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Generalized complex geometry

By Marco Gualtieri

Abstract

Generalized complex geometry encompasses complex and symplectic ge-

ometry as its extremal special cases. We explore the basic properties of

this geometry, including its enhanced symmetry group, elliptic deforma-

tion theory, relation to Poisson geometry, and local structure theory. We

also define and study generalized complex branes, which interpolate be-

tween flat bundles on Lagrangian submanifolds and holomorphic bundles

on complex submanifolds.
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Introduction

Generalized complex geometry arose from the work of Hitchin [17] on

geometries defined by stable differential forms of mixed degree. Algebraically,

it interpolates between a symplectic form ω and a complex structure J by

viewing each as a complex (or equivalently, symplectic) structure J on the

direct sum of the tangent and cotangent bundles T ⊕ T ∗, compatible with

the natural split-signature metric which exists on this bundle. Remarkably,

there is an integrability condition on such generalized complex structures which

specializes to the closure of the symplectic form on one hand, and the vanishing

of the Nijenhuis tensor of J on the other. This is simply that J must be

integrable with respect to the Courant bracket, an extension of the Lie bracket

of vector fields to smooth sections of T ⊕T ∗ which was introduced by Courant

and Weinstein [10], [11] in their study of Dirac structures. This bracket may

be “twisted” by a closed 3-form H, which may be viewed as the curvature of

an S1 gerbe.

We begin, in Sections 1 and 2, with a review of the natural split-signature

orthogonal structure on T⊕T ∗ and its associated spin bundle ∧•T ∗, the bundle

of differential forms. We then briefly review Dirac geometry and introduce

the notion of tensor product of Dirac structures, obtained independently by

Alekseev-Bursztyn-Meinrenken in [3].

In Section 3, we treat the basic properties of generalized complex struc-

tures. We show that any generalized complex manifold admits almost complex

structures and has two natural sets of Chern classes c±k . We show the geom-

etry is determined by a complex pure spinor line subbundle K ⊂ ∧•T ∗ ⊗ C,

the canonical bundle, which can be seen as the minimal degree component of

an induced Z-grading on the H-twisted de Rham complex (Ω•(M), dH). For

a complex structure, K is the usual canonical bundle, wheras for a symplec-

tic structure it is generated by the form eiω. We also describe a real Poisson

structure P associated to any generalized complex structure and discuss its

modular class. We conclude with an example of a family of generalized com-

plex structures interpolating between a complex and symplectic structure.

In Section 4, we prove a local structure theorem for generalized complex

manifolds, analogous to the Darboux theorem in symplectic geometry and the

Newlander-Nirenberg theorem in complex geometry. We show that near any

regular point for the Poisson structure P , the generalized complex manifold

is equivalent, via a generalized symmetry, to a product of a complex space of

dimension k (called the type) with a symplectic space. Finally, we provide an

example whose type is constant outside of a submanifold, along which it jumps

to a higher value.
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In Section 5, we develop the deformation theory of generalized complex

manifolds. It is governed by a differential Gerstenhaber algebra

(C∞(∧kL∗), dL, [·, ·])

constructed from the +i-eigenbundle L of J . This differential complex is

elliptic, and therefore has finite-dimensional cohomology groups Hk(M,L) over

a compact manifold M . Similarly to the case of deformations of complex

structure, there is an analytic obstruction map Φ : H2(M,L) → H3(M,L),

and if this vanishes then there is a locally complete family of deformations

parametrized by an open set in H2(M,L). In the case that we are deforming

a complex structure, this cohomology group turns out to be

H0(M,∧2T )⊕H1(M, T )⊕H2(M,O).

This is familiar as the “extended deformation space” of Barannikov and Kont-

sevich [4], for which a geometrical interpretation has been sought for some

time.

Finally, in Section 6, we introduce generalized complex branes, which are

vector bundles supported on certain submanifolds compatible with the general-

ized complex structure. We show that for a usual symplectic manifold, branes

consist not only of flat vector bundles supported on Lagrangians, but also cer-

tain bundles over a class of coisotropic submanifolds. These are precisely the

co-isotropic A-branes discovered by Kapustin and Orlov [21].

This article is largely based upon the author’s doctoral thesis [15], sup-

ported by the Rhodes Trust. Thanks are due especially to Nigel Hitchin for

his guidance and insight. Many thanks as well to Henrique Bursztyn, Gil Cav-

alcanti, Jacques Hurtubise, Anton Kapustin, and Alan Weinstein for helpful

conversations.

1. Linear geometry of V ⊕ V ∗: notational conventions

Let V be a real vector space of dimension m and let V ∗ be its dual space.

Then V ⊕ V ∗ is endowed with a natural symmetric bilinear form of signature

(m,m), given by

〈X + ξ, Y + η〉 = 1
2(ξ(Y ) + η(X)).

A general element of its Lie algebra of orthogonal symmetries may be written

as a block matrix in the splitting V ⊕ V ∗ via

(1.1)

Ç
A β

B −A∗

å
,

where A ∈ End(V ), B : V −→ V ∗, β : V ∗ −→ V , and where B and β are skew.

Therefore we may view B as a 2-form in ∧2V ∗ via B(X) = iXB and similarly
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we may regard β as an element of ∧2V , i.e. a bivector. This corresponds to

the observation that so(V ⊕ V ∗) = ∧2(V ⊕ V ∗) = End(V )⊕ ∧2V ∗ ⊕ ∧2V .

By exponentiation, we obtain orthogonal symmetries of V ⊕ V ∗ in the

identity component of SO(V ⊕ V ∗), as follows:

exp(B) =

Ç
1

B 1

å
, exp(β) =

Ç
1 β

1

å
, exp(A) =

Ç
expA

(expA∗)−1

å
.

The transformations exp(B) and exp(β) are referred to as B-transforms and

β-transforms, respectively, while exp(A) defines a distinguished embedding of

GL+(V ) into the identity component of the orthogonal group.

1.1. Maximal isotropics and pure spinors. We shall be primarily con-

cerned with maximal isotropic subspaces L ⊂ V ⊕ V ∗, otherwise known as

linear Dirac structures (see [10]). Examples include the subspaces V , V ∗, and

∆ ⊕ Ann(∆) for any subspace ∆ ⊂ V . The space of maximal isotropics has

two connected components, and elements of these are said to have even or odd

parity, depending on whether they share their connected component with V

or not, respectively.

Let i : ∆ ↪→ V be a subspace inclusion and let ε ∈ ∧2∆∗. Then the

subspace

L(∆, ε) = {X + ξ ∈ ∆⊕ V ∗ : i∗ξ = iXε} ⊂ V ⊕ V ∗

is an extension of the form

0 // Ann(∆) // L(∆, ε) // ∆ // 0

and is maximal isotropic; any maximal isotropic may be written in this form.

Note that a B-transform preserves projections to V , so it does not affect ∆:

exp(B) · L(∆, ε) = L(∆, ε+ i∗B).(1.2)

In fact, we see that by choosing B and ∆ accordingly, we can obtain any

maximal isotropic as a B-transform of L(∆, 0) = ∆⊕Ann(∆).

Definition 1.1. The type of a maximal isotropic L ⊂ V ⊕ V ∗ is the codi-

mension k of its projection onto V . The parity of L coincides with that of its

type.

Maximal isotropic subspaces may alternatively be described by their as-

sociated pure spinor lines; we review this relationship in the following. The

action of V ⊕ V ∗ on the exterior algebra ∧•V ∗, given by

(1.3) (X + ξ) · ϕ = iXϕ+ ξ ∧ ϕ,

extends to a spin representation of the Clifford algebra CL(V ⊕V ∗) associated

to the natural inner product 〈·, ·〉. In signature (m,m), the spin representation
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decomposes according to helicity, and this coincides with the parity decompo-

sition given by

∧•V ∗ = ∧evV ∗ ⊕ ∧odV ∗.

In the spin representation, a general Lie algebra element (1.1) acts in the

following way:

B · ϕ = −B ∧ ϕ, β · ϕ = iβϕ, A · ϕ = −A∗ϕ+ 1
2Tr(A)ϕ.

Exponentiating, we obtain spin group elements corresponding to B-transforms

given by

(1.4) exp(B) · ϕ = e−Bϕ = (1−B + 1
2B ∧B + · · · ) ∧ ϕ

and similarly for the spinorial action of GL+(V ), given by

exp(A) · ϕ = g · ϕ =
√

det g(g∗)−1ϕ.

This indicates that, as a GL+(V ) representation, the spinors decompose as

(1.5) S = ∧•V ∗ ⊗ (detV )1/2.

The Spin0-invariant bilinear form on the above spin representation may be

expressed as an invariant bilinear pairing on the forms ∧•V ∗, with values in the

determinant line detV ∗. This coincides with the Mukai pairing on forms [30]

and is given by

(s, t) = [s> ∧ t]m, s, t ∈ ∧•V ∗,
where s> denotes the reversal anti-automorphism on forms, and [·]m is the

projection to the component of degree m = dimV . The Mukai pairing is

invariant under the identity component of Spin, so that, for example, we have

(expB · s, expB · t) = (s, t), for any B ∈ ∧2V ∗.

Definition 1.2. A spinor ϕ is pure when its null space Lϕ = {v ∈ V ⊕V ∗ :

v · ϕ = 0} is maximal isotropic.

