (5.3)

for all t 2 J.

Geometrically, Equation (5.3) means that at any given time t, the value of X at g(t)
agrees with the velocity vector to g at t.

Equivalently, in terms of related vector fields,

∂
∂ t

⇠g X .

Consider first the case that M =U ✓ Rm. Here curves g(t) are of the form

g(t) = x(t) = (x1(t), . . . ,xm(t)),

hence

ġ(t)( f ) =
d
dt

f (x(t)) =
m

Â
i=1

dxi

dt
∂ f
∂xi (x(t)).

That is

ġ(t) =
m

Â
i=1

dxi

dt
∂

∂xi

���
x(t)

.
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On the other hand, the vector field has the form X = Âm
i=1 ai(x) ∂

∂xi . Hence (5.3) be-
comes the system of first order ordinary differential equations,

dxi

dt
= ai(x(t)), i = 1, . . . ,m. (5.4)

Example 5.3. The solution curves of the coordinate vector field ∂
∂x j are of the form

xi(t) = xi
0, i 6= j, x j(t) = x j

0 + t.

More generally, if a = (a1, . . . ,am) is a constant function of x (so that X = Âai ∂
∂xi is

the constant vector field, the solution curves are affine lines,

x(t) = x0 + ta.

Exercise 72. Consider the vector field on R2,

X =�y
∂
∂x

+ x
∂
∂y

.

Find the solution curve for any given (x0,y0) 2R2. Draw a picture of the vector
field.

Exercise 73. Consider the following vector field on Rm,

X =
m

Â
i=1

xi ∂
∂xi .

Find solution curves for any given (x1
0, . . . ,x

m
0 ) 2 Rm.

One of the main results from the theory of ODE’s says that for any given initial
condition x(0) = x0, a solution to the system (5.4) exists and is (essentially) unique:

Theorem 5.3 (Existence and uniqueness theorem for ODE’s). Let U ✓ Rm be an
open subset, and a 2 C•(U,Rm). For any given x0 2 U, there is an open interval
Jx0 ✓ R around 0, and a solution x : Jx0 !U of the ODE

dxi

dt
= ai(x(t)), i = 1, . . . ,m

with initial condition x(0) = x0, and which is maximal in the sense that any other
solution to this initial value problem is obtained by restriction to some subinterval of
Jx0 .
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Thus, Jx0 is the maximal open interval on which the solution is defined. The solution
depends smoothly on initial conditions, in the following sense. For any given x0, let
F(t,x0) be the solution x(t) of the initial value problem with initial condition x0, that
is,

F(0,x0) = x0,
d
dt

F(t,x0) = a(F(t,x0)).

Theorem 5.4 (Dependence on initial conditions for ODE’s). For a 2 C•(U,Rm)
as above, the set

J = {(t,x) 2 R⇥U | t 2 Jx}.

is an open neighborhood of {0}⇥U in R⇥U, and the map

F : J !U, (t,x) 7! F(t,x)

is smooth.

In general, the interval Jx0 may be strictly smaller than R, because a solution might
escape to infinity in finite time.

Exercise 74. For each of the following ODEs: find solution curves with initial
condition x0; find Jx0 , J , and F(t,x).

1. ẋ = 1 on U = (0,1)✓ R.
2. ẋ = x2 on U = R.
3. ẋ = 1+ x2 on U = R.

For a general vector field X 2 X(M) on manifolds, Equation (5.3) becomes (5.4)
after introduction of local coordinates. In detail: Let (U,j) be a coordinate chart. In
the chart, X becomes the vector field

j⇤(X) =
m

Â
j=1

a j(u)
∂

∂u j

and j(g(t)) = u(t) with
u̇i = ai(u(t)).

