
Digital Object Identifier (DOI) 10.1007/s00220-014-1926-z
Commun. Math. Phys. 331, 297–331 (2014) Communications in

Mathematical
Physics

Generalized Kähler Geometry

Marco Gualtieri

University of Toronto, Toronto, ON, Canada. E-mail: mgualt@math.toronto.edu

Received: 21 May 2013 / Accepted: 5 August 2013
Published online: 5 March 2014 – © Springer-Verlag Berlin Heidelberg 2014

Abstract: Generalized Kähler geometry is the natural analogue of Kähler geometry,
in the context of generalized complex geometry. Just as we may require a complex
structure to be compatible with a Riemannian metric in a way which gives rise to a
symplectic form, we may require a generalized complex structure to be compatible
with a metric so that it defines a second generalized complex structure. We prove that
generalized Kähler geometry is equivalent to the bi-Hermitian geometry on the target of
a 2-dimensional sigma model with (2, 2) supersymmetry. We also prove the existence of
natural holomorphic Courant algebroids for each of the underlying complex structures,
and that these split into a sum of transverse holomorphic Dirac structures. Finally, we
explore the analogy between pre-quantum line bundles and gerbes in the context of
generalized Kähler geometry.

Contents

1. Generalized Kähler Geometry . . . . . . . . . . . . . . . . . . . . . . . . 298
1.1 Generalized complex and Dirac geometry . . . . . . . . . . . . . . . 299
1.2 Generalized Kähler structures . . . . . . . . . . . . . . . . . . . . . . 302
1.3 Integrability and bi-Hermitian geometry . . . . . . . . . . . . . . . . 305
1.4 Examples of generalized Kähler manifolds . . . . . . . . . . . . . . . 306

2. Holomorphic Dirac Geometry . . . . . . . . . . . . . . . . . . . . . . . . 310
2.1 Holomorphic Courant algebroids . . . . . . . . . . . . . . . . . . . . 310
2.2 Holomorphic reduction . . . . . . . . . . . . . . . . . . . . . . . . . 312
2.3 Sheaves of differential graded Lie algebras . . . . . . . . . . . . . . . 316
2.4 Morita equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
2.5 Prequantization and holomorphic gerbes . . . . . . . . . . . . . . . . 319

A Holomorphic Courant Reduction . . . . . . . . . . . . . . . . . . . . . . . . 321
B Gerbe Connections in Dirac Geometry . . . . . . . . . . . . . . . . . . . . . 323
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329



298 M. Gualtieri

Introduction

Generalized Kähler geometry is the natural Riemannian geometry associated to a gen-
eralized complex structure in the sense of Hitchin. Just as in Kähler geometry, which
involves a complex structure compatible with a symplectic form, a generalized Käh-
ler structure derives from a compatible pair of generalized complex structures. A fun-
damental feature of generalized geometry is that it occurs on a manifold equipped
with a Courant algebroid, a structure characterized by a class in the third cohomol-
ogy with real coefficients. If this class is integral, the Courant algebroid may be
thought of as arising from a rank one abelian gerbe. We view this gerbe as the ana-
logue of the prequantum line bundle in the geometric quantization of symplectic man-
ifolds.

As in the Kähler case, the existence of a generalized Kähler structure places strong
constraints on the underlying manifold; we shall see that it inherits a pair of usual complex
structures (I+, I−), which need not be isomorphic as complex manifolds. Interestingly,
generalized Kähler structures may exist on complex manifolds which admit no Kähler
metric: if the background Courant algebroid has nonzero characteristic class, we shall
see that the complex structures must fail to satisfy the ∂∂-lemma and hence cannot be
algebraic or even Moishezon.

The first result of this paper is that generalized Kähler geometry is equivalent to
a bi-Hermitian geometry discovered by Gates et al. [15] in 1984, which arises on the
target of a 2-dimensional sigma model upon imposing N = (2, 2) supersymmetry.
This equivalence, obtained in the author’s thesis [23], was followed by a number of
results, such as those contained in [8,10,17,19,22,24,29,30,32,35], which are not easily
accessed purely from the bi-Hermitian point of view. The proof presented here is more
transparent than that in [23].

The second group of results concerns the relationship between the complex structures
(I+, I−) participating in the bi-Hermitian pair. We show that each of these complex
manifolds inherits a holomorphic Courant algebroid, which actually splits as a sum of
transverse holomorphic Dirac structures. This situation fits into the formalism developed
by Liu et al. in [37]. Having this structure on each complex manifold, we may describe
the relationship between them as a Morita equivalence between a Dirac structure on I+
and its counterpart on I−. We also explain how to interpret these facts from the point
of view of the prequantum gerbe, following and extending some of the work of Hull
et al. [31,36,51] on the relation between gerbes and generalized Kähler geometry.

1. Generalized Kähler Geometry

In Kähler geometry, a complex structure I is required to be compatible with a Riemannian
metric g in such a way that the two-form ω = gI defines a symplectic structure. The
introduction of a Riemannian metric may be thought of as a reduction of structure for
T M ; the complex structure provides a GL(n,C) structure which is then reduced by g
to the compact Lie group U (n).

A generalized complex structure on a real exact Courant algebroid E reduces the usual
orthogonal structure O((n, n),R) of this bundle to the split unitary group U (n, n). Gen-
eralized Kähler geometry may be viewed as an integrable reduction of this structure to
its maximal compact subgroup U (n)×U (n), by the choice of a compatible generalized
metric.
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1.1. Generalized complex and Dirac geometry. Recall from [37] that an exact Courant
algebroid (E, π, q, [·, ·]) is a vector bundle E which is an extension of the form

0 �� T ∗M
ι �� E

π �� T M �� 0 , (1.1)

with a symmetric pairing 〈·, ·〉 := (q(·))(·) given by a self-dual isomorphism of exten-
sions q : E −→ E∗, and a bracket [·, ·] on its sheaf of sections such that, locally, there is a
splitting ofπ inducing an isomorphism with TM = T M ⊕T ∗M , equipped with its usual
symmetric pairing and Courant–Dorfman bracket [X +ξ,Y +η] = [X,Y ]+ L Xη− iY dξ .
Until we reach §2, we will work only with real Courant algebroids.

Definition 1.1. A generalized complex structure J is an orthogonal bundle endomor-
phism of E, such that J

2 = −1, and whose +i eigenbundle L ⊂ E ⊗ C is involutive.

The endomorphism J may preserve the subbundle T ∗M ⊂ E , in which case it induces
a complex structure on the underlying manifold. In general, J is not required to preserve
the structure of E as an extension; indeed J(T ∗M)may be disjoint from T ∗M , in which
case J(T ∗M) provides a splitting ofπ : E −→ T M with isotropic and involutive image,
and therefore an isomorphism E ∼= TM , with J necessarily of the form

Jω =
(

0 −ω−1

ω 0

)
, (1.2)

for ω : T M −→ T ∗M a symplectic form. In general, J(T ∗M) is a maximal isotropic,
involutive subbundle (a Dirac structure) whose intersection with T ∗M may vary in rank
over the manifold. Indeed, Q = π ◦ J|T ∗ M : T ∗M −→ T M is a real Poisson structure
controlling the local behaviour of the geometry, in the sense that near a regular point of
Q, J is isomorphic to the product of a complex and a symplectic structure [25].

Example 1.2. A holomorphic Poisson bivector field σ on the complex manifold (M, I )
determines the following generalized complex structure on the standard Courant alge-
broid E = TM :

Jσ :=
(

I Q
0 −I ∗

)
, (1.3)

where Q is the imaginary part of σ . The peculiar aspect of the generalized complex
structure Jσ is that the complex structure obtained from its action on T M ⊂ TM is
not intrinsic. Indeed, a symmetry of the Courant algebroid, such as is given by a closed
2-form B ∈ 	2,cl(M), conjugates (1.3) into

eB
Jσ e−B =

(
I − Q B Q

I ∗ B + B I − B Q B B Q − I ∗
)
. (1.4)

In fact, in [24] it is shown that in some cases, B may be chosen so that I ∗ B + B I − B Q B
vanishes, rendering (1.4) again into the form (1.3), but for a different complex structure
J = I − Q B.

The ±i eigenbundles L , L ⊂ E ⊗ C of a generalized complex structure define two
Dirac structures which are transverse, i.e. L ∩ L = {0}. In such a situation, as shown
in [37], the pair of Lie algebroids satisfy a compatibility condition rendering (L , L∗)
a Lie bialgebroid. Identifying L with L∗ using the symmetric pairing, this means that
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the Lie bracket on L may be extended to a Schouten bracket on the sheaf of graded
algebras 	•

L = 
∞(∧k L∗), and that the Lie algebroid differential dL on this algebra is
a graded derivation of the bracket. In summary, we obtain a sheaf of differential graded
Lie algebras from the transverse Dirac structures (L , L).

(L , L) � (	•
L , dL , [·, ·]) (1.5)

The above differential graded Lie algebra controls the elliptic deformation theory of
generalized complex structures [25].

Transverse Dirac structures such as (L , L) enjoy a further algebraic compatibility
condition, as follows. We first recall the Baer sum operation on Courant algebroids
[6,25,46], which is a realization of the additive structure on Ševera classes in H1(	2,cl).

Definition 1.3. Given two Courant algebroids E1, E2 on M with projections πi : Ei �→
T M, their Baer sum as extensions of T M by T ∗M, namely the bundle

E1 � E2 := (E1 ⊕T M E2)/K

for K = {(−π∗
1 ξ, π

∗
2 ξ) : ξ ∈ T ∗}, carries a natural Courant algebroid structure,

defined componentwise.

The standard Courant algebroid on TM is the identity element for the Baer sum,
and the inverse of a Courant algebroid (E, π, q, [·, ·]), called the transpose E�, is given
simply by reversing the symmetric inner product: E� = (E, π,−q, [·, ·]). The Baer
sum operation may also be applied to Dirac structures, as explained in [2,25]:

Proposition 1.4. If D1 ⊂ E1 and D2 ⊂ E2 are Dirac structures which are transverse
over T M, in the sense that π1(D1) + π2(D2) = T M, then their Baer sum

D1 � D2 := (D1 ⊕T M D2) + K

K
,

for K as in Definition 1.3, is a Dirac structure in E1 � E2.

A pair of Dirac structures D1, D2 such that D1 ∩ D2 = {0} are transverse in the
above sense, and we may form their Baer sum D�

1 � D2 ⊂ TM , where D�
1 is simply

D1 viewed as a Dirac structure in E�. From observations made in [39], it follows that
this Baer sum is given by

D�
1 � D2 = 
β ⊂ TM, (1.6)

where 
β is the graph of a Poisson structure β (see [2] for a proof). Recall that, as a Lie
algebroid, 
β ∼= T ∗M has bracket given by [d f, dg] = d(β(d f, dg)), and anchor map
β : T ∗M −→ T M . The Poisson structure β may also be described in the following
way: let PDi : E −→ Di be the projection operators for the direct sum E = D1 ⊕ D2.
Then β is given by

β = π ◦ PD1 |T ∗ M : T ∗M −→ T M. (1.7)

The geometry induced by such a pair of transverse Dirac structures (D1, D2) in E may be
understood in the following way: by projection to T M, D1 and D2 each induce singular
foliations F1,F2 on the manifold M . The transversality condition on the Di implies that
the induced foliations are transverse, in the sense T F1 + T F2 = T M . As shown in [25],
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the exact Courant algebroid E may be pulled back to any submanifold ι : S ↪→ M ,
yielding an exact Courant algebroid over S, defined by

ES := K ⊥/K , (1.8)

where K = N∗S ⊂ E |S is the conormal bundle of S. If S happens to be a leaf of the
singular foliation F induced by a Dirac structure D ⊂ E , then the Dirac structure also
pulls back, yielding an isotropic, involutive splitting sD of π : ES −→ T S. Therefore,
in the presence of two transverse Dirac structures (D1, D2), if we pull back E to a leaf
S of the singular foliation induced by D�

1 � D2, it will have two splittings sD1, sD2 ,
each obtained from one of the Dirac structures. The resulting splittings are themselves
transverse in ES , and therefore they differ by a section ωS ∈ 	2,cl(S) which must
be nondegenerate. This is precisely the symplectic form on the leaf of the Poisson
structure β.