Every maximal isotropic subspace L ⊂ V ⊕V ∗ is represented by a unique

line KL ⊂ ∧•V ∗ of pure spinors, as we now describe. By (1.2), any maximal

isotropic L(∆, ε) may be expressed as the B-transform of L(∆, 0) for B chosen

such that i∗B = −ε. The pure spinor line with null space L(∆, 0) is precisely

det(Ann(∆)) ⊂ ∧kV ∗, for k the codimension of ∆ ⊂ V . Hence we recover the

following result.

Proposition 1.3 ([9, III.1.9]). Let L(∆, ε) ⊂ V⊕V ∗ be maximal isotropic,

let (θ1, . . . , θk) be a basis for Ann(∆), and let B ∈ ∧2V ∗ be a 2-form such that

i∗B = −ε, where i : ∆ ↪→ V is the inclusion. Then the pure spinor line KL

representing L(∆, ε) is generated by

(1.6) ϕ = exp(B)θ1 ∧ · · · ∧ θk.

Note that ϕ is of even or odd degree according as L is of even or odd parity.
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Exchanging the roles of V and V ∗, we see that L may be alternatively

described as a β-transform of Ann(∆′) ⊕∆′, for ∆′ = πV ∗L, which has asso-

ciated pure spinor line det(Ann(L ∩ V )). As a result we obtain the following

complement to Proposition 1.3.

Proposition 1.4. Given a subspace inclusion i : ∆ ↪→ V and a 2-form

B ∈ ∧2V ∗, there exists a bivector β ∈ ∧2V , such that

eB det(Ann(∆)) = eβ det(Ann(L ∩ V )),

where L = L(∆,−i∗B). Note that the image of β in ∧2(V/(L∩ V )) is unique.

The pure spinor line KL determined by L forms the beginning of a filtra-

tion on spinors

(1.7) KL = F0 ⊂ F1 ⊂ · · · ⊂ Fm = S,

where Fk is defined as CLk · KL, where CLk is spanned by products of ≤ k

generators of the Clifford algebra. Note that CLk ·KL = CLm ·KL for k > m

since L annihilates KL. This filtration becomes a grading when a maximal

isotropic L′ ⊂ V ⊕ V ∗ complementary to L is chosen. Then we obtain a

Z-grading on S = ∧•V ∗ of the form (for dimV even, i.e. m = 2n)

(1.8) S = U−n ⊕ · · · ⊕ Un,

where U−n = KL and Uk = (∧k+nL′) ·KL, using the inclusion as a subalgebra

∧•L′ ⊂ CL(V ⊕ V ∗). Furthermore, the Mukai pairing gives a nondegenerate

pairing

(1.9) U−k ⊗ Uk −→ detV ∗,

for all k = 0, . . . , n; hence it respects this alternative grading on forms. Note

that Un = KL′ , so that the Mukai pairing defines an isomorphismKL⊗KL′ −→
detV ∗.

2. The Courant bracket

Let M be a real m-dimensional smooth manifold. The direct sum of

its tangent and cotangent bundles T ⊕ T ∗ is endowed with the same canonical

bilinear form we described on V ⊕V ∗. Therefore, we may view T⊕T ∗ as having

structure group SO(m,m). By the action defined in (1.3), the differential forms

∧•T ∗ are a Clifford module for T ⊕ T ∗; the Mukai pairing then becomes a

nondegenerate pairing

∧•T ∗ ⊗ ∧•T ∗ −→ detT ∗.

We will make frequent use of the correspondence between maximal isotropics

in T ⊕ T ∗ and pure spinor lines in ∧•T ∗ to describe structures on T ⊕ T ∗ in

terms of differential forms.
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The Lie bracket of vector fields may be defined in terms of its interior

product with differential forms, via the formula

i[X,Y ] = [LX , iY ] = [[d, iX ], iY ].

Using the spinorial action (1.3) of T ⊕T ∗ on forms, we may define the Courant

bracket of sections ei ∈ C∞(T ⊕ T ∗) in the same way, following [22]:

(2.1) [e1, e2] · ϕ = [[d, e1·], e2·]ϕ ∀ϕ ∈ Ω•(M).

The Courant bracket, introduced in [10], [11], is not skew-symmetric, but it

follows from the fact that d2 = 0 that the following Jacobi identity holds:

(2.2) [[e1, e2], e3] = [e1, [e2, e3]]− [e2, [e1, e3]].

In fact, the Courant bracket defines a Lie algebra up to homotopy [33]. As

observed in [35], one may replace the exterior derivative in (2.1) by the twisted

operator dHϕ = dϕ+H ∧ ϕ for a real closed 3-form H ∈ Ω3(M). Expanding

this expression for e1 = X + ξ and e2 = Y + η, we obtain

(2.3) [X + ξ, Y + η]H = [X,Y ] + LXη − iY dξ + iXiYH.

The properties of this bracket were used in [27] and [32] to define the concept

of exact Courant algebroid, which consists of a vector bundle extension

(2.4) 0 // T ∗
π∗ // E

π // T // 0,

where E is equipped with a nondegenerate bilinear form 〈·, ·〉 and bracket [·, ·]
satisfying the conditions:

C1) [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]],

C2) π([e1, e2]) = [π(e1), π(e2)],

C3) [e1, fe2] = f [e1, e2] + (π(e1)f)e2, f ∈ C∞(M),

C4) π(e1)〈e2, e3〉 = 〈[e1, e2], e3〉+ 〈e2, [e1, e3]〉,
C5) [e1, e1] = π∗d〈e1, e1〉.

Exactness at the middle place forces π∗(T ∗) to be isotropic, and therefore the

inner product on E must be of split signature. It is then always possible

to choose an isotropic splitting s : T −→ E for π, yielding an isomorphism

E ∼= T ⊕ T ∗ which takes the Courant bracket to that given by (2.3), where H

is the curvature of the splitting, i.e.,

(2.5) iXiYH = s∗[s(X), s(Y )], X, Y ∈ T.

Isotropic splittings of (2.4) are acted on transitively by the 2-forms B ∈ Ω2(M)

via transformations of the form

e 7→ e+ π∗iπeB, e ∈ E.
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Such a change of splitting modifies the curvature H by the exact form dB.

Hence the cohomology class [H] ∈ H3(M,R), called the Ševera class, is inde-

pendent of the splitting and determines the exact Courant algebroid structure

on E completely.

2.1. Symmetries of the Courant bracket. The Lie bracket of smooth vector

fields is invariant under diffeomorphisms; in fact, there are no other symmetries

of the tangent bundle preserving the Lie bracket. Since the Courant bracket on

T ⊕T ∗ depends on a 3-form H, it may appear at first glance to have a smaller

symmetry group than the Lie bracket. However, as was observed in [35], the

spinorial action of 2-forms (1.4) satisfies

e−BdHe
B = dH+dB,

and therefore we obtain the following action on derived brackets:

(2.6) eB[e−B·, e−B·]H = [·, ·]H+dB.

We see from (2.6) that closed 2-forms act as symmetries of any exact Courant

algebroid.

Definition 2.1. A B-field transformation is the automorphism of an exact

Courant algebroid E defined by a closed 2-form B via

e 7→ e+ π∗iπeB.

A diffeomorphism ϕ : M −→ M lifts to an orthogonal automorphism of

T ⊕ T ∗ given by Ç
ϕ∗ 0

0 ϕ∗−1

å
,

which we will denote by ϕ∗. It acts on the Courant bracket via

(2.7) ϕ∗[ϕ
−1
∗ ·, ϕ−1

∗ ·]H = [·, ·]ϕ∗−1H .

Combining (2.7) with (2.6), we see that the composition F = ϕ∗e
B is a sym-

metry of the H-twisted Courant bracket if and only if ϕ∗H −H = dB.

Proposition 2.2. Let F be an orthogonal automorphism of T ⊕ T ∗,

covering the diffeomorphism ϕ : M −→ M , and preserving the H-twisted

Courant bracket. Then F = ϕ∗e
B for a unique 2-form B ∈ Ω2(M) satisfy-

ing ϕ∗H −H = dB.

Proof. Let G = ϕ−1
∗ ◦F , so that it is an automorphism of T ⊕T ∗ covering

the identity satisfying G[G−1·, G−1·]H = [·, ·]ϕ∗H . In particular, for any sec-

tions x, y ∈ C∞(T ⊕ T ∗) and f ∈ C∞(M) we have G[x, fy]H = [Gx,Gfy]ϕ∗H ,

which, using axiom C3), implies

π(x)(f)Gy = π(Gx)(f)Gy.
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Therefore, πG = π, and so G is an orthogonal map preserving projections

to T . This forces it to be of the form G = eB, for B a uniquely determined

2-form. By (2.6), B must satisfy ϕ∗H −H = dB. Hence we have F = ϕ∗e
B,

as required. �

An immediate corollary of this result is that the automorphism group of

an exact Courant algebroid E is an extension of the diffeomorphisms preserving

the cohomology class [H] by the abelian group of closed 2-forms:

0 // Ω2
cl(M) // Aut(E) // Diff [H](M) // 0.

Derivations of a Courant algebroid E are linear first order differential

operators DX on C∞(E), covering vector fields X and satisfying

X〈·, ·〉 = 〈DX ·, ·〉+ 〈·, DX ·〉,
DX [·, ·] = [DX ·, ·] + [·, DX ·].

Differentiating a 1-parameter family of automorphisms Ft = ϕt∗e
Bt , F0 = Id,

and using the convention for Lie derivative

LX = − d
dt

∣∣∣
t=0

ϕt∗,

we see that the Lie algebra of derivations of the H-twisted Courant bracket

consists of pairs (X, b) ∈ C∞(T )⊕Ω2(M) such that LXH = db. These act via

(2.8) (X, b) · (Y + η) = LX(Y + η)− iY b.