If a = (a1, . . . ,am) : j(U)! Rm corresponds to X in a local chart (U,j), then
any solution curve x : J ! j(U) for a defines a solution curve g(t) = j�1(x(t))
for X . The existence and uniqueness theorem for ODE’s extends to manifolds, as
follows:

Theorem 5.5 (Solutions of vector fields on manifolds). Let X 2 X(M) be a vector
field on a manifold M. For any given p 2 M, there is an open interval Jp ✓R around
0, and a solution g : Jp ! M of the initial value problem

ġ(t) = Xg(t), g(0) = p, (5.5)
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which is maximal in the sense that any other solution of the initial value problem is
obtained by restriction to a subinterval. The set

J = {(t, p) 2 R⇥M| t 2 Jp}

is an open neighborhood of {0}⇥M, and the map

F : J ! M, (t, p) 7! F(t, p)

such that g(t) = F(t, p) solves the initial value problem (5.5), is smooth.

Proof. Existence and uniqueness of solutions for small times t follows from the ex-
istence and uniqueness theorem for ODE’s, by considering the vector field in local
charts. To prove uniqueness even for large times t, let g : J ! M be a maximal
solution of (5.5) (i.e., a solution that cannot be extended to a larger open interval),
and let g1 : J1 ! M be another solution of the same initial value problem, but with
g1(t) 6= g(t) for some t 2 J, t > 0. (There is a similar discussion if the solution is
different for some t < 0). Then we can define

b = inf{t 2 J| t > 0, g1(t) 6= g(t)}.

By the uniqueness for small t, we have b > 0. We will get a contradiction in both of
the following cases:

Case 1: g1(b) = g(b) =: q. Then both l1(s) = g1(b+ s) and l (s) = g(b+ s) are
solutions to the initial value problem

l (0) = q, l̇ (s) = Xl (s);

hence they have to agree for small |s|, and consequently g1(t),g(t) have to agree for
t close to b. This contradicts the definition of b.

Case 2: g1(b) 6= g(b). Using the Hausdorff property of M, we can choose disjoint
open neighborhoods U of g(b) and U1 of g(b1). For t = b�e with e > 0 sufficiently
small, g(t)2U while g1(t)2U1. But this is impossible since g(t) = g1(t) for 0  t <
b.

The result for ODE’s about the smooth dependence on initial conditions shows,
by taking local coordinate charts, that J contains an open neighborhood of {0}⇥M,
on which F is given by a smooth map. The fact that J itself is open, and the map
F is smooth everywhere, follows by the ‘flow property’ to be discussed below. (We
will omit the details of this part of the proof.) ut

Note that the uniqueness part uses the Hausdorff property in the definition of
manifolds. Indeed, the uniqueness part may fail for non-Hausdorff manifolds.

Example 5.4. A counter-example is the non-Hausdorff manifold

Y = (R⇥{1})[ (R⇥{�1})/⇠,

where ⇠ glues two copies of the real line along the strictly negative real axis. Let
U± denote the charts obtained as images of R⇥ {±1}. Let X be the vector field on



5.5 Flows of vector fields 97

Y , given by ∂
∂x in both charts. It is well-defined, since the transition map is just the

identity map. Then g+(t) = p(t,1) and g�(t) = p(t,�1) are both solution curves,
and they agree for negative t but not for positive t.

Given a vector field X , the map F : J !M is called the flow of X . For any given
p, the curve g(t) = F(t, p) is a solution curve. But one can also fix t and consider
the time-t flow,

Ft(p)⌘ F(t, p).

It is a smooth map Ft : Ut ! M, defined on the open subset

Ut = {p 2 M| (t, p) 2 J }.

Note that F0 = idM .
Intuitively, Ft(p) is obtained from the initial point p 2 M by flowing for time t

along the vector field X . One expects that first flowing for time t, and then flowing
for time s, should be the same as flowing for time t + s. Indeed one has the following
flow property.

Theorem 5.6 (Flow property). Let X 2X(M), with flow F : J ! M. Let (t2, p) 2
J , and t1 2 R. Then

(t1,Ft2(p)) 2 J , (t1 + t2, p) 2 J ,

and one has
Ft1(Ft2(p)) = Ft1+t2(p).