Finally, we emphasize an algebraic implication of the Baer sum identity described
above.

Proposition 1.5. Let D1, D2 ⊂ E be Dirac structures such that D1 ∩ D2 = {0}. Then
the Baer sum D�

1 � D2 = 
β , coincides with the fiber product of the Lie algebroids
D1, D2 over T M. As a result, we have the isomorphism of sheaves of differential graded
algebras

(∧•TM , dβ) = (	•
D1
, dD1)⊗	•

T
(	•

D2
, dD2), (1.9)

where (∧•TM , dβ = [β, ·]) is the Lichnerowicz complex1 of sheaves of multivector
fields induced by the Schouten bracket with the Poisson structure β, and the anchor
maps πi : Di −→ T M induce the morphisms π∗

i : 	•
T −→ 	•

Di
from the usual de

Rham complex of M, which are used in the tensor product.

Proof. This follows from the simple observation that K = {(−π∗
1 ξ, π

∗
2 ξ) : ξ ∈ T ∗M}

intersects D1 ⊕T M D2 = {(d1, d2) ∈ D1 ⊕ D2 : π1(d1) = π2(d2)} precisely in
D1 ∩ D2 ∩ T ∗M , which vanishes since D1 ∩ D2 = {0}. In this way, D�

1 � D2 coincides,
as a Lie algebroid, with the fiber product of D1, D2 as Lie algebroids, yielding the
diagram of Lie algebroids


β ��

��

D2

��
D1 �� T M

which dualizes to the fact that the Lichnerowicz complex is given by the (graded) tensor
product (1.9). ��

This is of particular importance when studying modules over the Lie algebroids D1
or D2, i.e. vector bundles (or sheaves of OM -modules) with flat Di -connections.

Corollary 1.6. For a pair of transverse Dirac structures (D1, D2), the tensor product
of a D1-module and a D2-module is a 
β -module, i.e. a Poisson module [41,43]. In
particular, any Di -module is also a Poisson module.

1 The hypercohomology of this complex is the well-known Poisson cohomology of β.
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In the case of a generalized complex structure, we have the transverse Dirac structures
(L , L), and it was shown in [25] that their Baer sum is

L� � L = 
i Q/2 ⊂ TM, (1.10)

for the Poisson structure Q = π ◦ J|T ∗ M described earlier. A vector bundle with a flat
L-connection on a generalized complex manifold is called a generalized holomorphic
bundle [25], hence we have the following consequence of the above Baer sum:

Corollary 1.7. Any generalized holomorphic bundle inherits a Poisson module struc-
ture, for the underlying real Poisson structure.

1.2. Generalized Kähler structures. Let (E, π, q, [·, ·]) be an exact real Courant alge-
broid over the smooth manifold M .

Definition 1.8. A generalized Kähler structure on E is a pair (J+, J−) of generalized
complex structures on E which commute, i.e. J+J− = J−J+, and such that the symmetric
pairing

G(x, y) := 〈J+x, J−y〉 (1.11)

is positive-definite, defining a metric on E called the generalized Kähler metric.

A usual Kähler structure on a manifold is given by a complex structure I compatible
with a Riemannian metric g, in the sense that ω := gI is a symplectic form. This defines
the following generalized Kähler structure on TM = T M ⊕ T ∗M :

J+ =
(

0 −ω−1

ω 0

)
, J− =

(
I 0
0 −I ∗

)
, (1.12)

so that G(X + ξ,Y + η) = 1
2 (g(X,Y ) + g−1(ξ, η)) is the usual Kähler metric. The

generalized Kähler metric (1.11) is an example of a generalized metric, which may be
viewed as a reduction of structure for the Courant algebroid E , from its usual O(n, n)
structure to the compact form O(n)× O(n).

Definition 1.9. A generalized metric G on E is a positive-definite metric on E which is
compatible with the pre-existing symmetric pairing 〈·, ·〉, in the sense that it is obtained by
choosing a maximal positive-definite subbundle C+ ⊂ E (with orthogonal complement
C− := C⊥

+ ), and defining

G(x, y) := 〈x+, y+〉 − 〈x−, y−〉,
where x± denotes the orthogonal projection to C±.

Identifying E with E∗ using 〈·, ·〉, we may view G as a self-adjoint endomorphism
G : E −→ E , with ±1 eigenbundle given by C±. For a generalized Kähler structure,
G = −J+J−, so that for (1.12), G is given by

G =
(

0 g−1

g 0

)
.
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Example 1.10. Any positive-definite subbundle C+ ⊂ TM is the graph of a bundle
map θ : T M −→ T ∗M with positive-definite symmetric part. That is, θ = b + g,
with b ∈ 	2(M) and g a Riemannian metric. Then C± is the graph of b ± g. The
corresponding endomorphism G : E −→ E is then described by

Gg,b = eb
(

0 g−1

g 0

)
e−b =

( −g−1b g−1

g − bg−1b bg−1

)
.

Note that the induced Riemannian metric on T M ⊂ TM is g − bg−1b, while the metric
on T ∗M is the usual inverse metric of g.

An immediate consequence of the choice of generalized metric is that the projection
π : E −→ T M has two splittings s± corresponding to the two subbundles C±. The
average of these splittings, s = 1

2 (s+ + s−), is then a splitting of π with isotropic image
G(T ∗M). The splitting induces an isomorphism s∗ : E −→ TM which sends the definite
subbundles C± to the graphs 
±g , for g a Riemannian metric on M . In summary, we
have the following:

Proposition 1.11. The choice of a generalized metric G on E is equivalent to a choice
of isotropic splitting s : T M −→ E, together with a Riemannian metric g on M, such
that

C± = {s(X)± g(X) : X ∈ T M}. (1.13)

As a result of the splitting s determined by the generalized metric, we apply the
results of [46] to immediately obtain a closed 3-form

H(X,Y, Z) := 〈s(X), [s(Y ), s(Z)]〉, (1.14)

called the torsion of the generalized metric. The torsion determines the Courant bracket
induced on TM by s∗, via

[X + ξ,Y + η] = [X,Y ] + L Xη − iY dξ + iX iY H. (1.15)

We now describe the geometric structures induced on M by the generalized Kähler
pair (J+, J−). First, we leave aside questions of integrability and describe almost gen-
eralized Kähler structures, which are generalized Kähler structures without the Courant
involutivity conditions on J+ and J−.

An almost generalized complex structure J+ is compatible with G when it preserves
C+ (and hence, necessarily, C−), or equivalently, when it commutes with G. This com-
patibility is also equivalent to the fact that J− := GJ+ is an almost generalized complex
structure. Since C± are the ±1 eigenbundles of G, we have

J+|C± = ±J−|C± , (1.16)

and so the complex structures on the bundles C± induced by J+, J− coincide up to sign.
Using the identifications of metric bundles

s± : (T M, g) −→ (C±,±〈·, ·〉),
we obtain two almost complex structures I+, I− on the manifold M , each of which is
compatible with the Riemannian metric g, hence forming an almost bi-Hermitian struc-
ture. We now show that the correspondence (J+, J−) �→ (g, I+, I−) is an equivalence.
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Theorem 1.12. An almost generalized Kähler structure (J+, J−) on E is equivalent to
the data (s, g, I+, I−), where s is an isotropic splitting of E, g is a Riemannian metric,
and I± are almost complex structures compatible with g.

Proof. We have already explained how to extract (s, g, I±) from (J+, J−). To reconstruct
(J+, J−) from the bi-Hermitian data, we construct definite splittings s± via

s± := s ± g : T M −→ E,

following Eq. (1.13), and use the fact that J+, J− are built from the complex structures
I± by transporting them to C± and using Eq. (1.16):

J± := s+ I+s+|−1
C+

± s− I−s−|−1
C− , (1.17)

which expands to the expression:

J± = s−1∗
1

2

(
I+ ± I− −(ω−1

+ ∓ ω−1− )

ω+ ∓ ω− −(I ∗
+ ± I ∗−)

)
s∗, (1.18)

where s∗ : E −→ TM is the isomorphism induced by s, and ω± := gI± are the
nondegenerate 2-forms determined by the almost Hermitian structures (g, I±). The two
constructions are easily seen to be mutually inverse. ��

Before proceeding to translate the integrability condition from the generalized com-
plex structures to the bi-Hermitian data, we make some comments concerning orienta-
tion.

Remark 1.13. The type [25] of a generalized complex structure J at a point is defined to
be

type(J) := 1

2
corankR(Q),

where Q = π ◦J|T ∗ is the real Poisson structure associated to J. On a real 2n-manifold,
the type may vary between 0, where J defines a symplectic structure, and n, where it
defines a complex structure. The parity of the type, however, is locally constant, as it
is determined by the orientation induced by J on E (det E is canonically trivial, we
may view J as a section of ∧2 E , and J

2n/(2n)! = +1 or −1 as type(J) is even or odd,
respectively). If we have an almost generalized Kähler structure on a real 2n-manifold,
the equation G = −J+J− yields

1

(2n)!J
2n
+

1

(2n)!J
2n− = (−1)n,

Implying that J+ and J− must have equal parity in real dimension 4k and unequal parity
in real dimension 4k + 2. Furthermore, by Eq. (1.17), the parity of J+ is even or odd as
the orientations induced by I± agree or disagree, respectively. This leads immediately to
the fact that in real dimension 4k, both J± may either have even parity, in which case I±
induce the same orientation, or odd parity, in which case I± induce opposite orientations
on M . In dimension 4k + 2, however, there is no constraint placed on the orientations of
I±, since I+ may be replaced with −I+ without altering the parity of J±.

Example 1.14. If dimR M = 4, an almost generalized Kähler structure may either have
type(J+) = type(J−) = 1, in which case I± induce opposite orientations, or J± both
have even type, in which case I± must induce the same orientation on M .
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1.3. Integrability and bi-Hermitian geometry. Let (s, g, I±) be the almost bi-Hermitian
data corresponding to an almost generalized Kähler structure (J+, J−), as in Theo-
rem 1.12. In this section, we describe the integrability conditions on (s, g, I±) corre-
sponding to the integrability of J+ and J−.

Recall that the integrability condition for J± is that the +i-eigenbundles L± =
ker(J± − i1) are involutive for the Courant bracket on E ⊗ C. Since J± commute,
the eigenbundle of J+ decomposes into eigenbundles of J−, so that

L+ = �+ ⊕ �−, (1.19)

where �+ = L+ ∩ L− and �− = L+ ∩ L−. Since G = −J+J− has eigenvalue +1 on
�+ ⊕ �+, we also have

C± ⊗ C = �± ⊕ �±. (1.20)

As a result, we obtain a decomposition of the Courant algebroid into four isotropic
subbundles, each of complex dimension n on a real 2n-manifold:

E ⊗ C = �+ ⊕ �− ⊕ �+ ⊕ �−. (1.21)

Since �± are intersections of involutive subbundles, they are individually involutive.
This is actually an equivalent characterization of the integrability condition on J±.

Proposition 1.15. The almost generalized Kähler structure (J+, J−) is integrable if and
only if both the subbundles �± described above are involutive.