Therefore the algebra of derivations of an exact Courant algebroid algebroid

E is an abelian extension of the smooth vector fields by the closed 2-forms:

0 // Ω2
cl(M) // Der(E) // C∞(T ) // 0.

Proposition 2.3. Let DXt = (Xt, bt) ∈ C∞(T ) ⊕ Ω2(M) be a (possibly

time-dependent) derivation of the H-twisted Courant bracket on a compact

manifold, so that it satisfies LXtH = dbt and acts via (2.8). Then it generates

a 1-parameter subgroup of Courant automorphisms

(2.9) F tDX
= ϕt∗e

Bt , t ∈ R,

where ϕt denotes the flow of the vector field Xt for a time t and

(2.10) Bt =

∫ t

0
ϕ∗sbs ds.
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Proof. First we see that F tDX
is indeed an automorphism, since

dBt =

∫ t

0
ϕ∗s(LXsH) ds = d

du

∣∣∣
u=0

∫ t

0
ϕ∗sϕ

∗
uH ds

= d
du

∣∣∣
u=0

∫ t+u

u
ϕ∗s′H ds′

= ϕ∗tH −H,

which proves the result by Proposition 2.2. To see that it is a 1-parameter

subgroup, observe that eBϕ∗ = ϕ∗e
ϕ∗B for any ϕ ∈ Diff(M) and B ∈ Ω2(M),

so that

ϕt1∗ e
Bt1ϕt2∗ e

Bt2 = ϕt1+t2
∗ eϕ

∗
t2
Bt1+Bt2 = ϕt1+t2

∗ eBt1+t2 ,

where we use the expression (2.10) for the final equality. �

It is clear from axioms C1)–C4) that the left adjoint action adv : w 7→
[v, w] defines a derivation of the Courant algebroid. However, ad is neither

surjective nor injective; rather, for E exact, it induces the following exact

sequence:

(2.11) 0 // Ω1
cl(M)

π∗ // C∞(E)
ad // Der(E)

χ // H2(M,R) // 0,

where Ω1
cl(M) denotes the closed 1-forms and we define χ(DX) = [iXH − b] ∈

H2(M,R) for DX = (X, b) as above. Derivations (X, b) in the kernel of χ,

namely those for which b = iXH+dξ for a 1-form ξ, are called exact derivations.

A smooth 1-parameter family of automorphisms Ft = ϕt∗e
Bt from F0 = id to

F1 = F is called an exact isotopy when it is generated by a smooth time-

dependent family of exact derivations.

Definition 2.4. An automorphism F ∈ Aut(E) is called exact if there is

an exact isotopy Ft from F0 = id to F1 = F . This defines the subgroup of

exact automorphisms of any Courant algebroid:

Autex(E) ⊂ Aut(E).

2.2. Dirac structures. The Courant bracket fails to be a Lie bracket due

to exact terms involving the inner product 〈·, ·〉. Therefore, upon restriction to

a subbundle L ⊂ T⊕T ∗ which is involutive (closed under the Courant bracket)

as well as being isotropic, the anomalous terms vanish. Then (L, [, ], π) defines

a Lie algebroid, with associated differential graded algebra (C∞(∧•L∗), dL).

In fact, there is a tight a priori constraint on which proper subbundles

may be involutive:

Proposition 2.5. If L ⊂ E is an involutive subbundle of an exact Courant

algebroid, then L must be isotropic, or of the form π−1(∆), for ∆ an integrable

distribution in T .
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Proof. Suppose that L ⊂ E is involutive, but not isotropic; i.e., there

exists v ∈ C∞(L) such that 〈v, v〉 6= 0 at some point m ∈ M . Then for any

f ∈ C∞(M),

[fv, v] = f [v, v]− (π(v)f)v + 2〈v, v〉df,

implying that df |m ∈ L|m for all f , i.e. T ∗|m ⊂ L|m. Since T ∗|m is isotropic,

this inclusion must be proper, i.e. L|m = π−1(∆|m), where ∆ = π(L) is non-

trivial at m. Hence the rank of L must exceed the maximal dimension of an

isotropic subbundle. This implies that T ∗|m ⊂ L|m at every point m, and

hence that ∆ is a smooth subbundle of T , which must itself be involutive.

Hence L = π−1(∆), as required. �

Definition 2.6 (Dirac structure). A maximal isotropic subbundle L ⊂ E

of an exact Courant algebroid is called an almost Dirac structure. If L is

involutive, then the almost Dirac structure is said to be integrable, or simply

a Dirac structure.

As in Section 1.1, a Dirac structure L ⊂ T ⊕ T ∗ has a unique description,

at a point p, as a generalized graph L(∆, ε), where ∆ = π(L) is the projection

to Tp and ε ∈ ∧2∆∗. Assuming that L is regular near p in the sense that ∆

has constant rank near p, we have the following description of the integrability

condition:

Proposition 2.7. Let ∆ ⊂ T be a subbundle and ε ∈ C∞(∧2∆∗). Then

the almost Dirac structure L(∆, ε) is integrable for the H-twisted Courant

bracket if and only if ∆ integrates to a foliation and d∆ε = i∗H , where d∆

is the leafwise exterior derivative.

Proof. Let i : ∆ ↪→ T be the inclusion. Then d∆ : C∞(∧k∆∗) →
C∞(∧k+1∆∗) is defined by i∗◦d = d∆◦i∗. Suppose that X+ξ, Y +η ∈ C∞(L),

i.e. i∗ξ = iXε and i∗η = iY ε. Consider the bracket Z + ζ = [X + ξ, Y + η]; if

L is Courant involutive, then Z = [X,Y ] ∈ C∞(∆), showing ∆ is involutive,

and the difference

i∗ζ − iZε = i∗(LXη − iY dξ + iXiYH)− i[X,Y ]ε

= d∆iXiY ε+ iXd∆iY ε− iY d∆iXε+ iXiY i
∗H − [[d∆, iX ], iY ]ε

= iY iX(d∆ε− i∗H)

must vanish for all X+ ξ, Y +η ∈ C∞(L), showing that d∆ε = i∗H. Reversing

the argument we see that the converse holds as well. �

This implies that, in a regular neighbourhood, a dH -closed generator may

always be chosen.
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Corollary 2.8. Let (∆, ε) be as above and assume L(∆, ε) is integrable;

then for B ∈ C∞(∧2T ∗) such that i∗B = −ε, there exists a basis of sections

(θ1, . . . , θk) for Ann(∆) such that

ϕ = eBθ1 ∧ · · · ∧ θk
is a dH-closed generator for the pure spinor line KL.

Proof. Let Ω = θ1 ∧ . . . ∧ θk. By Proposition 2.7, ∆ is integrable, so

(θ1, . . . , θk) can be chosen such that dΩ = 0. Then we have

dH(eBΩ) = (dB +H) ∧ eBΩ = 0,

where the last equality holds since i∗(dB +H) = −d∆ε+ i∗H = 0. �

In neighbourhoods where ∆ is not regular, one may not find dH -closed

generators for KL; nevertheless, one has the following useful description of the

integrability condition.

Theorem 2.9. The almost Dirac structure L ⊂ T ⊕ T ∗ is involutive for

the H-twisted Courant bracket if and only if

(2.12) dH(C∞(F0)) ⊂ C∞(F1);

that is, for any local trivialization ϕ of KL, there exists a section X + ξ ∈
C∞(T ⊕ T ∗) such that

dHϕ = iXϕ+ ξ ∧ ϕ.
Furthermore, Condition (2.12) implies that

(2.13) dH(C∞(Fk)) ⊂ C∞(Fk+1)

for all k.

Proof. Let ϕ be a local generator for KL = F0. Then for e1, e2 ∈ C∞(L),

we have

[e1, e2]H · ϕ = [[dH , e1], e2]ϕ

= e1 · e2 · dHϕ,
and therefore L is involutive if and only if dHϕ is annihilated by all products

e1e2, ei ∈ C∞(L). Since Fk is precisely the subbundle annihilated by products

of k + 1 sections of L, we obtain dHϕ ∈ F1. The subbundle F1 decomposes

in even and odd degree parts as F1 = F0 ⊕ (T ⊕ T ∗) · F0, and since dH is of

odd degree, we see that dHϕ ∈ (T ⊕T ∗) ·KL, as required. To prove (2.13), we

proceed by induction on k; let ψ ∈ Fk, then since [e1, e2]H ·ψ = [[dH , e1], e2]ψ,

we have

e1 · e2 · dHψ = dH(e1 · e2 · ψ) + e1 · dH(e2 · ψ)− e2 · dH(e1 · ψ)− [e1, e2]H · ψ.

All terms on the right-hand side are in Fk−1 by induction, implying that dHψ ∈
Fk+1, as required. �
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Since the inner product provides a natural identification (T ⊕ T ∗) ·KL =

L∗⊗KL, the previous result shows that the pure spinor line generating a Dirac

structure is equipped with an operator

(2.14) dH : C∞(KL) −→ C∞(L∗ ⊗KL),

which satisfies d2
H = 0 upon extension to C∞(∧kL∗ ⊗ KL). This makes KL

a Lie algebroid module for L, i.e. a module over the differential graded Lie

algebra (∧•L∗, dL) associated to the Lie algebroid L (see [14] for a detailed

discussion of Lie algebroid modules).