Proof. Given t2 2 Jp, we consider both sides as functions of t1 = t. Write q = Ft2(p).
We claim that both

t 7! Ft(Ft2(p)), t 7! Ft+t2(p)

are maximal solution curves of X , for the same initial condition q. This is clear for
the first curve, and follows for the second curve by the calculation, for f 2C•(M),

d
dt

f (Ft+t2(p)) =
d
ds

���
s=t+t2

Fs(p) = XFs(p)( f )
���
s=t+t2

= XFt+t2 (p)( f ).

Hence, the two curves must coincide. The domain of definition of t 7! Ft+t2(p) is
the interval Jp, shifted by t2. Hence, t1 2 JF(t2,p) if and only if t1 + t2 2 Jp. ut

We see in particular that for any t, the map Ft : Ut ! M is a diffeomorphism
onto its image Ft(Ut) =U�t , with inverse F�t .

Example 5.5. Let us illustrate the flow property for various vector fields on R. The
flow property is evident for ∂

∂x with flow Ft(x) = x+ t, as well as for x ∂
∂x , with flow

Ft(x) = et x. The vector field x2 ∂
∂x has flow Ft(x) = x/(1�tx), defined for 1�tx< 1.

We can explicitly verify the flow property:

Ft1(Ft2(x)) =
Ft2(x)

1� t1Ft2(x)
=

x
1�t2x

1� t1 x
1�t2x

=
x

1� (t1 + t2)x
= Ft1+t2(x).
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Let X be a vector field, and J = J X be the domain of definition for the flow
F = FX .

Definition 5.8. A vector field X 2 X(M) is called complete if J X = R⇥M.

Thus X is complete if and only if all solution curves exist for all time.

Example 5.6. The vector field x ∂
∂x on M = R is complete, but x2 ∂

∂x is incomplete.

A vector field may fail to be complete if a solution curve escapes to infinity in
finite time. This suggests that a vector fields X that vanishes outside a compact set
must be complete, because the solution curves are ‘trapped’ and cannot escape to
infinity.

Proposition 5.4. If X 2X(M) is a vector field that has compact support, in the sense
that X |M�A = 0 for some compact subset A, then X is complete. In particular, every
vector field on a compact manifold is complete.

Proof. By the uniqueness theorem for solution curves g , and since X vanishes outside
A, if g(t0) 2 M � A for some t0, then g(t) = g(t0) for all t. Hence, if a solution
curve g : J ! M has g(0) 2 A, then g(t) 2 A for all t. Let Ue ✓ M be the set of
all p such that the solution curve g with initial condition g(0) = p exists for |t| <
e (that is, (�e,e) ✓ Jp). By smooth dependence on initial conditions, Ue is open.
The collection of all Ue with e > 0 covers A, since every solution curve exists for
sufficiently small time. Since A is compact, there exists a finite subcover Ue1 , . . . ,Uek .
Let e be the smallest of e1, . . . ,ek. Then Uei ✓Ue , for all i, and hence A ✓Ue . Hence,
for any p 2 A we have (�e,e)✓ Jp, that is any solution curve g(t) starting in A exists
for times |t|< e . But g(�e/2),g(e/2) 2 A, hence the solution curve starting at those
points again exist for times < e . This shows (�3e/2,3e/2)✓ Jp. Continuing in this
way, we find that (�e �Ne/2,e +Ne/2) ✓ Jp for all N, thus Jp = R for all p 2 A.
For points p 2 M �A, it is clear anyhow that Jp = R, since the solution curves are
constant. ut

Theorem 5.7. If X is a complete vector field, the flow Ft defines a 1-parameter group
of diffeomorphisms. That is, each Ft is a diffeomorphism and

F0 = idM, Ft1 �Ft2 = Ft1+t2 .