Proof. That the integrability of J± implies the involutivity of �± is explained above.
Now let �± be involutive. We must show that L+ = �+ ⊕ �− and L− = �+ ⊕ �− are
involutive. To prove that L+ is involutive, we need only show that if x± is a section of
�±, then [x+, x−] is a section of L+. We do this by showing [x+, x−] is orthogonal to
both �+, �−, and hence must lie in �⊥+ ∩ �⊥− = (�+ ⊕ �−)⊥ = L⊥

+ = L+, where we have
used the fact that L+ is maximal isotropic. For y± any section of �± we have:

〈[x+, x−], y+〉 = π(x+)〈x−, y+〉 − 〈x−, [x+, y+]〉 = 0,

〈[x+, x−], y−〉 = −〈[x−, x+], y−〉 = π(x−)〈x+, y−〉 − 〈x+, [x−, y−]〉 = 0,

hence [x+, x−] is in L+, as required. L− is shown to be involutive in the same way. ��
To understand what this integrability condition imposes on the bi-Hermitian data,

we use Theorem 1.12 to express the bundles �± purely in terms of the data (s, g, I±).
By (1.19) and (1.20), we see that �± is the +i eigenbundle of J+ acting on C± ⊗C. Since
the almost complex structures I± are defined via the restriction of J+ to C±, we obtain:

�± = {(s ± g)X : X ∈ T 1,0
± M}, (1.22)

where T 1,0
± M is the +i eigenbundle of the almost complex structure I±. Using the

2-forms ω± = gI±, we obtain a more useful form of Eq. (1.22):

�± = {s X ∓ iω± X : X ∈ T 1,0
± M}

= e∓iω±s(T 1,0
± M), (1.23)

where e∓iω± acts on x ∈ E via x �→ x + iπ(x)(∓iω±).
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Theorem 1.16. Let (J+, J−) be an almost generalized Kähler structure, described equiv-
alently by the almost bi-Hermitian data (s, g, I+, I−) as above. (J+, J−) is integrable
if and only if I± are integrable complex structures on M, and the following constraint
holds:

± dc±ω± = H, (1.24)

where H ∈ 	3,cl(M,R) is the closed 3-form corresponding to the section s via
Eq. (1.14), and dc± = i(∂± − ∂±) are the real Dolbeault operators corresponding
to the complex structures I±.

Proof. Using expression (1.23) for �±, let e∓iω±s(X), e∓iω±s(Y ) be two sections of �±,
where X,Y are vector fields in T 1,0

± M . Then the properties of the Courant bracket and
the definition of H from Eq. (1.14) yield

[e∓iω±s(X), e∓iω±s(Y )] = e∓iω±[s(X), s(Y )] + iY iX d(∓iω±)
= e∓iω±(s([X,Y ]) + iX iY H) + iY iX d(∓iω±)
= e∓iω±s([X,Y ]) + iX iY (H ± idω±).

This is again a section of �± if and only if [X,Y ] is in T 1,0
± M and (H ± idω±)(3,0)+(2,1)

vanishes. The first condition is precisely the integrability of the complex structures
I±, and in this case since ω± is of type (1, 1) with respect to I±, dω± has no (3, 0)
component. The second condition is then the statement that

H2,1 = ∓i∂±ω±,
which together with its complex conjugate yields H = ±dc±ω±, as required. ��

The above theorem demonstrates that generalized Kähler geometry, involving a pair of
commuting generalized complex structures, may be viewed classically as a bi-Hermitian
geometry, in which the pair of usual complex structures need not commute, and with
an additional constraint involving the torsion 3-form H . This bi-Hermitian geometry is
known in the physics literature: Gates et al. showed in [15] that upon imposing N = (2, 2)
supersymmetry, the geometry induced on the target of a 2-dimensional sigma model is
precisely this one.

Corollary 1.17. If the torsion H of a compact generalized Kähler manifold has nonva-
nishing cohomology class in H3(M,R), then the complex structures I± must both fail
to satisfy the ddc±-lemma; in particular, they do not admit Kähler metrics and are not
algebraic varieties.

Proof. Suppose I+ satisfies the ddc
+-lemma. Then since H = dcω+ and d H = 0, we

conclude there exists a+ ∈ 	1(M,R) with H = ddc
+a+, implying H is exact. The same

argument holds for I−. ��

1.4. Examples of generalized Kähler manifolds. The main examples of generalized
Kähler manifolds in the literature were constructed in several different ways: by imposing
symmetry [29], by a generalized Kähler reduction procedure analogous to symplectic
reduction [8,9,35], by recourse to twistor-theoretic results on surfaces [3,4], by a flow
construction using the underlying real Poisson geometry [24,30], and by developing a
deformation theory for generalized Kähler structures [17–20] whereby one may deform
usual Kähler structures into generalized ones. We elaborate on some illustrative examples
from [23].
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Example 1.18. Let (M, g, I, J, K ) be a hyper-Kähler structure. Then clearly (g, I, J ) is
a bi-Hermitian structure, and since dωI = dωJ = 0, we see that (g, I, J ) defines a gen-
eralized Kähler structure for the standard Courant structure on TM . From formula (1.18),
we reconstruct the generalized complex structures:

J± = 1

2

(
I ± J −(ω−1

I ∓ ω−1
J )

ωI ∓ ωJ −(I ∗ ± J ∗)

)
. (1.25)

Note that (1.25) describes two generalized complex structures of symplectic type, a fact
made manifest via the following expression:

J± = e±ωK

(
0 − 1

2 (ω
−1
I ∓ ω−1

J )

ωI ∓ ωJ 0

)
e∓ωK .

The same observation holds for any two non-opposite complex structures I1, I2 in the
2-sphere of hyper-Kähler complex structures, namely that the bi-Hermitian structure
given by (g, I1, I2) defines a generalized Kähler structure where both generalized com-
plex structures are of symplectic type.

The bi-Hermitian structure obtained from a hyperkähler structure is an example of a
strongly bi-Hermitian structure in the sense of [3], i.e. a bi-Hermitian structure such that
I+ is nowhere equal to ±I−. From expression (1.18), it is clear that in four dimensions,
strongly bi-Hermitian structures with equal orientation correspond exactly to generalized
Kähler structures where both generalized complex structures are of symplectic type.

Example 1.19. The generalized Kähler structure described in Example 1.18 can be
deformed using a method similar to that described in [24]. The complex 2-form
σI = ωJ + iωK on a hyper-Kähler structure is a holomorphic symplectic form with
respect to I , and similarly σJ = −ωI + iωK is holomorphic symplectic with respect to
J . As in Eq. (1.3), these define generalized complex structures on TM given by:

JσI :=
(

I ω−1
K

0 −I ∗

)
, JσJ :=

(
J ω−1

K

0 −J ∗

)
. (1.26)

Interestingly, the symmetry eF , for the closed 2-form F = ωI +ωJ , takes JσI to JσJ , so
that

eF
JσI e−F = JσJ .

Now choose f ∈ C∞(M,R) and let X f be its Hamiltonian vector field for the Poisson
structure ω−1

K . Let ϕt be the flow generated by this vector field, and define

Ft ( f ) :=
∫ t

0
ϕ∗

s (ddc
J f )ds.

In [24], it is shown that the symmetry eFt takes JσJ to the deformed generalized complex
structure

JσJt
=

(
Jt ω−1

K

0 −J ∗
t

)
,
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where Jt = ϕ∗
t (J ), and that as a result, I and Jt give a family of generalized Kähler

structures with respect to the deformed metric

gt = −1

2
(F + Ft ( f ))(I + Jt ),

where g0 = − 1
2 F(I + J ) is the original hyper-Kähler metric.

The idea of deforming a Hyperkähler structure to obtain a bi-Hermitian structure
appeared, with a different formulation, in [3] (see also [29]), where it is shown for
surfaces that the Hamiltonian vector field can be chosen so that the resulting deformed
metric is not anti-self-dual, and hence by a result in [42], cannot admit more than two
distinct orthogonal complex structures.

Example 1.20 (The Hopf surface: odd generalized Kähler). Consider the standard Hopf
surface X = (C2 −{0})/(x �→ 2x), and denote its complex structure by I−. The product
metric on X ∼= S3 × S1 can be written as follows in the usual affine coordinates on C

2:

g = 1

4πR2 (dx1dx̄1 + dx2dx̄2), (1.27)

for R2 = x1 x̄1 + x2 x̄2. The complex structure I− is manifestly Hermitian for this metric,
and has associated 2-form ω− = gI− given by:

ω− = i

4πR2 (dx1 ∧ dx̄1 + dx2 ∧ dx̄2).

The complex derivative H = −dcω− is a real closed 3-form on X generating H3(X,Z).
Now let I+ be the complex structure on the Hopf surface obtained by modifying

the complex structure on C
2 such that (x1, x2) are holomorphic coordinates; note that

I± have opposite orientations, and are both Hermitian with respect to g. Also, it is
clear that dc

+ω+ = −dc−ω− = H . Therefore, the bi-Hermitian data (g, I±) defines
a generalized Kähler structure on (TX, H). Since I± induce opposite orientations, the
corresponding generalized complex structures J± are both of odd type, by Example 1.14.
Note that the complex structures I± happen to commute, a special case studied in [4]. This
particular generalized Kähler geometry first appeared in the context of a supersymmetric
SU (2)× U (1) Wess–Zumino–Witten model [44].

Example 1.21 (The Hopf surface: even generalized Kähler). Let (g, I−) be the standard
Hermitian structure on the Hopf surface, as in Example 1.20. We specify a different
complex structure I+ by providing a generator 	+ ∈ 	2,0

+ (X), namely:

	+ := 1

R4 (x̄1dx1 + x2dx̄2) ∧ (x̄1dx2 − x2dx̄1). (1.28)

Comparing this with the usual complex structure, where the generator is given by	− =
1

R2 dx1 ∧ dx2, we see that I+ coincides with I− along the curve E2 = {x2 = 0}, and
coincides with −I− along E1 = {x1 = 0}. From the expression (1.28), we see that
	+ spans an isotropic plane for the metric (1.27), hence (g, I+) is also Hermitian, with
associated 2-form

ω+ = i

4πR2 (θ1 ∧ θ̄1 + θ2 ∧ θ̄2),
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with θ1 = x̄1dx1 +x2dx̄2 and θ2 = x̄1dx2 −x2dx̄1. This 2-form also satisfies dc
+ω+ = H ,

so that (g, I±) is an even generalized Kähler structure for (TX, H). From the explicit
formulae (1.18) for J±, we see that their real Poisson structures are given by

Q± = −1

2
(ω−1

+ ∓ ω−1− ) = 1

2
(I+ ∓ I−)g−1. (1.29)

Hence Q+ drops rank from 4 to 0 along E2, and Q− drops rank similarly on E1. In
other words, J± are generically of symplectic type but each undergoes type change to
complex type along one of the curves.

The existence of generalized Kähler structures with nonzero torsion class on the Hopf
surface implies, by Corollary 1.17, the well-known fact that the Hopf surface is non-
algebraic. It is natural to ask whether the Hopf surface might admit generalized Kähler
structures with vanishing torsion class. We now show that this is not the case.

Proposition 1.22. Any generalized Kähler structure with I+ given by the Hopf surface
X = (C2 − {0})/(x �→ 2x) must have nonvanishing torsion [H ] ∈ H3(X,R).

Proof. The Hopf surface has h2,1 = 1, generated by the (2,1) component of the standard
volume form ν of S3, which satisfies [ν2,1] = [ν1,2] = 1

2 [ν] in de Rham cohomology.
Suppose that X were the I+ complex structure in a generalized Kähler structure with
torsion H . By the generalized Kähler condition, H2,1 = −i∂+ω+, and so d H2,1 =
−i∂+∂+ω+ = 0.

We claim that H2,1 must be nonzero in Dolbeault cohomology. If not, we would have
∂+ω+ = ∂+τ , for τ ∈ 	2,0(X). Now let E = {x1 = 0}, a null-homologous holomorphic
curve in X , and let D be a smooth 3-chain with ∂D = E . Then

∫
E
ω+ =

∫
D

dω+ =
∫

D
d(τ + τ̄ ) =

∫
E
(τ + τ̄ ),

which is a contradiction because ω+ is a positive (1, 1) form, forcing the left hand side
to be nonzero, while τ is of type (2, 0) and vanishes on E .