Example 2.10. The cotangent bundle T ∗ ⊂ T ⊕T ∗ is a Dirac structure for

any twist H ∈ Ω3
cl(M).

Example 2.11. The tangent bundle T ⊂ T ⊕ T ∗ is a Dirac structure for

H = 0. Applying any 2-form B ∈ Ω2(M), we see that the graph

ΓB = eB(T ) = {X + iXB : X ∈ T}

is a Dirac structure for H = dB.

Example 2.12 (Twisted Poisson geometry). As shown in [35], the graph Γβ
of a bivector field β is a Dirac structure for any H such that [β, β] = ∧3β∗(H).

Hence for H = 0, β must be Poisson.

Example 2.13 (Foliations). Let ∆ ⊂ T be a smooth distribution of con-

stant rank. Then ∆⊕Ann(∆) ⊂ T ⊕ T ∗ defines a Dirac structure if and only

if ∆ is integrable and H|∆ = 0.

Example 2.14 (Complex geometry). Let J ∈ End(T ) be an almost com-

plex structure. Then

LJ = T0,1 ⊕Ann(T0,1) = T0,1 ⊕ T ∗1,0

is integrable if and only if T0,1 is involutive and i∗H = 0 for the inclusion

i : T 0,1 ↪→ T ⊗ C, i.e. H is of type (1, 2) + (2, 1).

We may apply Theorem 2.9 to give a simple description of the modu-

lar vector field of a Poisson structure (we follow [13]; for the case of twisted

Poisson structures, see [23]). The Dirac structure Γβ associated to a Poisson

structure β has corresponding pure spinor line generated by ϕ = eβ · v, where

v ∈ C∞(detT ∗) is a volume form on the manifold, which we assume to be

orientable. By Theorem 2.9, there exists X + ξ ∈ C∞(T ⊕ T ∗) such that

dϕ = (X+ξ) ·ϕ. Since Lβ annihilates ϕ, there is a unique Xv ∈ C∞(T ), called

the modular vector field associated to (β, v), such that

(2.15) dϕ = Xv · ϕ.
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We see from applying d to (2.15) that LXvϕ = d(Xv · ϕ) + Xv · Xv · ϕ = 0,

implying immediately that Xv is a Poisson vector field (i.e. [β,Xv] = 0)

preserving the volume form v. Of course the modular vector field is not an

invariant of the Poisson structure alone; for f ∈ C∞(M,R), one obtains

X(efv) = Xv + [β, f ].

As a result we see, following Weinstein [37], that Xv defines a class [Xv] in the

first Lie algebroid cohomology of Γβ, called the modular class of β:

[Xv] ∈ H1(M,Γβ).

2.3. Tensor product of Dirac structures. Exact Courant algebroids may

be pulled back to submanifolds ι : S ↪→ M . Extending results from [7], we

provide a proof in the appendix. It is shown there that if E is an exact Courant

algebroid on M , then

ι∗E := K⊥/K,

where K = Ann(TS) and K⊥ is the orthogonal complement in E, inherits an

exact Courant algebroid structure over S, with Ševera class given simply by

the pullback along the inclusion. Furthermore, any Dirac structure L ⊂ E may

be pulled back to S via

(2.16) ι∗LS :=
L ∩K⊥ +K

K
⊂ ι∗E,

which is an integrable Dirac structure whenever it is smooth as a subbundle of

ι∗E, e.g. if L∩K⊥ has constant rank on S (see Appendix, Proposition 7.2). We

now use this pullback operation to define a Baer sum of Courant algebroids,

coinciding with that defined in ([34], [5]).

Definition 2.15. Let E1, E2 be exact Courant algebroids over M and let

d : M −→ M ×M be the diagonal embedding. Then we define the Baer sum

or tensor product of E1 with E2 to be the exact Courant algebroid (over M)

E1 � E2 = d∗(E1 × E2),

which can be written simply as

E1 � E2 = {(e1, e2) ∈ E1 × E2 : π1(e1) = π2(e2)}/{(−π∗1ξ, π∗2ξ) : ξ ∈ T ∗},

and has Ševera class equal to the sum [H1] + [H2].

The standard Courant algebroid (T⊕T ∗, [·, ·]0) acts as an identity element

for this operation, and every exact Courant algebroid E has a natural inverse,

denoted by E>, defined as the same Courant algebroid with 〈·, ·〉 replaced with

its negative −〈·, ·〉:

(2.17) E> = (E, [·, ·],−〈·, ·〉, π).
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We may now use the Dirac pullback (2.16) to define the tensor product of

Dirac structures; an equivalent definition appears in [3].

Definition 2.16. Let L1 ⊂ E1, L2 ⊂ E2 be Dirac structures and E1, E2 as

above. We define the tensor product

L1 � L2 = d∗(L1 × L2) ⊂ E1 � E2,

where d∗ denotes the Dirac pullback (2.16) by the diagonal embedding. Ex-

plicitly, we have

(2.18) L1 � L2 = ({(x1, x2) ∈ L1 × L2 : π1(x1) = π2(x2)}+K)/K,

where K = {(−π∗1ξ, π∗2ξ) : ξ ∈ T ∗}. This is a Dirac structure if it is smooth

as a bundle.

Example 2.17. The canonical Dirac structure T ∗ ⊂ E acts as a zero ele-

ment: for any other Dirac structure L ⊂ F , T ∗ � L = T ∗ ⊂ E � F .

Example 2.18. The Dirac structure ∆ + Ann(∆) ⊂ T ⊕ T ∗ associated to

an integrable distribution ∆ ⊂ T is idempotent:

(∆ + Ann(∆)) � (∆ + Ann(∆)) = ∆ + Ann(∆).

Example 2.19. The tensor product of Dirac structures is compatible with

B-field transformations:

eB1L1 � eB2L2 = eB1+B2(L1 � L2).

Combining this with the previous example, taking ∆ = T , we see that

Dirac structures transverse to T ∗ remain so after tensor product. Finally we

provide an example where smoothness is not guaranteed.

Example 2.20. Let L ⊂ E be any Dirac structure, with L> ⊂ E> defined

by the inclusion L ⊂ E. Then

L> � L = ∆ + Ann(∆) ⊂ T ⊕ T ∗,
where ∆ = π(L). Hence L> � L is a Dirac structure when ∆ + Ann(∆) is a

smooth subbundle, i.e. when ∆ has constant rank.

Assuming we choose splittings for E1, E2, the tensor product of Dirac

structures L1 ⊂ E1, L2 ⊂ E2 annihilates the wedge product K1∧K2 of the pure

spinor lines representing L1 and L2. For reasons of skew-symmetry, K1 ∧K2

is nonzero only when L1 ∩ L2 ∩ T ∗ = {0}. This result also appears in [3]:

Proposition 2.21. Let L1, L2 be Dirac structures in T ⊕ T ∗, and let

ϕ1 ∈ K1, ϕ2 ∈ K2 be (local) generators for their corresponding pure spinor

lines in ∧•T ∗. Then
L1 � L2 · (ϕ1 ∧ ϕ2) = 0,

and therefore ϕ1∧ϕ2 is a pure spinor for L1�L2 as long as L1∩L2∩T ∗ = {0}.
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Proof. From expression (2.18), we obtain the following simple expression:

(2.19) L1 � L2 = {X + ξ + η : X + ξ ∈ L1 and X + η ∈ L2}.

Then for X + ξ + η ∈ L1 � L2, we have

(X + ξ + η) · (ϕ1 ∧ ϕ2)

= (iXϕ1 + ξ ∧ ϕ1) ∧ ϕ2 + (−1)|ϕ1|ϕ1 ∧ (iXϕ2 + η ∧ ϕ2) = 0. �

The anti-orthogonal map T⊕T ∗ −→ T⊕T ∗, given by X+ξ 7→ (X+ξ)> =

X − ξ, satisfies

[(X + ξ)>, (Y + η)>]>H = [X + ξ, Y + η]−H ,

so that it takes the Courant algebroid to its inverse (2.17). This operation

intertwines with the reversal of forms, in the sense that

((X + ξ) · ϕ)> = (−1)|ϕ|+1(X + ξ)> · ϕ>,

for any ϕ ∈ ∧•T ∗, where |ϕ| denotes the degree. As a result, we see that

reversal operation on forms corresponds to the reversal L 7→ L> of Dirac

structures in T ⊕ T ∗. Since the Mukai pairing of pure spinors ϕ,ψ, is given

by the top degree component of ϕ> ∧ ψ, we conclude from the perfect pairing

(1.9) and Proposition 1.4 that for transverse Dirac structures L1, L2 ⊂ E the

tensor product L>1 �L2 ⊂ T ⊕T ∗ has zero intersection with T and hence is the

graph of a Poisson bivector β. This result was first observed in its general form

in [3] and is consistent with the appearance of a Poisson structure associated

to any Lie bialgebroid in [28].

Proposition 2.22 (Alekseev-Bursztyn-Meinrenken [3]). Let E be any ex-

act Courant algebroid and L1, L2 ⊂ E be transverse Dirac structures. Then

L>1 � L2 = Γβ ⊂ T ⊕ T ∗,

where β ∈ C∞(∧2T ) is a Poisson structure.