Conversely, if Ft is a 1-parameter group of diffeomorphisms such that the map
(t, p) 7! Ft(p) is smooth, the equation

Xp( f ) =
d
dt

���
t=0

f (Ft(p))

defines a complete vector field X on M, with flow Ft .

Proof. It remains to show the second statement. Given Ft , the linear map

C•(M)!C•(M), f 7! d
dt

���
t=0

f (Ft(p))
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satisfies the product rule, hence it is a vector field X . Given p 2 M the curve g(t) =
Ft(p) is an integral curve of X since

d
dt

Ft(p) =
d
ds

���
s=0

Ft+s(p) =
d
ds

���
s=0

Fs(Ft(p)) = XFt (p).

ut

Remark 5.4. In terms of pull-backs, the relation between the vector field and its flow
reads as

d
dt

F⇤
t ( f ) = F⇤

t
d
ds

���
s=0

F⇤
s ( f ) = F⇤

t X( f ).

This identity
d
dt

F⇤
t = F⇤

t �X

as linear maps C•(M)!C•(M) may be viewed as the definition of the flow.

Example 5.7. Given A 2 MatR(m) let

Ft : Rm ! Rm, x 7! etAx =
⇣ •

Â
j=0

t j

j!
A j
⌘

x

(using the exponential map of matrices). Since e(t1+t2)A = et1Aet2A, and since (t,x) 7!
etAx is a smooth map, Ft defines a flow. What is the corresponding vector field X?
For any function f 2C•(Rm) we calculate,

X( f )(x) =
d
dt

���
t=0

f (etAx)

= Â
j

∂ f
∂x j (Ax) j

= Â
i j

Ai
jxi ∂ f

∂x j

showing that

X = Â
i j

Ai
jxi ∂

∂x j .

†

As a special case, taking A to be the identity matrix, we recover the Euler vector
field X = Âi xi ∂

∂xi , and its flow Ft(x) = etx.
† Here we wrote the matrix entries for the i-th row and j-th column as Ai

j rather than Ai j .
That is, one standard basis vectors ei 2 Rm (written as column vectors), we have A(ei) =
Â j Ai

je j, hence for x = Âxiei we get

Ax = Â
i j

Ai
jxie j

from which we read off (Ax) j = Âi Ai
jxi.
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Example 5.8. Let X be a complete vector field, with flow Ft . For each t 2 R, the
tangent map T Ft : T M ! T M has the flow property,

T Ft1 �T Ft2 = T (Ft1 �Ft2) = T (Ft1+t2),

and the map R⇥T M ! T M,(t,v) 7! Ft(v) is smooth (since it is just the restriction
of the map T F : T (R⇥M) ! T M to the submanifold R⇥T M). Hence, T Ft is a
flow on T M, and therefore corresponds to a complete vector field bX 2 X(T M). This
is called the tangent lift of X .

Proposition 5.5. Let F 2 C•(M,N), and X 2 X(M), Y 2 X(N) complete vector
fields, with flows FX

t , FY
t .

X ⇠F Y , F �FX
t = FY

t �F for all t.

‡

In short, vector fields are F-related if and only if their flows are F-related.

Proof. Suppose F �FX
t = FY

t � F for all t. For g 2 C•(N), and p 2 M, taking a
t-derivative of

g(F(FX
t (p))) = g(FY

t (F(p)))

at t = 0 on both sides, we get
�
TpF(Xp)

�
(g) = YF(p)(g)

i.e. TpF(Xp)=YF(p). Hence X ⇠F Y . Conversely, suppose X ⇠F Y . As we had seen, if
g : J !M is a solution curve for X , with initial condition g(0) = p then F �g : J !M
is a solution curve for Y , with initial condition F(p). That is, F(FX

t (p))=FY
t (F(p)),

or F �FX
t = FY

t �F . ut

‡ This generalizes to possibly incomplete vector fields: The vector fields are related if and
only if F �F = F � (idR⇥F). But for simplicity, we only consider the complete case.