Because h2,1 = 1, there must exist σ ∈ 	2,0 such that H2,1 = cν2,1 + ∂σ , with
c ∈ C

∗, and since ∂σ = dσ , we have [H2,1] = c[ν2,1] in de Rham cohomology. But
[H2,1] = 1

2 [H ], since H2,1 − H1,2 = −idω+. Hence [H ] �= 0 in H3(M,R). ��
Example 1.23 (Even-dimensional real Lie groups). It has been known since the work of
Samelson and Wang [45,49] that any even-dimensional real Lie group G admits left-
and right-invariant complex structures JL , JR . If the group admits a bi-invariant positive-
definite inner product b(·, ·), the complex structures can be chosen to be Hermitian with
respect to b. The bi-Hermitian structure (b, JL , JR) is then a generalized Kähler structure
on (TG, H), where H is the Cartan 3-form associated to b, defined by H(X,Y, Z) =
b([X,Y ], Z). To see this, we compute dc

JL
ωJL :

A = dc
JL
ωJL (X,Y, Z) = dωJL (JL X, JL Y, JL Z)

= −b([JL X, JL Y ], Z) + c.p.

= −b(JL [JL X,Y ] + JL [X, JL Y ] + [X,Y ], Z) + c.p.

= (2b([JL X, JL Y ], Z) + c.p.)− 3H(X,Y, Z)

= −2A − 3H(X,Y, Z),
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Proving that dc
JL
ωJL = −H . Since the right Lie algebra is anti-isomorphic to the left,

the same calculation with JR yields dc
JR
ωJR = H , and finally we have

−dc
JL
ωJL = dc

JR
ωJR = H,

as required. For G = SU (2)× U (1), we recover Example 1.21 from this construction.
Note that JL , JR are isomorphic as complex manifolds, via the inversion on the group.

2. Holomorphic Dirac Geometry

In the previous section, we saw that a generalized Kähler structure on M gives rise to a
pair of complex manifolds X± = (M, I±)with the same underlying smooth manifold. In
this section, we describe the relationship between the complex manifolds X±. Although
there is generally no morphism between X+ and X− in the holomorphic category, we
show that X± are each equipped with holomorphic Courant algebroids which decompose
as a sum of transverse holomorphic Dirac structures, and that the Dirac structures on
X+ are Morita equivalent to those on X−. This provides a holomorphic interpretation to
the deformation theory of generalized complex structures, as well as to the notion of a
generalized holomorphic bundle.

2.1. Holomorphic Courant algebroids. In the following sections, we will need to under-
stand Courant algebroids in the holomorphic category. Ševera’s classification proceeds
in the same way, with the result that the sheaf cohomology group H1(	2,cl) describes
holomorphic Courant algebroids up to isomorphism. Here 	k,cl refers to the sheaf of
closed holomorphic differential k-forms. On a complex manifold, the following exact
sequence of sheaves:

0 �� 	2,cl �� 	2 ∂ �� 	3,cl �� 0

leads to the long exact sequence:

H0(	2)
∂ �� H0(	3,cl) �� H1(	2,cl) �� H1(	2)

∂ �� H1(	3,cl) . (2.1)

If the ∂∂-lemma holds, then the left- and right-most maps in (2.1) vanish and
H0(	3,cl) = H0(	3), exhibiting the classification of holomorphic Courant algebroids
as an extension:

0 �� H0(	3) �� H1(	2,cl) �� H1(	2) �� 0 (2.2)

We may interpret this as follows: given a holomorphic Courant algebroid E , the map
to H1(	2) represents the isomorphism class of the extension (1.1), where we observe
that the extension class, which a priori lies in H1(	1 ⊗	1), is forced to be skew by the
orthogonal structure q. On the other hand, the inclusion H0(	3) ↪→ H1(	2,cl) can be
seen from the fact that any Courant bracket [·, ·] may be modified, given a holomorphic
(3, 0)-form H ∈ H0(	3), as follows:

[e1, e2]H := [e1, e2] + ι(iπ(e1)iπ(e2)H).
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In general, the ∂∂-lemma fails, and so the short exact sequence (2.2) may not hold.
To further analyze this case, we use a Dolbeault resolution of 	2,cl, as follows. First
resolve the sheaf using the local ∂∂-lemma:

0 �� 	2,cl �� Z2,0
∂

∂ �� Z2,1
∂

∂ �� · · · ,
where Z p,q

∂ is the sheaf of smooth ∂-closed (p, q) forms. Then use the Dolbeault res-
olution for each Z p,q

∂ given by ∂ to conclude that H1(	2,cl) is given by the first total
cohomology of the double complex

	4,0

	3,0

∂

��

∂ �� 	3,1

	2,0

∂

��

∂ �� 	2,1

∂

��

∂ �� 	2,2

(2.3)

Proposition 2.1. Holomorphic Courant algebroids are classified up to isomorphism by

H1(	2,cl) = (	3,0(M)⊕	2,1(M)) ∩ ker d

d(	2,0(M))
. (2.4)

Example 2.2. Given a Dolbeault representative T + H for a class in (2.4), with T ∈ 	2,1

and H ∈ 	3,0, we may construct a corresponding holomorphic Courant algebroid.
Viewing T as a map T : T1,0 M −→ T ∗

0,1 M ⊗ T ∗
1,0 M , define the following partial

connection on sections of E = T1,0 M ⊕ T ∗
1,0 M :

D =
(
∂ 0

−T ∂

)
: 
∞(E) −→ 
∞(T ∗

0,1 M ⊗ E),

where ∂ are the usual holomorphic structures on the tangent and cotangent bundles.
D squares to zero and defines a new holomorphic structure on the complex bundle E ,
which then becomes a holomorphic extension of T1,0 by T ∗

1,0. A section X + ξ of E is

D-holomorphic if and only if ∂X = 0 and iX T + ∂ξ = 0.
The symmetric pairing on E is the usual one obtained from the duality pairing, but

the bracket is twisted as follows:

[X + ξ,Y + η] = [X,Y ] + L Xη − iY dξ + iX iY h, (2.5)

where h := H + T . Under the assumption that d(T + H) = 0, this bracket is well-
defined on the sheaf of D-holomorphic sections of E , and defines a holomorphic Courant
algebroid, as required.

Example 2.3. Let X be the Hopf surface from Example 1.20. Its Hodge numbers h p,q

all vanish except h0,0 = 1 , h0,1 = 1, h2,1 = 1 and h2,2 = 1. Hence, the group (2.4)
classifying holomorphic Courant algebroids is H1(	2) ∼= C. The Courant algebroids
in this 1-parameter family may be described explicitly using Example 2.2, but also
holomorphically, as follows. The union of the pair of elliptic curves E1 = {x1 = 0} and
E2 = {x2 = 0} is an anticanonical divisor, corresponding to the meromorphic section
B = c(x1x2)

−1dx1 ∧ dx2, c ∈ C
∗. Glue T(X\E1) to T(X\E2) using the holomorphic

closed 2-form B to obtain a Courant algebroid with modified extension class.
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On any complex manifold, there is an injection of sheaves from the holomorphic
closed 2-forms to the smooth real closed 2-forms,

	
2,cl
hol −→ 	2,cl∞ (R), B2,0 �→ 1

2
(B2,0 + B2,0).

For this reason we have a map H1(	
2,cl
hol ) −→ H1(	

2,cl∞ ); indeed, the underlying real
vector bundle of any holomorphic Courant algebroid is itself a smooth real Courant
algebroid.

Example 2.4. The real Courant algebroid on X ∼= S3×S1 corresponding to the holomor-
phic Courant algebroid described in Example 2.3 is obtained by choosing a Dolbeault rep-
resentative of the Čech cocycle 1

2 (B+B). For B = c(x1x2)
−1dx1∧dx2, c ∈ C, we obtain

a class in H3(X,R) which evaluates on the fundamental cycle of S3 to −4π2Re(c).

2.2. Holomorphic reduction. A generalized Kähler structure gives rise to a holomorphic
Courant algebroid over each of the underlying complex manifolds X−, X+. To see this,
our main tool will be holomorphic Courant reduction, developed in Appendix A, applied
to the decomposition (1.21) induced by the generalized Kähler structure:

E ⊗ C = �+ ⊕ �− ⊕ �+ ⊕ �−.

The bundles �± satisfy π(�±) = T 0,1
± M , and hence are liftings of T 0,1

± M to E ⊗ C in

the sense of Definition A.1. By Theorem A.5, we obtain the fact that E± = �
⊥
±/�± are

holomorphic Courant algebroids over X±.

Proposition 2.5. The bundles �± are liftings of T0,1 X± to E ⊗ C, hence define two
reductions of E ⊗C to holomorphic Courant algebroids E± over the complex manifolds
X±.

(E ⊗ C,M)
�−

��� � � � � �
�+

��������

(E−, X−) (E+, X+)

(2.6)

Furthermore, the isomorphism class [E±] is given by the (2, 1) component (with respect
to I±) of the torsion of the generalized Kähler metric:

[E±] = [2H (2,1)±] ∈ H1(X±;	2,cl).

Proof. The existence of the reductions follows from Theorem A.5, as explained above.
To compute the isomorphism classes, we write the lifting �± explicitly using Eq. (1.23),
namely �± = e∓iω±s(T1,0 X±), and use the explicit form for the cocycle given in
Remark A.3, yielding

[E±] = [H (2,1)± − ∂±(±iω±)].
Since H (2,1)± = ∓i∂±ω± from (1.24), we obtain the required cocycle 2H (2,1)± . ��
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Remark 2.6. For a more explicit description of E±, we may use the canonical splitting s
given by the generalized Kähler metric to (smoothly) split the sequence

0 �� T ∗
1,0 X± �� E± �� T1,0 X± �� 0 ,

by defining the following map s± : T1,0 X± −→ E± = �
⊥
±/�±:

s±(X) := s(X)∓ gX = s(X)± iω± X mod �±,

for X ∈ T1,0 X±. The holomorphic structure on E± is then computed via (A.3), using the
Courant bracket on TM given by the torsion 3-form H . The resulting Courant algebroid
is E± = T1,0 X± ⊕ T ∗

1,0 X±, with a modified holomorphic structure as in Example 2.2:

D± =
(

∂± 0
−2H (2,1)± ∂±

)
.

The holomorphic Courant algebroids (E±, X±) are closely related, as they are both
reductions of the same smooth Courant algebroid. Furthermore, the Lie algebroids �−, �+
are compatible in the sense that �+ ⊕ �− ⊂ E ⊗ C is a Dirac structure, hence a Lie
algebroid. This configuration is well-known in the literature and is called a matched
pair of Lie algebroids [38,40]. We now describe several consequences of these two
compatible reductions.

Following the philosophy of symplectic reduction applied to Courant algebroids, we
may also reduce Dirac structures from E ⊗ C to E±, via Proposition A.6. Applying
this to the Dirac structures given by the ±i-eigenbundles of J±, we obtain holomorphic
Dirac structures in E±.

Theorem 2.7. Each of the holomorphic Courant algebroids E± over the complex mani-
folds underlying a generalized Kähler manifold contains a pair of transverse holomor-
phic Dirac structures

E± = A± ⊕ B±,

whereA± are both the reduction of the−i -eigenbundle of J+ and (B+,B−)are reductions
of the −i and +i eigenbundles of J−, respectively.

Proof. Consider the reduction by �−. The Dirac structures in E ⊗ C given by the −i-
eigenbundle of J+ and the +i-eigenbundle of J− are as follows:

L+ = �+ ⊕ �−, L− = �+ ⊕ �−.

Since they both contain �− as an involutive subbundle, it follows that both Dirac struc-

tures have intersection with �
⊥
− of constant rank, and also that both L−, L+ are �−-

invariant. Hence by (A.4), they reduce to holomorphic Dirac structures A−,B− in the
holomorphic Courant algebroid E−. These are transverse simply because �+, �+ have
zero intersection. The same argument applies for the reduction by �+. ��
Remark 2.8. Using the splittings s± from Remark 2.6, we can describe the Dirac struc-
tures explicitly as follows. For simplicity, we describe the Dirac structure B+ inside
E+ = A+ ⊕ B+. The Dirac structure B+ is obtained by reduction of �̄+ ⊕ �−, which has

image in �
⊥
+ /�+ isomorphic to �− ∼= T1,0 X−. Hence we give a map T1,0 X− −→ E+

with image B+.
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Let P+ be the projection of a vector to T1,0 X+, and let P̄+ be the complex conjugate
projection. For any X ∈ T1,0 X−, we have X − gX ∈ �−, and therefore

X − gX = (P+ X + P+ X)− g(P+ X + P+ X)

= (P+ X − g P+ X) + (P+ X − g P+ X)

= (P+ X − g P+ X)− 2g P+ X (mod �+),

where the last two terms are in s+(T1,0 X+) and T ∗
1,0 X+, respectively. Hence the map

X �→ P+ X − 2g P+ X

is an isomorphism T1,0 X− −→ B+. In fact the same map gives an isomorphism
T0,1 X− −→ A+.