3. Generalized complex structures

Just as a complex structure may be defined as an endomorphism J : T → T

satisfying J2 = −1 and which is integrable with respect to the Lie bracket, we

have the following definition, due to Hitchin [17]:

Definition 3.1. A generalized complex structure on an exact Courant al-

gebroid E ∼= T ⊕T ∗ is an endomorphism J : E −→ E satisfying J 2 = −1 and

which is integrable with respect to the Courant bracket, i.e. its +i eigenbundle

L ⊂ E ⊗ C is involutive.
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An immediate consequence of Proposition 2.5 is that the +i eigenbundle

of a generalized complex structure must be isotropic, implying that J must be

orthogonal with respect to the natural pairing on E:

Proposition 3.2. A generalized complex structure J must be orthogonal

and hence defines a symplectic structure 〈J ·, ·〉 on E.

Proof. Let x, y ∈ C∞(E) and decompose x = a+ ā, y = b+ b̄ according to

the polarization E⊗C = L⊕L. Since L must be isotropic by Proposition 2.5,

〈J x,J y〉 = 〈a, b̄〉+ 〈ā, b〉 = 〈x, y〉.

Hence J is orthogonal and 〈J ·, ·〉 is symplectic, as required. �

This equivalence between complex and symplectic structures on E com-

patible with the inner product is illustrated most clearly by examining two

extremal cases of generalized complex structures on T ⊕ T ∗. First, consider

the endomorphism of T ⊕ T ∗:

(3.1) JJ =

Ç
−J 0

0 J∗

å
,

where J is a usual complex structure on V . Then we see that J 2
J = −1 and

J ∗J = −JJ . Its +i eigenbundle LJ = T0,1⊕T ∗1,0 is, by Example 2.14, integrable

if and only if J is integrable and H(3,0) = 0.

At the other extreme, consider the endomorphism

(3.2) Jω =

Ç
0 −ω−1

ω 0

å
,

where ω is a usual symplectic structure. Again, we observe that J 2
ω = −1 and

the +i eigenbundle

Lω = {X − iω(X) : X ∈ T ⊗ C}

is integrable, by Example 2.11, if and only if H = 0 and dω = 0.

Proposition 3.3. Generalized complex manifolds must be even-dimen-

sional.

Proof. Let p ∈ M be any point and Ep the fibre of the exact Courant

algebroid at p. Let x ∈ Ep be null, i.e. 〈x, x〉 = 0. Then J x is also null and

is orthogonal to x. Therefore {x,J x} span an isotropic subspace N ⊂ Ep.

We may iteratively enlarge the spanning set by adding a pair {x′,J x′} for

x′ ∈ N⊥, until N⊥ = N and dimM = dimN is even. �

At any point p ∈M , the orthogonal group O(Ep) ∼= O(2n, 2n) acts transi-

tively on the space of generalized complex structures at p by conjugation, with
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stabilizer U(n, n) = O(2n, 2n)∩GL(2n,C). Therefore the space of generalized

complex structures at p is given by the coset space

(3.3)
O(2n, 2n)

U(n, n)
.

In this sense, a generalized complex structure on an even-dimensional manifold

is an integrable reduction of the structure group of E fromO(2n, 2n) to U(n, n).

Since U(n, n) is homotopic to U(n)×U(n), the U(n, n) structure may be further

reduced to U(n) × U(n), which corresponds geometrically to the choice of a

positive definite subbundle C+ ⊂ E which is complex with respect to J . The

orthogonal complement C− = C⊥+ is negative-definite and also complex, and

so we obtain the orthogonal decomposition

(3.4) E = C+ ⊕ C−.

Note that since C± are definite and T ∗ ⊂ E is isotropic, the projection π :

C± → T is an isomorphism. Hence we can transport the complex structures

on C± to T , obtaining two almost complex structures J+, J− on T . Thus

we see that a generalized complex manifold must admit an almost complex

structure. Furthermore it has two canonically associated sets of Chern classes

c±i = ci(T, J±) ∈ H2i(M,Z). Summarizing, and using (3.4), we obtain the

following.

Proposition 3.4. A generalized complex manifold must admit almost

complex structures, and has two sets of canonical classes c±i ∈ H2i(M,Z) such

that the total Chern class

c(E,J ) = c+ ∪ c−,

where c± =
∑
i c
±
i .

3.1. Type and the canonical line bundle. Any exact Courant algebroid has

a canonical Dirac structure T ∗ ⊂ E, and a generalized complex structure J
may be characterized by its action on this Dirac structure, as we now describe.

If J T ∗ = T ∗, then J determines a usual complex structure on the man-

ifold, and a splitting may be chosen for E so that J is of the form (3.1).

On the other hand, if J T ∗ ∩ T ∗ = {0}, then we have the canonical splitting

E = J T ∗ ⊕ T ∗, and J takes the form (3.2), i.e. a symplectic structure.

In general, the subbundle J T ∗ ⊂ E projects to a distribution

(3.5) ∆ = π(J T ∗) ⊂ T

which may vary in dimension along the manifold. Defining

E∆ =
T ∗ + J T ∗

Ann(∆)
,
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we see that E∆ is an extension of the form

0 // ∆∗ // E∆
π // ∆ // 0,

and since Ann(∆) = T ∗ ∩ J T ∗ is complex, we see that J induces a complex

structure J∆ on E∆ such that ∆∗ ∩J∆∆∗ = {0}. Therefore, at each point, ∆

inherits a generalized complex structure of symplectic type. Furthermore,

E

T ∗ + J T ∗
= T/∆,

showing that, at each point, T/∆ inherits a complex structure. Ignoring inte-

grability, which we address in the next section, we conclude that a generalized

complex manifold carries a canonical symplectic distribution (of variable di-

mension) with transverse complex structure. At each point, we may choose an

isotropic complement ∆̃′ ⊂ E to T ∗+J T ∗, in such a way that J ∆̃′ = ∆̃′. Let

∆′ = π(∆̃′) be its projection to T , inducing the splittings T = ∆⊕∆′ and

E = ∆̃′ ⊕ JAnn∆′ ⊕Ann∆′ ⊕Ann∆.

This expresses (E,J ) as the product of a symplectic structure on Ann∆′ ⊕
JAnn∆′ and a complex structure on ∆̃′ ⊕Ann∆.

Definition 3.5. The type of the generalized complex structure J is the

upper semi-continuous function

type(J ) = 1
2 dimR T

∗ ∩ J T ∗,

with possible values {0, 1, . . . , n}, where n = 1
2 dimRM . The type of J coin-

cides with the type of its +i eigenbundle L ⊂ E ⊗ C, and hence is of fixed

parity throughout the manifold.

We have therefore obtained a pointwise local form for a generalized com-

plex structure, depending only on its type.

Theorem 3.6. At any point, a generalized complex structure of type k

is equivalent, by a choice of isotropic splitting for E, to the direct sum of a

complex structure of complex dimension k and a symplectic structure of real

dimension 2n− 2k.

In real dimension 2, connected generalized complex manifolds must be of

constant type 0 or 1, i.e. of symplectic or complex type, whereas in dimension 4,

they may be of types 0, 1, or 2, with possible jumping from 0 (symplectic) to

2 (complex) along closed subsets of the manifold; we shall encounter such

examples in Sections 4.1 and 5.3.

It also follows from our treatment of Dirac structures that a generalized

complex structure is completely characterized by the pure spinor lineK ⊂ S⊗C
corresponding to the maximal isotropic subbundle L. When a splitting for E
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is chosen, we obtain an identification S = ∧•T ∗ ⊗ (detT )1/2, and hence K

may be viewed as a line subbundle of the complex differential forms. For a

symplectic structure, Lω = e−iω(T ), and so

Kω = e−iω · ∧0T ∗ = C · eiω,

whereas for a complex structure LJ = T0,1 + T ∗1,0, so that

KJ = ∧nT ∗1,0,

leading to the following definition.

Definition 3.7. The canonical line bundle of a generalized complex struc-

ture on T ⊕ T ∗ is the complex pure spinor line subbundle K ⊂ ∧•T ∗ ⊗ C
annihilated by the +i eigenbundle L of J .

Proposition 1.3 states that a generator ϕ ∈ Kx for the canonical line

bundle at the point x ∈M must have the form

(3.6) ϕ = eB+iωΩ,

where Ω = θ1∧· · ·∧θk for (θ1, . . . , θk) a basis for L∩(T ∗⊗C), and B,ω are the

real and imaginary components of a complex 2-form. As a result we can read

off the type of J at p directly as the least nonzero degree (k) of the differential

form ϕ. The generalized complex structure defines a polarization

(3.7) E ⊗ C = L⊕ L,

and therefore by nondegeneracy of the Mukai pairing from equation (1.9),

(3.8) 〈ϕ,ϕ〉 6= 0.

Using (3.6), we obtain

0 6= (eB+iωΩ, eB−iωΩ) = (e2iωΩ,Ω)

= (−1)2n−k(2i)n−k

(n−k)! ωn−k ∧ Ω ∧ Ω,

which expresses the fact that ω pulls back to the symplectic form on ∆ =

ker Ω ∧ Ω described earlier, and Ω defines the complex structure transverse to

∆. We also see that 〈ϕ,ϕ〉 ∈ detT ∗ defines an orientation independent of the

choice of ϕ, giving a global orientation on the manifold. This orientation, to-

gether with the parity of the type, defines a pair of invariants which distinguish

the four connected components of the coset space (3.3).

