1	T*M has canonical 1-form
• •	$\Theta \in \Omega^{1}(T^{*}M)$ defined by $O_{(x,\xi)}(v) = \xi(\pi_{*}v)$
	(hue $\xi \in T_{x}^{*}M$, $\upsilon \in T_{(x,\xi)}(T^{*}M)$, $\pi: T^{*}M \to M$,)
	Let $\alpha \in \Omega^{1}(M)$, which may be viewed as a map $\alpha : M \to T^{*}M$. Prove $\alpha^{*}\theta = \alpha$.
Ø	Let $(x',, x^n)$ be local coords on M, and let $(x',, x^n, P,, P_n)$
	be the induced coordinates in T^*M . Write Θ in these coords,
	prove that $SL = d\theta$ is nondequenate, hence a symplectic form
• •	write Ω in local coordinates defined above.
•	Let \mathcal{R} act on $\mathcal{T}^{*}\mathcal{M}$ via $\rho: \mathcal{R} \times \mathcal{T}^{*}\mathcal{M} \longrightarrow \mathcal{T}^{*}\mathcal{M}$ $(t, (x, \xi)) \mapsto (x, e^{t}\xi)$
• •	compute $E = P_{\pm}\left(\frac{2}{5t}\right)$ the Euler vector field,
	compute $L_E \Omega$. What are possible eigenvalues of L_E ?
· · ·	Functions on T^*M : besides basic functions π^*f , $f \in C^{\infty}(M, \mathbb{R})$,
• •	there are the linear functions: Any vector field ve & (M)
• •	defines a function $f_{V}: (x, \xi) \mapsto \xi(v(x))$
•••	If $v = v \frac{2}{2\chi i}$, compute f_v in coordinates. What is $L_E f_v$?
· · ·	$\Omega^{-1}(df, dg) = \{f, g\}$ defines a Poisson bracket. Write $\{f, g\}$ in local coords.
•••	Compute $\{f_v, \pi^*g\}$ for $v \in \mathcal{X}(M)$ and $g \in C^{\infty}(M)$.
•••	what is $\{f_{v}, f_{w}\}$ $v, w \in \mathfrak{X}(M)$?
	· · · · · · · · · · · · · · · · · · ·

Given $H \in C^{\infty}(T^*M, \mathbb{R})$, the Hamiltonian vector field is $X_H = -\Omega^{-1}(dH) \in \mathcal{F}(T^*M)$. Prove $[E, X_H] = X_{(L_EH)} - H$.
• Describe the Hamiltonian flow of f_{T} , $T \in \mathcal{X}(M)$, in terms of the flow φ_{T} of T itself.
• Let g be a Riemannian metric, $g^{-1} \in \Gamma(S^2 T)$ its inverse, and $f_g : T^*M \longrightarrow R$ the corresponding quadratic function
given by $f_g(x, \xi) = g_x^{-1}(\xi, \xi)$. Prove X_{fg} is tangent to the unit sphere bundle $S(T^*M)$ where $f_g(x, \xi) = g_x^{-1}(\xi, \xi)$.
what is IMP MP
• Let $\tilde{\gamma} : \mathbb{R} \to T^*M$ be a trajectory of X_{f_q} , and let $\tilde{\gamma} = \pi \circ \tilde{\gamma}$ be the base path. Prove \mathcal{S} is a geodesic.
Let $\tilde{Y}: \mathbb{R} \to T^*M$ be a trajectory of X_{fg} , and let $Y = \prod_M \circ \tilde{Y}$ be the base path. Prove X is a geodesic.
• Let $\tilde{Y}: \mathbb{R} \to T^*M$ be a trajectory of X_{f_2} , and let $Y = \prod_M \circ \tilde{Y}$ be the base path. Prove X is a geodesic.
• Let $\tilde{\gamma}: \mathbb{R} \to T^*M$ be a trajectory of Y_{f_q} , and let $\gamma = \pi_M \circ \tilde{\gamma}$ be the base path. Prove γ is a geodesic.

2. Twisted cotangent bundle Let $W \in \Omega^2(M)$, $dw = 0$ The twisted cotangent bundle many be described in two
e rijvulent waxo:
A) $T_{w}^{*}M = T^{*}M$, but equipped with the symplectic form
$\Sigma + \pi^* \omega$
B) $T_{\omega}^{\star} M = \prod_{x} T^{\star} U_{\alpha}$ for an open cover $\{U_{x}\}$, where
$T^*\mathcal{U}_{\alpha\beta} \Rightarrow (x, \xi) \sim (x, \xi + A_{\alpha\beta}(x)) \in T^*\mathcal{U}_{\beta\alpha},$
where $\omega _{u_{\alpha}} = dA_{\alpha}$ and $A_{\alpha\beta} = A_{\alpha} - A_{\beta} \in \mathcal{N}(u_{\alpha\beta})$.
· Prove SI + nt w is simplectic.
 Show A) and B) are naturally equivalent.
If M is prequentized meaning that there is a line bundle 1
with Hermitian metric h and Unitary connection ∇ s.t. M
$\frac{1}{2\pi i} (F^{\nabla}) \simeq \omega$, show that $T^{*}_{\omega} M$ is also prequentized.
• How is the geodesic flow affected by the addition of w?
How is the Poisson bracket affected? Whet is $[s_{2}^{-1}, (s_{2} + \pi^{*}\omega)^{-1}]$?
· An easy way of producing the symplectic S2 is by
symplectic reduction C^2/S^1
Explain how to construct T* 5° and T* S2 Via symplectic
reduction. What if we want to obtain the prequentization via reduction?