Remark 2.9. As complex bundles, B± are isomorphic to T(1,0)X∓. In other words, B+, a
holomorphic Dirac structure on X+, is isomorphic as a smooth bundle to the holomorphic
tangent bundle of the opposite complex manifold X−, and vice versa for B−. The way
in which the holomorphic tangent bundle of X− acquires a holomorphic structure with
respect to X+ seems particularly relevant to the study of so-called heterotic compactifi-
cations with (2, 0) supersymmetry [34,47], where only one of the complex structures I±
is present, but there is an auxiliary holomorphic bundle which appears to play a similar
role to B±.

The presence of transverse Dirac structures in each of E± immediately implies,
by (1.6) and the surrounding discussion, that X± inherit holomorphic Poisson structures.
We now describe these explicitly, and verify that they coincide with the holomorphic
Poisson structures discovered by Hitchin [29].

Proposition 2.10. By forming the Baer sum A�± � B±, the transverse Dirac structures
A±,B± give rise to holomorphic Poisson structures σ± on the complex manifolds X±,
both of which have real part

Re(σ±) = 1

8
g−1[I ∗

+ , I ∗−].

Proof. Following (1.7), we compute σ± explicitly using the decomposition �
⊥
± = �∓ ⊕

�+ ⊕ �− and the canonical splitting of E given by the generalized Kähler metric. Let
P± = 1

2 (1 − i I±) be the projection of a vector or covector to its (1, 0)± part, and let
P± be its complex conjugate. Then σ± applied to ξ ∈ T ∗ X± ⊗ C is given by taking

the component α of P±ξ ∈ �⊥± along �∓, and then projecting it to (T X± ⊗ C)/T0,1 X±.
Computing α, we obtain

(P∓ P±ξ)∓ g−1(P∓ P±ξ),

and projecting α we obtain ∓P±g−1 P̄∓ P±ξ , so that our expression for σ± is

σ± = ∓g−1 P± P∓ P±

= ∓1

8
g−1(1 + i I ∗±)(1 + i I ∗∓)(1 − i I ∗±)

= 1

8
g−1([I ∗

+ , I ∗−] + i I ∗±[I ∗
+ , I ∗−]). (2.7)

��
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Example 2.11. To give a description of the Dirac structures (A−,B−) for the generalized
Kähler structure on the Hopf surface from Example 1.21, we compute the isomorphism
T0,1 X+ −→ A− as in Remark 2.8, yielding X �→ P− X + 2g P− X , and apply it to the
basis of (0, 1)+ vectors given by R−2g−1(x̄1dx1 + x2dx̄2) and R−2g−1(x̄1dx2 − x2dx̄1),
obtaining the following basis of holomorphic sections for A−:

x2
∂

∂x2
+

1

2πR2 x̄1dx1, −x2
∂

∂x1
+

1

2πR2 x̄1dx2.

The same prescription produces a basis for B−:

x1
∂

∂x1
+

1

2πR2 x̄2dx2, x1
∂

∂x2
− 1

2πR2 x̄2dx1.

We see from this that the anchor map for A− is an isomorphism except along the curve
{x2 = 0} where it has rank zero, whereas the anchor map for B− drops rank along
{x1 = 0}. Computing the Poisson tensor σ− using (2.7) yields

σ− = −x1x2
∂

∂x1

∂

∂x2
,

which is an anticanonical section vanishing on the union of the degeneration loci of A−
and B−.

The fact that the ±i eigenbundles of J± descend to transverse holomorphic Dirac
structures provides a great deal of information concerning the classical geometry that they
determine on the base manifold. Just as in Sect. 1.1, where we discussed the transverse
singular foliations induced on a manifold by transverse Dirac structures, we have a
similar result here.

Proposition 2.12. The transverse holomorphic Dirac structures A±,B± in E± induce
transverse holomorphic singular foliations F±,G± on X±. The intersection of a leaf of
F± with a leaf of G± is a (possibly disconnected) symplectic leaf for the holomorphic
Poisson structure σ±. Furthermore, the singular foliations F±,G± coincide with the
foliations induced by the generalized complex structures J+, J−, respectively.

Proof. The behaviour of the holomorphic Dirac structures is precisely as in the real
case, discussed in Sect. 1.1. To see why the holomorphic foliations coincide with the
generalized complex foliations, we may appeal to the reduction procedure for Dirac
structures, which makes it evident.

Alternatively, observe that in order to extract a foliation from a holomorphic Lie
algebroid A over X , one possible way to proceed is to first represent the holomorphic
Lie algebroid as a smooth Lie algebroid with compatible holomorphic structure, by
forming the associated complex Lie algebroid A = A ⊕ T0,1 X as in [33]. Then take the
fiber product over T X ⊗C with the complex conjugate A = A⊕ T1,0 X , to obtain a real
Lie algebroid, defining a foliation of X .

Applying this to the Lie algebroidA± over X±, we see immediately that the associated
complex Lie algebroid A± ⊕ T0,1 X± is precisely �+ ⊕ �− = L+, the −i-eigenbundle
of J+. Furthermore, the fiber product construction yields

A′± ⊗T X±⊗C A′
± = L+ ⊗T X±⊗C L+,

which by (1.10) is the Lie algebroid corresponding to the real Poisson structure associ-
ated to J+. The same argument applies to B±, relating its holomorphic foliation to that
determined by J−. ��



316 M. Gualtieri

Remark 2.13. According to the above proposition, the generalized foliation induced by
a generalized complex structure J± in a generalized Kähler pair is holomorphic with
respect to I+ and I−. The relationship between the symplectic structure of the leaves and
the induced complex structures from I± may be understood by applying the theory of
generalized Kähler reduction, as follows.

Let S ⊂ M be a submanifold and K = N∗S its conormal bundle. We saw in (1.8)
that a Courant algebroid E on M may be pulled back to S to yield a Courant algebroid
ES = K ⊥/K over S. If a generalized complex structure J on E satisfies JK ⊂ K , then
it induces a generalized complex structure Jred on the reduced Courant algebroid ES . If
S is a leaf of the real Poisson structure Q associated to J, it follows that JK ⊂ K and
that Jred is of symplectic type, reproducing the symplectic structure derived from Q.

In [8,9], it is shown that if (J+, J−) is a generalized Kähler structure for which
J+ K = K as above, then the entire generalized Kähler structure reduces to ES , with
(J+)red of symplectic type. In particular, we obtain a bi-Hermitian structure on S. We
may then perform a second generalized Kähler reduction, from S to a symplectic leaf
of (J−)red, whereupon we obtain a generalized Kähler structure where both generalized
complex structures are of symplectic type.

2.3. Sheaves of differential graded Lie algebras. A Dirac structure A ⊂ E is, in partic-
ular, a Lie algebroid, and has a Lie algebroid de Rham complex (	•

A, dA). If (A,B) is a
pair of transverse Dirac structures, then as was observed in [37], the de Rham complex
inherits further structure. It is shown there that if we make the identification B = A∗
using the symmetric pairing on E , then the Lie bracket on B extends to a differential
graded Lie algebra structure on 	•

A, so that

(	•
A, dA, [·, ·]B)

is a sheaf of differential graded Lie algebras (the degree is shifted so that	k
A has degree

k − 1).
Given a differential graded Lie algebra as above, there is a natural question which

arises: what is the object whose deformation theory it controls? In [37], the above
differential graded Lie algebra was explored in the smooth category, in which case there
is a direct interpretation in terms of deformations of Dirac structures. A deformation of
the Dirac structure A inside E = A ⊕ B may be described as the graph of a section
ε ∈ 	2

A(M), viewed as a map ε : A −→ B = A∗. It is shown in [37] that the involutivity
of this graph is equivalent to the Maurer–Cartan equation:

dAε +
1

2
[ε, ε]B = 0. (2.8)

This leads, assuming that (	•
A, dA) is an elliptic complex and M is compact, to a finite-

dimensional moduli space of deformations of A in E , presented as the zero set of an
obstruction map H2

dA −→ H3
dA

.
The deformation theory governed by a sheaf of differential graded Lie algebras in

the holomorphic category is much more subtle, for the reason that the objects being
deformed are not required to be given by global sections of the sheaf (of which there may
be none). The objects are considered to be “derived” in the sense that the Maurer–Cartan
equation (2.8) is not applied to global sections in	2

A(X) but rather to the global sections
in total degree 2 of a resolution I•• of the complex 	•

A. Note that the structure of the
resolution I•• may not, in general, be that of a differential graded Lie algebra, but only
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one up to homotopy, so one must interpret the Maurer–Cartan equation appropriately.
In any case, the moduli space is then given by an obstruction map between the derived
global sections of the differential complex (	•

A, dA), namely the hypercohomology
groups. In short, we expect a moduli space described by an obstruction map

H
2(	•

A, dA) −→ H
3(	•

A, dA).
General results concerning such deformation theories can be found, for example, in
[26,48], and a case relevant to generalized geometry has been investigated in [12].

We wish simply to observe that in our case, since the holomorphic Dirac structures
(A±,B±) are obtained by reduction from smooth Dirac structures in E ⊗ C, their de
Rham complexes are equipped with canonical resolutions by fine sheaves, which are
themselves differential graded Lie algebras controlling a known deformation problem.
We conclude with the main result of this section, which may be viewed as a holomorphic
description for the deformation theory of generalized complex structures, under the
assumption of the generalized Kähler condition.

Proposition 2.14. The derived deformation complex defined by the sheaf of holomorphic
differential graded algebras (	•

A+
, dA+ , [·, ·]B+) on the complex manifold X+ is canon-

ically isomorphic to that defined by (	•
A− , dA− , [·, ·]B−) on the complex manifold X−:

they both yield the deformation complex of the generalized complex structure J+.
Similarly, the sheaves of differential graded Lie algebras (	•

B± , dB± , [·, ·]A±) have
derived deformation complexes which are canonically complex conjugate to each other,
and are naturally isomorphic to the deformation complex of the generalized complex
structure J−.

Proof. Consider the −i eigenbundle of J+, given by L+ = �+ ⊕�−. Because L+ decom-
poses into the involutive Lie sub-algebroids �±, its de Rham complex is the total complex
of a double complex:

	k
L+

=
⊕

p+q=k

O(∧p�
∗
− ⊗ ∧q�

∗
+), dL+

= d�− + d�+
. (2.9)

Identifying �∗± with �± using the symmetric pairing on E , the above double complex
inherits a Lie bracket from the Lie algebroid L+ = �−⊕�+. Furthermore, since (L+, L+)

forms a Lie bialgebroid, we obtain that the Lie bracket on (2.9) is compatible with the
bi-grading and the differential. Finally, recall that �± is isomorphic to T(0,1)X±. As a
result, we may view the differential Z × Z-graded Lie algebra (2.9) in two ways:

i) Horizontally, using the differential d�− , the complex is a Dolbeault resolution, over
the complex manifold X−, of the de Rham complex of the holomorphic Lie algebroid
A−. The inclusion of 	•

A− in the double complex is also a homomorphism of Lie
algebras.

ii) Vertically, using the differential d�+
, the complex is a Dolbeault resolution, over X+,

of the de Rham complex of A+. Also, the inclusion of 	•
A+

is a homomorphism of
Lie algebras.

On the other hand, the total complex of this double complex has already been inter-
preted; as we saw in Sect. 1.1, the differential graded Lie algebra (	•

L+
, dL+

, [·, ·]L+)

controls the deformation theory of the generalized complex structure J+. The statement
for (	•

B± , dB± , [·, ·]A±) is shown in the same way, using instead the ±i-eigenbundles
of J−. ��
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In particular, the above result implies the following fact, striking from the point of
view of the complex manifolds X±, which are not related in any obvious holomorphic
fashion:

Corollary 2.15. We have the following canonical isomorphisms of hypercohomology
for the de Rham complexes of the holomorphic Dirac structures (A−,B−) on X− and
(A+,B+) on X+:

H
k(X−,	•

A−) = H
k(X+,	

•
A+
);

H
k(X−,	•

B−) = Hk(X+,	
•
B+
).