The canonical line bundle K introduced in this section, along with its

complex conjugate K, are the extremal line bundles of a Z-grading on spinors

induced by the generalized complex structure. As described in (1.8), a polariza-

tion induces a Z-grading on spinors; therefore a generalized complex structure
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on T ⊕ T ∗, since it determines a polarization (T ⊕ T ∗) ⊗ C = L ⊕ L, induces

an alternative Z-grading on differential forms

∧•T ∗ ⊗ C = U−n ⊕ · · · ⊕ Un,

where Un = K is the canonical line bundle and Un−k = ∧kL · Un. Since

L annihilates U−n, we see that U−n = Un is the canonical line of −J . We

therefore have the following convenient description of this Z-grading.

Proposition 3.8. A generalized complex structure J on E = T ⊕ T ∗

gives rise to a Z-grading

∧•T ∗ ⊗ C = U−n ⊕ · · · ⊕ Un,

where Uk is the ik-eigenbundle of J acting in the spin representation, and

Un = K .

In the case of a usual complex structure JJ , then the graded components

correspond to the well-known (p, q)-decomposition of forms as follows:

(3.9) UkJ =
⊕
p−q=k

Ωp,q(M,C),

since JJ acts via the spin representation as J∗, which has eigenvalue i(p− q)
on Ωp,q.

The fact that U−n = detL ·Un, combined with our previous remark (3.8),

implies that

Un ⊗ detL∗ ⊗ Un ∼= detT ∗ ⊗ C.

Since the complex bundle L is isomorphic to (E,J ), we obtain the following.

Corollary 3.9. The canonical line bundle of a generalized complex man-

ifold has first Chern class satisfying

2c1(K) = c+
1 + c−1 .

3.2. Courant integrability. The notion of type and the Z-grading on spinors

introduced in the last section do not depend on the Courant integrability of

the generalized complex structure; they may be associated to any generalized

almost complex structure:

Definition 3.10. A generalized almost complex structure is a complex struc-

ture J on an exact Courant algebroid which is orthogonal with respect to the

natural inner product.

Naturally, a generalized almost complex structure J is said to be in-

tegrable when its +i eigenbundle L ⊂ E ⊗ C is involutive for the Courant

bracket, i.e. L is a Dirac structure.
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Proposition 3.11. A generalized complex structure is equivalent to a

complex Dirac structure L ⊂ E ⊗ C such that L ∩ L = {0}.

As a result, (L, [, ], π), where π : L −→ T ⊗C is the projection, defines the

structure of a Lie algebroid, and therefore we obtain a differential complex

(3.10) C∞(∧kL∗)
dL // C∞(∧k+1L∗),

where dL is the Lie algebroid de Rham differential, which satisfies d2
L = 0 due

to the Jacobi identity for the Courant bracket restricted to L. The operator

dL has principal symbol s(dL) : T ∗ ⊗ ∧kL∗ → ∧k+1L∗ given by π∗ : T ∗ → L∗

composed with wedge product, i.e.

sξ(dL) = π∗(ξ) ∧ · ,

where ξ ∈ T ∗. We now observe that the complex (3.10) is elliptic for a gener-

alized complex structure.

Proposition 3.12. The Lie algebroid complex of a generalized complex

structure is elliptic.

Proof. Given a real, nonzero covector ξ ∈ T ∗, write ξ = α + α for α ∈ L.

For v ∈ L, we have π∗ξ(v) = ξ(π(v)) = 〈ξ, v〉 = 〈α, v〉. Using the inner product

to identify L∗ = L, we therefore have π∗ξ = α, which is nonzero if and only if

ξ is. As a result, the symbol sequence is exact for any nonzero real covector,

as required. �

This provides us with our first invariants associated to a generalized com-

plex structure:

Corollary 3.13. The cohomology of the complex (3.10), called the Lie

algebroid cohomology H•(M,L), is a finite dimensional graded ring associated

to any compact generalized complex manifold.

In the case of a complex structure, L = T0,1 ⊕ T ∗1,0, while dL = ∂, and so

the Lie algebroid complex is a sum of usual Dolbeault complexes, yielding

Hk(M,LJ) =
⊕
p+q=k

Hp(M,∧qT1,0).

In the case of a symplectic structure, the Lie algebroid L is the graph of iω,

and hence is isomorphic to T ⊗ C as a Lie algebroid. Hence its Lie algebroid

cohomology is simply the complex de Rham cohomology.

Hk(M,Lω) = Hk(M,C).

We now describe a second invariant, obtained from the Z-grading on dif-

ferential forms induced by J . As we saw in the previous section, a generalized
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complex structure on T⊕T ∗ determines an alternative grading for the differen-

tial forms, which may be viewed as the intersection of two complex conjugate

filtrations

Fi = ⊕ik=0U
n−k, Fi = ⊕ik=0U

−n+k.

More precisely, we have

(3.11) Uk = Fn−k ∩ Fn+k.

By Theorem 2.12, the integrability of J with respect to [·, ·]H is equivalent to

the fact that dH takes C∞(Fi) into C∞(Fi+1). Using (3.11), this happens if

and only if dH takes C∞(Uk) into C∞(Uk−1⊕Uk⊕Uk+1), but since dH is odd,

we see that J is integrable if and only if dH(C∞(Uk)) ⊂ C∞(Uk−1 ⊕ Uk+1).

Projecting to these two components, we obtain dH = ∂ + ∂, where

(3.12) C∞(Uk)
∂ // C∞(Uk+1).
∂

oo

We state this result in the context of generalized almost complex structures.

Theorem 3.14. Let J be a generalized almost complex structure on T ⊕
T ∗, and define

∂ = πk+1 ◦ dH : C∞(Uk) −→ C∞(Uk+1)

∂ = πk−1 ◦ dH : C∞(Uk) −→ C∞(Uk−1),

where πk is the projection onto Uk. Then

(3.13) dH = ∂ + ∂ + TL + TL,

where TL ∈ ∧3L∗ = ∧3L is defined by

TL(e1, e2, e3) = 〈[e1, e2], e3〉,

and acts via the Clifford action in (3.13). J is integrable, therefore, if and

only if dH = ∂ + ∂, or equivalently, if and only if

(3.14) dH(C∞(Un)) ⊂ C∞(Un−1).

In the integrable case, since dH = ∂ + ∂ and d2
H = 0, we conclude that

∂2 = ∂
2

= 0 and ∂∂ = −∂∂; hence in each direction, (3.12) defines a differential

complex.

Remark. Given the above, a generalized complex structure gives rise to a

real differential operator dJ = i(∂−∂), which can also be written dJ = [d,J ],

and which satisfies (dJ )2 = 0. It is interesting to note that while in the complex

case dJ is just the usual dc-operator dc = i(∂ − ∂), in the symplectic case dJ

is equal to the symplectic adjoint of d defined by Koszul [24] and studied by

Brylinski [6] in the context of symplectic harmonic forms.
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Using the identification Un−k = ∧kL∗ ⊗K as in (1.8), the operator ∂ can

be viewed as a Lie algebroid connection

∂ : C∞(∧kL∗ ⊗K)→ C∞(∧k+1L∗ ⊗K),

extended from dH : C∞(K)→ C∞(L∗ ⊗K) via the rule

(3.15) ∂(µ⊗ s) = dLµ⊗ s+ (−1)|µ|µ ∧ ds,

for µ ∈ C∞(∧kL∗) and s ∈ C∞(K), and satisfying ∂
2

= 0. Therefore K is a

module for the Lie algebroid L, and we may call it a generalized holomorphic

bundle. From the ellipticity of the Lie algebroid complex for L and the fact

that K is a module over L, we immediately obtain the following.

Proposition 3.15. The cohomology of the complex (U•, ∂), called the

generalized Dolbeault cohomology H•
∂
(M), is a finite dimensional graded mod-

ule over H•(M,L) associated to any compact generalized complex manifold.

In the case of a complex structure, equation (3.9) shows that the gener-

alized Dolbeault cohomology coincides with the usual Dolbeault cohomology,

with grading

Hk
∂
(M) =

⊕
p−q=k

Hp,q

∂
(M).

A special case occurs when the canonical line bundle is holomorphically trivial,

in the sense that (K, ∂) is isomorphic to the trivial bundle M×C together with

the canonical Lie algebroid connection dL. Then the Lie algebroid complex and

the generalized Dolbeault complex (U•, ∂) are isomorphic and hence H•
∂
(M) ∼=

H•(M,L). This holomorphic triviality of K is equivalent to the existence of

a nowhere-vanishing section ρ ∈ C∞(K) satisfying dHρ = 0. In [17], Hitchin

calls these generalized Calabi-Yau structures:

Definition 3.16. A generalized Calabi-Yau structure is a generalized com-

plex structure with holomorphically trivial canonical bundle, i.e. admitting a

nowhere-vanishing dH -closed section ρ ∈ C∞(K).

An example of a generalized Calabi-Yau structure is of course the complex

structure of a Calabi-Yau manifold, which admits a holomorphic volume form

Ω trivializing the canonical line bundle. On the other hand, a symplectic

structure has canonical line bundle generated by the closed form eiω, so it too

is generalized Calabi-Yau.

Assuming that c1(K) = 0, we may always choose a nonvanishing section

ρ ∈ C∞(K); by Theorem 3.14, integrability implies that dHρ = χρ · ρ for a

uniquely determined χρ ∈ C∞(L) = C∞(L∗). Applying (3.15), we obtain

0 = d2
Hρ = (dLχρ) · ρ− χρ · (χρ · ρ),
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implying that dLχρ = 0. Just as for the modular class of a Poisson struc-

ture (2.15), χρ defines a class in the Lie algebroid cohomology

(3.16) [χρ] ∈ H1(M,L)

which is the obstruction to the existence of generalized Calabi-Yau structure.