2.4. Morita equivalence. In the previous section, we saw that the pair (A+,B+) of
transverse holomorphic Dirac structures on the complex manifold X+ is closely related
to its counterpart (A−,B−) on X−, in that the Dirac structures A± have identical derived
deformation theory and hypercohomology groups, and similarly for B±. The purpose
of this section is to describe the relationship between (X+,A+,B+) and (X−,A−,B−)
as a Morita equivalence. Morita equivalence for Lie algebroids in the smooth category
is well-studied in Poisson geometry [14,16,50] and the version we develop here is
a special case, with additional refinements made possible by the complex structures
which are present. We use the result from [33] that a holomorphic Lie algebroid L on X
may be described equivalently by a complex Lie algebroid structure on L = L⊕ T0,1 X ,
compatible with the given holomorphic data.

Definition 2.16. Let ϕ± : M −→ X± be diffeomorphisms from a manifold M to two
complex manifolds X±, and let L± be holomorphic Lie algebroids on X±. Then L+
is Morita equivalent to L− when there is an isomorphism ψ between the associated
complex Lie algebroids L± := L± ⊕ T0,1 X±, i.e.:

ϕ∗
+ L+

ψ ��

����
��

��
��

ϕ∗−L−

����
��

��
��

M

Similarly, L+ is Morita conjugate to L− when there is an isomorphism of complex Lie
algebroids from L+ to L−.

Proposition 2.17. Let (A±,B±) be the transverse holomorphic Dirac structures on the
complex manifolds X± participating in a generalized Kähler structure. Then A+ is
Morita equivalent to A−, and B+ is Morita conjugate to B−.

Proof. This is an immediate consequence of the canonical isomorphisms of complex
Lie algebroids

A+ = A+ ⊕ T0,1 X+ = �− ⊕ �+ = A− ⊕ T0,1 X− = A−
B+ = B+ ⊕ T0,1 X+ = �− ⊕ �+ = B− ⊕ T1,0 X− = B−.

��
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Just as in [16], the Morita equivalence between A+,A− induces an equivalence
between their C-linear categories of modules. Similarly the Morita conjugacy between
B+,B− implies a C-antilinear equivalence of their module categories. Since the Morita
equivalence is an isomorphism at the level of complex Lie algebroids over M , we can also
strengthen this statement to an equivalence of the DG categories of cohesive modules [5],
i.e. representations up to homotopy [1]. We only remark here that these modules have a
generalized complex interpretation, since L± = �+ ⊕ �− is the −i-eigenbundle of J+,
whose modules are, by definition, generalized holomorphic bundles [25].

Corollary 2.18. The categories of holomorphic A±-modules are equivalent to each
other and to the category of generalized holomorphic bundles for J+. Similarly, the
category of holomorphic B+-modules is equivalent to the category of generalized holo-
morphic bundles for J−, and C-antilinearly equivalent to the category of modules
for B−.

A special case occurs when J− is of symplectic type; in this case B± are isomorphic
as holomorphic Lie algebroids with T1,0 X±. But T1,0 X+ is a holomorphic Lie algebroid
which is actually Morita conjugate to itself, via the complex conjugation map

T1,0 X+ ⊕ T0,1 X+
c.c.−→ T1,0 X+ ⊕ T0,1 X+.

Hence, composing this with the Morita conjugacy B+ −→ B−, we obtain that B+ is
Morita equivalent to B−. This is significant because we then have a Morita equivalence
between the fiber product of the Lie algebroids over T1,0 X±:

A+ ⊕T1,0 X+ B+ −→ A− ⊕T1,0 X− B−.

But by Proposition 2.10, these fiber products are the holomorphic Lie algebroids corre-
sponding to the holomorphic Poisson structures σ± on X±. Hence we obtain a Morita
equivalence between holomorphic Poisson structures, generalizing the result in [24] on
Morita equivalence for a specific construction of generalized Kähler structures.

Corollary 2.19. If either J+ or J− is of symplectic type, then the holomorphic Poisson
structures σ± on X± are Morita equivalent.

2.5. Prequantization and holomorphic gerbes. Geometric quantization of symplectic
manifolds is perhaps best understood in the setting of Kähler geometry. A symplectic
manifold (M, ω) is said to be prequantizable when [ω]/2π ∈ H2(M,R) has integral
periods, i.e. is in the image of the natural map H2(M,Z) −→ H2(M,R). A prequan-
tization of such an integral symplectic form is a Hermitian complex line bundle (L , h)
equipped with a unitary connection ∇ such that F(∇) = iω. The presence of a complex
structure I compatible with ω, sometimes called a complex polarization, then implies
that ∇0,1 defines a holomorphic structure on the line bundle L , which is used to proceed
with the geometric quantization procedure. In this sense, we view a Hermitian holo-
morphic line bundle over a complex manifold (M, I, L , h) as a prequantization of the
Kähler structure (M, I, ω). In this section, we seek an analogous result for generalized
Kähler manifolds.

Our first task is to prequantize the underlying Courant algebroid E . For this to be
possible, we need the quantization condition that [E]/2π ∈ H3(M,R) has integral
periods, and choose a Hermitian gerbe (G, h) with unitary 0-connection ∇ such that
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the associated Courant algebroid E∇ (via Corollary B.6) satisfies [E∇] = [E]. This is
always possible since the map (B.3) is surjective onto classes vanishing in H3(M,R/Z).

If E∇ carries a generalized complex structure J, it immediately obtains Dirac struc-
tures L , L given by ker(J ∓ i), and by Theorem B.7, this induces flat connections on G
over these Lie algebroids. By analogy with vector bundles, we say that a gerbe with a
flat L-connection is a generalized holomorphic gerbe.

Proposition 2.20. Let J be a generalized complex structure on E∇ , where ∇ is a unitary
0-connection on the Hermitian gerbe (G, h). Then G inherits a generalized holomorphic
structure. Furthermore, it has a flat Poisson connection for the underlying real Poisson
structure.

Proof. G inherits a flat L-connection by Theorem B.7. To show that it has a flat Poisson
connection, we note that the trivial gerbe has a canonical flat L-connection, and by
tensoring with G we obtain a flat connection on G, for the fiber product of L with L ,
which by (1.10) is the Lie algebroid of the Poisson structure Q underlying J, as required.

��
Applying the above result to each generalized complex structure separately, a gener-

alized Kähler structure (J+, J−) on E∇ induces flat L±-connections on G, rendering it
generalized holomorphic with respect to both J±.

Corollary 2.21. Let (J+, J−) be a generalized Kähler structure on E∇ , which is as
above. Then the gerbe G inherits generalized holomorphic structures over J+ and J−.
In particular, it obtains flat Poisson connections over the real Poisson structures Q±
underlying J±.

We may interpret the above generalized holomorphic structures in terms of the under-
lying bi-Hermitian geometry, as follows.

Proposition 2.22. Let (G, h,∇, J+, J−) be as above. Then G inherits holomorphic
structures with respect to the underlying complex manifolds X±, defining holomorphic
gerbes G±. Furthermore, G± inherit holomorphic 0-connections ∂±, whose associated
holomorphic Courant algebroids E± are given in Proposition 2.5.

Proof. The commuting of J± induces the decomposition (1.19), and since �± are liftings
of T0,1 X±, Theorem B.8 implies that the gerbe G inherits the structure of a holomorphic
gerbe with holomorphic 0-connection over X±, with associated holomorphic Courant
algebroid E± given by the reduction of Courant algebroids in Proposition 2.5. ��
Remark 2.23. The fact that the gerbe G inherits a pair of holomorphic structures with
respect to X± was proposed in the papers [31,36,51], which contain more insights
concerning the prequantization of generalized Kähler geometry than are formalized
here.

By the holomorphic reduction procedure developed in Sect. 2.2, we saw that the
Dirac structures L± reduce to the pair of holomorphic Dirac structures A±,B± ⊂ E±.
Theorem B.7 then immediately yields the following result, which may be interpreted as
establishing a relationship between the holomorphic gerbes G± over X± deriving from
the fact that X± participate in a generalized Kähler structure.

Theorem 2.24. Let (G±, ∂±) be the holomorphic gerbe with 0-connection obtained as
above from a generalized Kähler structure with prequantized Courant algebroid. Then
G± has flat connections over the holomorphic Lie algebroids A±,B±, and consequently
has a flat Poisson connection with respect to the holomorphic Poisson structure σ±.
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Proof. The decomposition E± = A± ⊕ B± obtained in Theorem 2.7 implies, by Theo-
rem B.7, that G± obtains flat connections over A± and B±. By Proposition 2.10, the Baer
sum A�± � B± yields the Lie algebroid of the holomorphic Poisson structure σ±, and
since the Baer sum coincides with the fiber product of Lie algebroids (Proposition 1.5),
we obtain a flat Poisson connection on G± with respect to σ±. ��
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A Holomorphic Courant Reduction

Definition A.1. Let E be a complex Courant algebroid over a complex manifold X. A
lifting of T0,1 X to E is an isotropic, involutive subbundle D ⊂ E mapping isomorphi-
cally to T0,1 X under π : E −→ T X ⊗ C.

The existence of a lifting for T0,1 X as above will be controlled by an obstruction map
which we now describe. Consider the short exact sequence of vertical complexes:

	1
X

∂ �� 	2,cl
X

�� 0

0 �� C �� OX

∂

��

This gives the following excerpt from the long exact sequence:

H1(	
2,cl
X )

ε �� H3(X,C)
γ ��

H
3(OX

∂→ 	1
X )

(A.1)

Lemma A.2. Let E be a complex Courant algebroid over the complex manifold X. There

exists a lifting of T0,1 to E if and only if γ ([E]) = 0 in H
3(OX

∂→ 	1
X ).

Proof. Choose an isotropic splitting s : T X −→ E , which determines a 3-form H as
in Eq. (1.14), so that E is isomorphic as a Courant algebroid to TX ⊗ C equipped with
the Courant bracket twisted by H as in Eq. (2.5); indeed [E] = [H ] ∈ H3(M,C). Then
a general isotropic lifting of T 0,1 X is given by

D = {X + iXθ : X ∈ T 0,1 X, θ ∈ 	1,1(X)⊕	0,2(X)},
and D is involutive if and only if (dθ − H)(1,2)+(0,3) = 0, or in other words

H1,2 + H0,3 = ∂θ1,1 + dθ0,2. (A.2)

Using the Dolbeault resolution of OX
∂→ 	1

X , we conclude that θ exists if and only if
γ ([H ]) = 0. ��
Remark A.3. A solution to Eq. (A.2) defines a cocycle H3,0 + H2,1 − ∂θ1,1 ∈ Z1(	

2,cl
X )

[using the resolution (2.3)], since
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d(H3,0 + H2,1 − ∂θ1,1) = ∂H2,1 + ∂∂θ1,1 = ∂H2,1 + ∂(H1,2 − ∂θ0,2) = 0.

Furthermore, we may change the isotropic splitting s in the proof above by a global
smooth 2-form B, which sends H �→ H + d B and modifies the lifting via θ �→ θ +
B1,1 + B0,2. As a result, the cocycle condition (A.2) holds independently of the choices
made. In this way, a lifting of T0,1 X to E naturally induces a lifting of [E] ∈ H3(M,C)
to H1(	

2,cl
X ) in the exact sequence (A.1).

Remark A.4. The map ε in (A.1) is lifted to a natural operation on Courant algebroids
in [21], where it is shown that any holomorphic Courant algebroid E induces a smooth
complex Courant algebroid structure on E ⊕ (T0,1 M ⊕ T ∗

0,1 M), called the companion
matched pair of E .

We see from (A.1) that if γ ([H ]) = 0, then [H ] is in the image of a map from
H1(	

2,cl
X ), which classifies holomorphic Courant algebroids. Indeed, Lemma A.2 and

the above remark imply that a complex Courant algebroid with a lifting of T0,1 X gives
rise to a natural holomorphic Courant algebroid, as we now show.

Theorem A.5. Let X be a complex manifold. A lifting D of T0,1 X to a complex Courant
algebroid E gives rise to a natural holomorphic Courant algebroid ED on X.

Proof. As in the proof of Lemma A.2, an isotropic splitting s : T X −→ E gives rise to a
3-form hs and an isomorphism of Courant algebroids s∗ : (E, [·, ·]) −→ (TX, [·, ·]hs ).
Using this splitting, the lifting D ⊂ E of T0,1 X is given by a 2-form θs ∈ 	1,1(X) ⊕
	0,2(X). By the above remark, we also see that the 3-form h3,0

s +h2,1
s −∂θ1,1

s is a cocycle
and therefore defines a holomorphic Courant algebroid on T1,0 X = T1,0 X ⊕ T ∗

1,0 X
via the construction in Example 2.2, taking the cocycle (T, H) in that example to be
Ts = h2,1

s −∂θ1,1
s and Hs = h3,0

s . Finally, the equivariance described in the above remark
proves that the induced holomorphic Courant algebroid structure on ED = T1,0 X varies
functorially with the choices. ��

To obtain the holomorphic Courant algebroid described above in a more direct way,
we use the reduction procedure for Courant algebroids described in [8]. The lifting
D ⊂ E of T0,1 X defines an “extended action” of T0,1 X on E , and we perform a
generalization of the symplectic quotient construction for the Courant algebroid E ,
as follows.

The reduction of E by D is given as an orthogonal bundle by ED = D⊥/D, where
D⊥ is the orthogonal complement of D with respect to the symmetric pairing on E .
Note that since D is a lifting of T0,1 X , the kernel of π |D⊥ is D⊥ ∩ (T ∗ ⊗ C) = T ∗

1,0 X ,

and therefore ED = D⊥/D is an extension of the form

0 �� T ∗
1,0 X �� ED �� T1,0 X �� 0 .

The holomorphic structure on ED is a natural consequence of the general fact that the
bundle D⊥/D inherits a flat connection over the Lie algebroid D: given s ∈ 
∞(X, ED),
we define

∂X s := [X̃ , s̃] mod D, (A.3)

where X ∈ 
∞(X, T0,1 X), X̃ is the unique lift of X to a section of D, and s̃ is any lift of
s to a section of D⊥. The Jacobi identity for the Courant bracket implies that it induces a



Generalized Kähler Geometry 323

Courant bracket on the holomorphic sections of ED . In this way, we are able to describe
the map

H3(M,C) � [E] D�−→ [ED] ∈ H1(	2,cl(X)),

without choosing splittings.
Just as in the case of symplectic reduction, where a Lagrangian submanifold may

pass to the symplectic quotient, we may also reduce Dirac structures from E to ED . The
reduction of Dirac structures proceeds as follows [8].

Proposition A.6. Let L ⊂ E be a Dirac structure such that L ∩ D⊥ has constant
rank and L is D-invariant, in the sense [O(D),O(L)] ⊂ O(L). Then the subbundle
L D ⊂ ED, defined by

L D := L ∩ D⊥ + D

D
, (A.4)

is holomorphic with respect to the induced holomorphic structure (A.3) on ED and
defines a holomorphic Dirac structure in ED called the reduction of L.

B Gerbe Connections in Dirac Geometry

In this section we will review the relation between C
∗-gerbes and Courant algebroids

described by Ševera [46], and extend it in two ways: we use gerbe connections over
general Lie algebroids, and more meaningfully, we explain the relation between Dirac
structures and gerbe connections. We take the Čech approach of [7,11,27] to the descrip-
tion of gerbes, omitting discussions of refinements of covers, for convenience.

Let M be a smooth real or complex manifold, whereOM denotes the sheaf of complex-
valued functions (smooth or holomorphic, respectively). Choose an open covering {Ui },
and let G be a C

∗-gerbe which is locally trivialized over this covering, so that it is given
by the data {Li j , θi jk}, where Li j are (smooth or holomorphic) complex line bundles over
Ui j , chosen so that Li j is dual to L ji , and θi jk : Li j ⊗ L jk −→ Lik are isomorphisms
of line bundles over Ui jk such that on quadruple overlaps Ui jkl we have the coherence
condition:

θikl ◦ (θi jk ⊗ id) = θi jl ◦ (id ⊗ θ jkl).

We now introduce the notion of a gerbe connection over an arbitrary Lie algebroid
A. Let (A, a, [·, ·]) be a complex Lie algebroid on M , where [·, ·] is the Lie bracket on
the sheaf of sections of A, and a : A −→ Der(OM ) is the bracket-preserving bundle
map to the tangent bundle, usually called the anchor. We will use the notation (	•

A, dA)

to denote the associated de Rham complex of A. Note that if A is a holomorphic Lie
algebroid, the anchor maps to the holomorphic tangent bundle, whereas in the smooth
case it maps to T M ⊗ C.

Definition B.1. An A-connection on a line bundle L is a differential operator

∂ : O(L) −→ O(A∗ ⊗ L),

such that ∂( f s) = (dA f ) ⊗ s + f ∂s, for f ∈ OM and s ∈ O(L). As with usual
connections, ∂ has a curvature tensor ∂2 = F∂ ∈ 	2

A(M) such that dA F∂ = 0. When
F∂ = 0, we say that L is flat over A, or that L is an A-module.
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Definition B.2. An A-connection (∂, B) on the gerbe G defined by {Li j , θi jk} is given
as follows. The first component, ∂ , called the 0-connection, is a family of A-connections
∂i j on Li j with ∂ j i = ∂∗

i j and such that θi jk is flat in the induced connection:

θi jk ◦ (∂i j ⊗ 1 + 1 ⊗ ∂ jk) = ∂ik ◦ θi jk . (B.1)

The second component, B, called the 1-connection, is a collection {Bi ∈ 	2
A(Ui )}

satisfying B j − Bi = F∂i j . The global 3-form H ∈ 	3
A(M) defined by H |Ui = dA Bi is

called the curving of the connection, and satisfies dA H = 0. When H = 0, we say that
G is flat over A.

An equivalence of gerbes S : G → G ′ may be described as an object S in G∗ ⊗ G ′,
which in a local trivialization is given by {Li ,mi j }, where Li are line bundles over Ui
and mi j are isomorphisms

mi j : Li −→ (L∗
i j ⊗ L ′

i j )⊗ L j .

If G,G ′ are equipped with A-connections (∂, B), (∂ ′, B ′), then to promote S to an
equivalence of gerbes with connection is to equip Li with A-connections ∂i such that

mi j ∗(∂i ) = ∂∗
i j + ∂ ′

i j + ∂ j and Bi − B ′
i = F∂i .

An auto-equivalence with connection is then simply a line bundle with connection (L , ∂);
its action is only seen by the data defining the 1-connection, via Bi �→ Bi −F∂ |Ui . Gerbes
with A-connections are classified up to equivalence by the hypercohomology group

H
2( O∗

M
dA log �� 	1

A
dA �� 	2

A ).

As in the case of holomorphic vector bundles, where the existence of a holomorphic
connection is obstructed by the Atiyah class, the existence of an A-connection on a gerbe
is obstructed in general. We now briefly summarize the treatment of the obstructions
given in [11].

Arbitrarily choose A-connections ∂i j on Li j , so that θi jk ∈ O(Lik ⊗ Lkj ⊗ L ji ) is
not necessarily flat for the induced connection ∂ik j :

∂ik jθi jk = Ai jk ⊗ θi jk .

This defines a Čech cocycle {Ai jk ∈ 	1
A(Ui jk)}, which represents the 0-Atiyah class

α0 = [Ai jk] ∈ H2(	1
A) obstructing the existence of a 0-connection on the gerbe. If

α0 = 0, then there exists a 0-connection {∂i j }, and the curvatures {F∂i j ∈ 	2
A(Ui j )}

define the 1-Atiyah class α1 ∈ H1(	2
A) obstructing the existence of a 1-connection.

The following is an example of how A-connections on gerbes may be used. It is an
analog of the well-known result for complex vector bundles that a flat partial (0, 1)-
connection induces a holomorphic structure on the bundle. It is essentially a realization
of the following isomorphism:

H2(O∗
hol)

∼= H
2( O∗∞

∂ log �� 	0,1 ∂ �� 	0,2 ∂ �� 	0,3 ).

Theorem B.3. Let G be a smooth C
∗-gerbe over a complex manifold M, and let A =

T0,1 M be the Dolbeault Lie algebroid. The choice of a flat A-connection on G naturally
endows the gerbe with a holomorphic structure.
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Our purpose in introducing connections on gerbes is twofold. First, taking A to be the
tangent bundle, we associate, following [28,46], a canonical Courant algebroid E∂ to a
0-connection ∂ on a gerbe. Second, we show that any Dirac structure D ⊂ E∂ induces
a flat D-connection on the gerbe.

The Courant algebroid of a Gerbe with 0-connection

Theorem B.4. To every 0-connection ∂ (for the complexified or holomorphic tangent
bundle) on a gerbe G, there is a canonically associated Courant algebroid E∂ , with
isomorphism class given by the map

H
2( O∗

M
d log �� 	1 )

d−→ H
2( 0 �� 	2 d �� 	3 d �� 	4 ) = H1(	2,cl).

(B.2)

Furthermore, global splittings of E∂
π−→ T M with isotropic image correspond bijec-

tively with 1-connections on (G, ∂). A connection is flat if and only if the corresponding
splitting is involutive.

Proof. Let the 0-connection be given by a = {∂i j } in a local trivialization of the gerbe,
and define the Courant algebroid Ea by gluing TUi to TU j using the B-field gauge
transformation by F∂i j , given by

eF∂i j =
(

1 0
F∂i j 1

)
,

which satisfies the cocycle condition due to Eq. B.1. We must check that the Courant
algebroid is independent of a. Change the local trivialization, using local line bundles
with connection g = {Li , Di }, so that the 0-connection is given by the collection ag =
{∂i j + Di + D∗

j } of connections on Li j ⊗ Li ⊗ L∗
j . Hence Eag is constructed using

F∂i j + FDi − FD j . But then we obtain a mapψg : Ea −→ Eag defined byψg|Ui = eFDi ,
which is an isomorphism of Courant algebroids because it intertwines the gluing maps
with isomorphisms of the Courant structure, i.e. the following diagram commutes:

TUi

e
FDi

��

e
F∂i j �� TU j

e
FD j

��
TUi

e
F∂i j

+FDi
−FD j

�� TU j

Functoriality follows from the fact that if g = g1g2 is the tensor product of local line
bundles with connection then ψg = ψg1ψg2 . Hence we obtain a well-defined Courant
algebroid E∂ associated to the 0-connection.

Trivializing the line bundles Li j so that the gerbe is given by data gi jk ∈ O∗(Ui jk) and
∂i j is given by connection 1-forms Ai j , we see that the gluing 2-forms for the Courant
algebroid are simply d Ai j ; hence [E∂ ] is indeed given by d[(G, ∂)] as in (B.2).

A 1-connection B on (G, ∂) consists of 2-forms Bi ∈ 	2(Ui ) with B j − Bi = F∂i j ,

data which determines a splitting sB of Ea
π−→ T M defined by sB |T Ui (X) = X +iX Bi ∈

TUi : clearly eF∂i j ◦ sB |T Ui = sB |T U j on Ui j , rendering sB well-defined. The map



326 M. Gualtieri

B �→ sB is clearly a bijection, since isotropic splittings of TUi −→ T Ui are simply
graphs of 2-forms. The bijection is functorial because a change of local trivialization
g = {Li , Di } maps B = {Bi } to Bg = {Bi − FDi }, so that the following diagram
commutes:

Ea

ψg

��

T M
sB		

id
��

Eag T M
sBg		

Finally, the graph of a 2-form in TM is involutive if and only if it is closed, hence the
splitting sB is involutive if and only if the gerbe is flat over T M . ��

Theorem B.4 is stated for the smooth complexified tangent bundle or the holomorphic
tangent bundle. To obtain smooth real Courant algebroids, we equip the gerbe with a
Hermitian structure [27] and require the 0-connection ∂ to be unitary, as follows.