More generally, we may use standard Čech arguments to show that any

generalized holomorphic line bundle V is classified up to isomorphism by an

element [V ] ∈ H1(Llog) in the first hypercohomology of the complex of sheaves

Llog, given by

C∞(C∗)
dL log // C∞(L∗)

dL // C∞(∧2L∗)
dL // · · · .

Definition 3.17. The Picard group of isomorphism classes of rank 1 gen-

eralized holomorphic bundles, i.e. modules over L, is Pic(J ) = H1(Llog).

Of course this implies that J is generalized Calabi-Yau if and only if

[K] = 0 as a class in H1(Llog). The usual exponential map induces a long

exact sequence of hypercohomology groups

· · · // H1(M,L) // H1(Llog)
c1 // H2(Z) // · · · ,

and so we recover the observation (3.16) that when c1(K) = 0 the Calabi-Yau

obstruction lies in H1(M,L).

Example 3.18. Suppose that the complex bundle V is generalized holo-

morphic for a complex structure JJ . Then the differential D : C∞(V ) −→
C∞(L∗ ⊗ V ) may be decomposed according to L = T0,1 ⊕ T ∗1,0 to yield

D = ∂V + Φ,

where ∂V : C∞(V ) −→ C∞(T ∗0,1 ⊗ V ) is a usual partial connection, Φ : V −→
T1,0 ⊗ V is a bundle map, and D ◦D = 0 yields the conditions:

• ∂2
V = 0, i.e. V is a usual holomorphic bundle,

• ∂V (Φ) = 0, i.e. Φ is holomorphic,

• Φ ∧ Φ = 0 in ∧2T1,0 ⊗ End(V ).

In the rank 1 case, therefore, we obtain the result

Pic(JJ) = H1(O∗)⊕H0(T ),

showing that the generalized Picard group contains the usual Picard group of

the complex manifold but also includes its infinitesimal automorphisms.

3.3. Hamiltonian symmetries. The Lie algebra sym(ω) of infinitesimal

symmetries of a symplectic manifold consists of sections X ∈ C∞(T ) such

that LXω = 0. The Hamiltonian vector fields ham(ω) are those infinitesimal
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symmetries generated by smooth functions, in the sense X = ω−1(df), for

f ∈ C∞(M,R). We then have the well-known sequence

0 // ham(ω) // sym(ω)
ω−1
// H1(M,R) // 0.

We now give an analogous description of the symmetries of a generalized com-

plex structure and examine the manner in which it specializes in the cases of

symplectic and complex geometry.

Definition 3.19. An infinitesimal symmetry v ∈ sym(J ) of a generalized

complex structure J on the Courant algebroid E is defined to be a section

v ∈ C∞(E) which preserves J under the adjoint action, i.e. adv ◦J = J ◦adv,

or equivalently, [v, C∞(L)] ⊂ C∞(L).

In the presence of a generalized complex structure J , a real section v ∈
C∞(E) may be decomposed according to the splitting E⊗C = L⊕L, yielding

v = v1,0 + v0,1. Clearly [v1,0, C∞(L)] ⊂ C∞(L) by the integrability of J .

However [v0,1, C∞(L)] ⊂ C∞(L) if and only if dLv
0,1 = 0, where we use the

identification L = L∗. As a result we identify sym(J ) = ker dL∩C∞(L∗), and

the differential complex (3.10) provides the following sequence, suggesting the

definition of generalized Hamiltonian symmetries:

C∞(M,C)
dL // sym(J ) // H1(M,L) // 0.

Definition 3.20. An infinitesimal symmetry v ∈ sym(J ) is Hamiltonian,

i.e. v ∈ ham(J ), when v = Df for f ∈ C∞(M,C), where

Df = dLf + dLf = d(Ref)− J d(Imf).

As a result we obtain the following exact sequence of complex vector

spaces:

0 // ham(J ) // sym(J ) // H1(M,L) // 0.

In the case of a symplectic structure, a section X + ξ ∈ C∞(T ⊕ T ∗) preserves

Jω precisely when LXω = 0 and dξ = 0. On the other hand, computing Df ,

we obtain

Df = d(Ref) + ω−1d(Imf),

showing that X + ξ is Hamiltonian precisely when X is Hamiltonian and ξ is

exact.

In the complex case, X + ξ preserves JJ exactly when ∂(X1,0 + ξ0,1) = 0,

i.e. when X is a holomorphic vector field and ∂ξ0,1 = 0. We also have

Df = ∂f + ∂f̄ ,

showing that X + ξ is Hamiltonian exactly when X = 0 and ξ = ∂f + ∂f̄ for

f ∈ C∞(M,C).
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Even for a usual complex manifold, therefore, there are nontrivial Hamil-

tonian symmetries ξ = ∂f + ∂f , which integrate to B-field transformations

etB, for B = ∂∂(f − f).

3.4. The Poisson structure and its modular class. The symplectic distri-

bution ∆ = π(J T ∗) associated to a generalized complex structure is the image

of a natural bivector field defined by J :

(3.17) P = π ◦ J |T ∗ : ξ 7→ π(J ξ).

It is natural to ask, therefore, whether P is Poisson. For a direct investigation

of the properties of P , see [26], [12], and [1]. We present a Dirac-geometric

proof that P defines a Poisson structure.

Proposition 3.21. Let J be a generalized complex structure with +i

eigenbundle L ⊂ E ⊗ C. Then

(3.18) L> � L = ΓiP/2,

i.e. the tensor product of L> with L is the graph of the bivector field iP/2 in

the Courant algebroid (T ⊕ T ∗)⊗ C, and therefore P must be Poisson.

Proof. Choose a splitting for the Courant algebroid, and express J as the

block matrix

(3.19) J =

Ç
A P

σ −A∗

å
,

so that the Poisson tensor P is apparent. Let ζ ∈ T ∗⊗C, so that ζ− iJ ζ ∈ L,

or, using (3.19), we have ζ − iPζ + iA∗ζ ∈ L. Therefore (ζ − iPζ + iA∗ζ)> =

(−ζ−iPζ−iA∗ζ) ∈ L> and ζ+iPζ−iA∗ζ ∈ L. Combining these using (2.19),

we see that

iPζ + 2ζ ∈ L> � L

and hence ΓiP/2 ⊂ L>�L. Since both sides are maximal isotropic subbundles,

we must have equality, as required. �

Corollary 3.22. The distribution ∆ = π(J T ∗) = ImP integrates to a

generalized foliation by smooth symplectic leaves with codimension 2k, where

k = type(J ).

We now observe that this implies a relation between the Calabi-Yau ob-

struction class and the modular class.

Proposition 3.23. Let J be a generalized complex structure such that

c1(K) = 0, and let ρ ∈ C∞(K) be a nonvanishing section with

dHρ = v · ρ, v ∈ C∞(E).
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Then −2π(J v) = X is the modular vector field associated to the Poisson

structure P and volume form (ρ, ρ).

Proof. Let dHρ = v0,1 · ρ for uniquely defined v0,1 ∈ C∞(L), so that

v = v1,0 + v0,1 for v1,0 = v0,1. By equation (3.18) and Proposition 2.21, we

have that

ρ> ∧ ρ = e
iP
2 (ρ, ρ) = ϕ.

Taking the exterior derivative, and using the definition (2.15) of the modular

vector field, we have

dϕ = ‹X · ϕ = (−1)|ρ|((dHρ)> ∧ ρ+ ρ> ∧ (dHρ))

= (−1)|ρ|((v0,1 · ρ)> ∧ ρ+ ρ> ∧ (v1,0 · ρ))

= −π(v0,1 − v1,0) · (ρ> ∧ ρ)

= −iπ(J v) · ϕ,

showing that ‹X = −iπ(J v) is the modular vector field for iP/2. Rescaling the

Poisson structure, we obtain the result. �

Corollary 3.24. The Poisson structure P associated to a generalized

Calabi-Yau manifold is unimodular in the sense of Weinstein [37], i.e. it has

vanishing modular class.

The map H1(M,L) −→ H1(M,ΓP ) of Lie algebroid cohomology groups

implicit in the above result may be understood from the fact that the projection

map T ∗⊗C −→ L obtained from the splitting E⊗C = L⊕L, is actually a Lie

algebroid morphism, when T ∗ ⊗ C is endowed with the Poisson Lie algebroid

structure, as we now explain.

Proposition 3.25. Let L,P be the +i-eigenbundle and Poisson structure

associated to a generalized complex structure. The bundle map a : ΓP⊗C −→ L

given, for any ξ ∈ T ∗ ⊗ C, by

(3.20) a : ξ + Pξ 7→ iξ + J ξ,

is a Lie algebroid homomorphism.

Proof. The map a commutes with the projections to the tangent bundle,

since P = π ◦ J |T ∗ . Given 1-forms ξ, η, we have

[a(ξ + Pξ), a(η + Pη)] = i([ξ,J η] + [J ξ, η]) + [J ξ,J η]

= i([ξ, Pη] + [Pξ, η]) + J ([ξ, Pη] + [Pξ, η])

= a([ξ + Pξ, η + Pη]),

as required. �
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As a final example of the relationship between a generalized complex struc-

ture and its associated Poisson structure, we use the above Lie algebroid ho-

momorphism to relate the infinitesimal symmetries of each structure.