Definition B.5. A Hermitian structure on the gerbe G defined by {Li j , θi jk} is given by
a family of Hermitian metrics h = {hi j } on the complex line bundles Li j , such that
θi jk is unitary. A connection on G defined by {∇i j , Bi } is unitary when ∇i j are unitary
connections (with real curvatures, by convention) and Bi are real.

The analog of Theorem B.4 for Hermitian gerbes is then

Corollary B.6. To every unitary 0-connection ∇ = {∇i j } (over the real tangent bundle)
on a Hermitian gerbe (G, h), there is a canonically associated real Courant algebroid
E∇ , with isomorphism class given by the map

H
2( O(U (1)) −id log�� 	1

R
)

d−→ H1(	
2,cl
R
) = H3(M,R). (B.3)

The correspondence between splittings and 1-connections is as before.

Dirac structures and gerbes. The presence of a Dirac structure in the Courant algebroid
associated to a gerbe with 0-connection imposes a strong constraint on the gerbe, which
we now make precise.

Theorem B.7. Let E∂ be the Courant algebroid associated to a gerbe with 0-connection
(G, ∂). Given an involutive isotropic subbundle D ⊂ E∂ , the gerbe G inherits a canon-
ical flat D-connection.

Proof. The restriction of π : E∂ −→ T M as well as the Courant bracket to D gives
it the structure of a Lie algebroid, and by choosing a local trivialization for (G, ∂), we
immediately obtain a 0-connection ∂D over D by composition:

∂D
i j := π |∗D ◦ ∂i j .

To obtain the 1-connection B over D, write the inclusion D ⊂ E∂ locally, as involutive
isotropic subbundles Di ⊂ TUi such that eF∂i j Di = D j . Then consider the antisym-
metric pairing on TUi :

〈X + ξ,Y + η〉− := 1

2
(ξ(Y )− η(X)).
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This restricts to Di and determines 2-forms Bi ∈ 	2
D(Ui ). The gluing condition

eF∂i j Di = D j implies that Bi − B j = π |∗D Fi j = F∂D
i j

, so that {∂D
i j , Bi } is indeed a

D-connection.
We now check that the D-connection is independent of the local trivialization used

to define it. In a local trivialization differing from the initial one by the local line bundles
with connection g = {Li , ∂i }, the 0-connection over D is given by π |∗D(∂i j + ∂i + ∂∗

j ),

and the effect on E∂ is via the isomorphism ψg , which sends Di to eF∂i Di , so that the
restriction of the antisymmetric pairing to Di yields Bi +π |∗D F∂i . The resulting expression
for the D-connection is precisely that obtained by changing the local trivialization of
(G, ∂D) by the local line bundles with D-connection gD := {Li , π |∗D∂i }. The naturality
of the map g �→ gD ensures that (G, ∂D, B) is canonically defined.

Finally, the curving of the D-connection may be computed using a general property
of the Courant bracket implicit in Theorem 2.3.6. of [13], namely that the restriction
of 〈·, ·〉− to any isotropic integrable subbundle Di ⊂ TM is closed with respect to the
algebroid differential. ��

We now show that the above theorem may be used to endow a gerbe with a holomor-
phic structure, in such a way that the resulting holomorphic gerbe inherits a holomorphic
0-connection. At the level of Courant algebroids, this is a reduction procedure as in [8],
whereby a smooth complex Courant algebroid “reduces” to a holomorphic one.

Theorem B.8. Let (G,∇) be a smooth C
∗-gerbe with 0-connection over a complex

manifold X, and let D ⊂ E∇ be a lifting of T0,1 X to the complex Courant algebroid
associated to ∇, in the sense of Definition A.1. Then G inherits a holomorphic structure.
Furthermore, G inherits a canonical holomorphic 0-connection ∂ .

Proof. By Theorem B.7, the presence of D ⊂ E∇ immediately endows G with a flat
D-connection. Since D is isomorphic to T0,1 X , the gerbe G is endowed with a holo-
morphic structure by Theorem B.3. What remains is to show G inherits a holomorphic
0-connection.

Choose a local trivialization in which the gerbe with 0-connection is given by
{Li j , θi jk,∇i j }, the Courant algebroid E∇ is given as in Theorem B.4, and Di = D|Ui

is given by the graph of θi ∈ 	(1,1)+(0,2)(Ui ), so that involutivity is the condition

(dθi )
(1,2)+(0,3) = 0.

Since F∇i j must glue Di to D j , we have

(F∇i j )
(1,1)+(0,2) = θ j − θi .

Refining the cover if necessary, choose α = {αi ∈ 	(1,0)+(0,1)(Ui )} such that

(dαi )
(1,1)+(0,2) = θi .

Changing the local trivialization by the local line bundles with connection (Ui ×C, d+αi ),
the 0-connection has the expression ∇i j +αi −α j , which has curvature of type (2, 0). This
defines a holomorphic gerbe with holomorphic 0-connection (Gα, ∂α), which a priori
depends on α. But two choices α, α′ of potential for {θi }, as above, give rise naturally to
the local holomorphic line bundles Li := (Ui × C, ∂ + α′0,1

i − α
0,1
i ), with holomorphic
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connections given by ∂i := ∂ + α′1,0
i − α

1,0
i . The local holomorphic line bundles with

holomorphic connections (Li , ∂i ) then define an equivalence

(Li , ∂i ) : (Gα, ∂α) −→ (Gα′ , ∂α′).

We omit the straightforward verification that the resulting holomorphic gerbe with 0-
connection is independent of the choices made. ��
Remark B.9. A 1-connection on a gerbe with 0-connection ∇ is a maximal isotropic
splitting of the Courant algebroid E∇ ; for this reason we may view the lifting D ⊂ E∇
of the Theorem as a partial 1-connection on the gerbe.

Example B.10. Consider the Hopf surface X from Example 2.3, viewed as an ellip-
tic fibration over CP1 via the map (x1, x2) �→ [x1 : x2]. Choose affine charts
(U0, z0), (U1, z1) for the base CP1, and write X as the gluing of (z0, w0) ∈ U0×(C∗/Z)
to (z1, w1) ∈ U1 × (C∗/Z) by the map

(z0, w0) �−→ (1/z0, z0w0).

On U0 ∩ U1 we have the following real 2-form

F01 = −1

4π

(
dz0 ∧ dw0

z0w0
+

dz̄0 ∧ dw̄0

z̄0w̄0

)
.

The only nonvanishing period of this 2-form is for the cycle S1 × S1 ⊂ C
∗ × C

∗, which
yields −1

4π 2(2π i)(2π i) = 2π . Since F01 is integral, we may “prequantize” it, viewing
it as the curvature of a Hermitian line bundle (L01, h01,∇01) with unitary connection
∇01. This defines the structure of a Hermitian gerbe with 0-connection ∇ over X , such
that the associated Courant algebroid E∇ is precisely that from Example 2.4.

To describe a lifting of T0,1 X to the Courant algebroid E∇ , it is convenient to choose
a 1-connection

Bi = 1

4π
(∂Ki ∧ ∂ logwi + ∂Ki ∧ ∂ log w̄i ),

where Ki = log(1 + zi z̄i ) are the usual Kähler potentials for the Fubini-Study metric on
CP1. Computing the global real 3-form H = d Bi , we obtain the (1, 2) + (2, 1)-form

H = −1

8π
ddc Ki ∧ dc log(wi w̄i ).

Observe that H = dcω, for the (1, 1)-form

ω = −i

4π
(∂K0 ∧ ∂ logw − ∂K0 ∧ ∂ log w̄), (B.4)

with the significance that H1,2 = ∂(iω), which is precisely the condition (A.2) that
iω defines a lifting of T0,1 X . As a consequence of choosing ω, we obtain a canonical
holomorphic structure on the gerbe, as follows. Returning to the Čech description, the
lifting defined by ω is described by the local forms

θi = B0,2
i − iω|Ui .
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Our open cover is such that θ0,2
i is ∂-exact, namely

θ
0,2
i = ∂(

1

4π
Ki ∧ ∂ log w̄i ).

Following Theorem B.8, we perform a gauge transformation by a = {ai =
1

4π Ki d log(wi w̄i )}; the new unitary connection ∇a
01 = ∇01 + a0 − a1 has curvature

of type (1, 1) given by

Fa
01 = 1

4π

(
dz0 ∧ dw̄0

z0w̄0
+

dz̄0 ∧ dw0

z̄0w0

)
,

so that ∇a
0,1 is indeed a holomorphic structure on the gerbe. After the gauge transforma-

tion, the lifting is described by

θa
i = θi − (dai )

(1,1)+(0,2) = −1

2π
∂Ki ∧ ∂ logwi .

While θa
i is ∂-closed, it is not exact; therefore, to explicitly describe the holomorphic

0-connection on the gerbe we would need to refine the cover. Nevertheless, the associ-
ated holomorphic Courant algebroid may be easily constructed; by the prescription in
Theorem A.5, it is given by the following holomorphic (2, 0)-form:

B01 = (B2,0
1 + ∂a1,0

1 − B2,0
0 − ∂a1,0

0 )

= −1

2π
(z0w0)

−1dz0 ∧ dw0.

In this way, we recover the holomorphic Courant algebroid studied in Example 2.3.

References

1. Abad, C.A., Crainic, M.: Representations up to homotopy of Lie algebroids. J. Reine Angew. Math. 663,
91–126 (2012). arXiv:0901.0319v1

2. Alekseev, A., Bursztyn, H., Meinrenken, E.: Pure spinors on Lie groups. Astérisque. 327, 131–199 (2010).
arXiv:0709.1452

3. Apostolov, V., Gauduchon, P., Grantcharov, G.: Bi-Hermitian structures on complex surfaces. Proc. Lond.
Math. Soc. (3) 79(2), 414–428 (1999)

4. Apostolov, V., Gualtieri, M.: Generalized Kähler manifolds, commuting complex structures, and split
tangent bundles. Commun. Math. Phys. 271(2), 561–575 (2007). arXiv:math/0605342v2

5. Block, J.: Duality and equivalence of module categories in noncommutative geometry. In: A celebration
of the mathematical legacy of Raoul Bott, CRM Proc. Lecture Notes, Vol. 50 (American Mathematical
Society, Providence, RI, 2010) pp. 311–339. arXiv:math/0509284v2

6. Bressler, P., Chervov, A.: Courant algebroids, J. Math. Sci. (N. Y.) 128(4), 3030–3053 (2005). arXiv:hep-
th/0212195v1

7. Brylinski, J.-L.: Loop spaces, characteristic classes and geometric quantization. In: Progress in mathe-
matics, Vol. 107 (Birkhäuser Boston Inc., Boston, 1993)

8. Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: Reduction of Courant algebroids and generalized complex
structures, Adv. Math. 211(2), 726–765 (2007). arXiv:math/0509640v3

9. Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: Generalized Kähler and hyper-Kähler quotients. In: Pois-
son geometry in mathematics and physics, Contemp. Math., Vol. 450 (American Mathematical Society,
Providence, 2008), pp. 61–77. arXiv:math/0702104v1

10. Cavalcanti, G.R.: Formality in generalized Kähler geometry, Topol. Appl. 154(6), 1119–1125 (2007).
arXiv:math/0603596v2

11. Chatterjee, D.: On the construction of abelian gerbs, Ph.D. thesis, Trinity college, Cambridge (1998)
12. Chen, Z., Stienon, M., Xu, P.: Geometry of Maurer–Cartan elements on complex manifolds. Commun.

Math. Phys. 297(1) 169–187 (2010). arXiv:0904.4062v2



330 M. Gualtieri

13. Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319(2), 631–661 (1990)
14. Fernandes, R.L.: Invariants of Lie algebroids, Differ. Geom. Appl. 19(2), 223–243 (2003).

arXiv:math/0202254v3
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