Proposition 3.26. If J is a generalized complex structure and P its

associated Poisson structure, then the maps E −→ T defined by v 7→ π(v) and

v 7→ π(J v) both induce homomorphisms

0 // ham(J ) //

��

sym(J ) //

��

H1(M,L)

��

// 0

0 // ham(P ) // sym(P ) // H1(M,ΓP ) // 0

from the infinitesimal symmetries of J to the infinitesimal symmetries of P .

Proof. Identifying sym(J ) = ker dL ∩ C∞(L∗), we see from Proposi-

tion 3.25 that a∗ : L∗ −→ Γ∗P ⊗ C is a morphism of differential complexes.

Identifying Γ∗P
∼= T , and taking real and imaginary parts, we obtain mor-

phisms v 7→ π(v), v 7→ π(J v) as required. �

3.5. Interpolation. LetM be a real manifold of dimension 4k with complex

structure I and holomorphic symplectic structure σ = ωJ + iωK , so that σ is

a nondegenerate closed (2, 0)-form. Since ωJ is of type (2, 0) + (0, 2), we have

ωJI = I∗ωJ , and henceÇ
−ω−1

J

ωJ

åÇ
−I

I∗

å
= −

Ç
−I

I∗

åÇ
−ω−1

J

ωJ

å
;

that is, the generalized complex structures JωJ and JI anticommute. Hence we

may form the one-parameter family of generalized almost complex structures

Jt = (sin t)JI + (cos t)JωJ , t ∈ [0, π2 ].

Clearly Jt is a generalized almost complex structure; we now check that it is

integrable1.

Proposition 3.27. Let M be a holomorphic symplectic manifold as above.

Then the generalized almost complex structure Jt = (sin t)JI + (cos t)JωJ is

integrable for all t ∈ [0, π2 ]. Therefore it is a family of generalized complex

structures interpolating between a symplectic structure and a complex structure.

1An equivalent example may be found in [17].
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Proof. Let B = (tan t)ωK , a closed 2-form which is well defined for all

t ∈ [0, π2 ). Noting that ωKI = I∗ωK = ωJ , we obtain the following expression:

eBJte−B =

Ç
0 −((sec t)ωJ)−1

(sec t)ωJ 0

å
.

We conclude from this that for all t ∈ [0, π2 ), Jt is a B-field transform of the

symplectic structure determined by (sec t)ωJ , and is therefore integrable as a

generalized complex structure; at t = π
2 , Jt is purely complex, and is integrable

by assumption, completing the proof. �

4. Local structure: the generalized Darboux theorem

The Newlander-Nirenberg theorem informs us that an integrable complex

structure on a 2n-manifold is locally equivalent, via a diffeomorphism, to Cn.

Similarly, the Darboux theorem states that a symplectic structure on a 2n-

manifold is locally equivalent, via a diffeomorphism, to the standard symplectic

structure (R2n, ω0), where in coordinates (x1, . . . , xn, p1, . . . , pn),

ω0 = dx1 ∧ dp1 + · · ·+ dxn ∧ dpn.

In this section we prove an analogous theorem for generalized complex mani-

folds, describing a local normal form for a regular neighbourhood of a general-

ized complex manifold.

Definition 4.1. A point p ∈M in a generalized complex manifold is called

regular when the Poisson structure P is regular at p, i.e. type(J ) is locally

constant at p.

By Corollary 3.22, a generalized complex structure defines, in a regular

neighbourhood U , a foliation F by symplectic leaves of codimension 2k =

2 type(J ), integrating the distribution ∆ = π(J T ∗). The complex structure

transverse to ∆ described in Section 3.1 defines an integrable complex structure

on the leaf space U/F as we now describe.

Proposition 4.2. The leaf space U/F of a regular neighbourhood of a

generalized complex manifold inherits a canonical complex structure.

Proof. Let L ⊂ E be the +i-eigenbundle of J and let D = πT⊗C(L) be

its projection to the complex tangent bundle, which is smooth in a regular

neighbourhood since type(J ) = dimL∩(T ∗⊗C). Then E⊗C = L⊕L implies

that T ⊗C = D+D, while D ∩D = ∆⊗C. Since the projection π is bracket-

preserving, we see that D is an integrable distribution, hence [∆, D] ⊂ D.

This implies that D descends to an integrable subbundle D′ ⊂ T (U/F) ⊗ C
satisfying D′ ∩ D′ = {0}, hence defining an integrable complex structure on
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U/F , as required. This coincides with the complex structure induced by J on

E/(T ∗ + J T ∗) = T/∆. �

Theorem 4.3 (Generalized Darboux theorem). A regular point of type k

in a generalized complex manifold has a neighbourhood which is equivalent to

the product of an open set in Ck with an open set in the standard symplectic

space (R2n−2k, ω0).

Proof. Let U be a regular neighbourhood. Proposition 4.2 guarantees the

existence of holomorphic coordinates (z1, . . . , zk) transverse to the symplectic

foliation in U . By Weinstein’s normal form for regular Poisson structures [36],

we can find a leaf-preserving local diffeomorphism ϕ : R2n−2k×Ck −→ U such

that the leafwise symplectic structure pulls back to ω0 = dx1 ∧ dp1 + · · · +
dxn−k ∧ dpn−k, for xi, pi standard coordinates in R2n−2k. We now choose a

splitting of the Courant algebroid E over U such that the generalized complex

structure J is a simple product. Let ∆ ⊂ TU denote the symplectic distri-

bution, while ∆′ ⊂ TU is the complement induced by ϕ. Choose an isotropic

subbundle ‹∆′ ⊂ E, projecting isomorphically to ∆′, such that J (‹∆′) = ∆̃′

(this choice is locally unobstructed). This defines an isotropic splitting of E,

and an isomorphism

E = J (Ann∆′)⊕ ∆̃′ ⊕Ann∆′ ⊕Ann∆(4.1)

∼= ∆⊕∆′ ⊕Ann∆′ ⊕Ann∆,

identifying J with the product of the given complex structure on ∆′ ⊕Ann∆

and the given symplectic structure ω0 on ∆ ⊕ Ann∆′. Indeed, the +i-eigen-

bundle of J may be written as

(4.2) L = eiω0(∆)⊕∆′0,1 ⊕ (∆′)∗1,0.

While we have expressed J as a product, the splitting of E given by (4.1) is not

necessarily involutive; let H ∈ Ω3(U,R) be the associated 3-form, as defined

in (2.5). What remains to show is that the splitting may be modified to an

involutive one, while preserving the form of J . For this, we use the tri-grading

of forms induced by the product structure U = R2n−2k×Ck: differential forms

now have degree (p, q, r) for components in Ωp(R2n−2k) ⊗ Ωq,r(Ck), and the

de Rham operator decomposes into a sum of three operators

d = d∆ + ∂ + ∂.

The involutivity of L, together with (4.2), imply that H has degree (1, 1, 1)

+ (0, 2, 1) + (0, 1, 2), with both H111 and H021+012 being real. Since dH = 0,

it follows that d∆H
111 = 0, so by the Poincaré lemma, there exists a real

2-form B1 ∈ Ω011(U) such that d∆B1 = H111. Hence H ′ = H − dB1 is of

type (0, 2, 1) + (0, 1, 2). By the Dolbeault lemma, there exists another real

2-form B011
2 with H ′−dB2 = 0. Hence, changing the splitting of E by the real



106 MARCO GUALTIERI

2-form B1 + B2, we obtain an involutive splitting. However, note that since

B1 + B2 ∈ Ω011(U), this change has no effect on the expression for J , as can

be seen from (4.2).

Therefore, we obtain a local isomorphism between E and the standard

Courant bracket, taking J to a product of a complex structure of dimension

k with a symplectic structure, as required. �

4.1. Type jumping. While Theorem 4.3 fully characterizes generalized com-

plex structures in regular neighbourhoods, it remains an essential feature of

the geometry that the type of the structure may vary throughout the manifold.

The most generic type is zero, when there are only symplectic directions and

the Poisson structure P has maximal rank. The type may jump up along closed

subsets, has maximal value n = 1
2 dimRM , and has fixed parity throughout the

manifold. We now present a simple example of a generalized complex structure

on R4 which is of symplectic type (k = 0) outside a codimension 2 surface and

jumps up to complex type (k = 2) along the surface.

Consider the differential form

(4.3) ρ = z1 + dz1 ∧ dz2,

where z1, z2 are the standard coordinates on C2 ∼= R4. Along z1 = 0, we have

ρ = dz1 ∧ dz2 and so it generates the pure spinor line corresponding to the

standard complex structure. Whenever z1 6= 0, ρ may be rewritten as follows:

ρ = z1e
dz1∧dz2

z1 .

Therefore away from z1 = 0, ρ generates the canonical line bundle of the B-field

transform of the symplectic form ω, where

B + iω = z−1
1 dz1 ∧ dz2.

Hence, algebraically the form ρ defines a generalized almost complex structure

which is generically of type 0 but jumps to type 2 along z1 = 0.

To verify the integrability of this structure, we differentiate, obtaining

dρ = (−∂z2) · ρ, showing that ρ indeed satisfies the integrability condition of

Theorem 3.14, and defines a generalized complex structure on all of R4. In

this case it is easy to see that although the canonical line bundle is topologi-

cally trivial, it does not admit a closed, nowhere-vanishing section. Hence the

generalized complex structure is not generalized Calabi-Yau.

In the next chapter we will produce more general examples of the jumping

phenomenon. However we indicate here that the simple example above was

used in [8] to produce, via a surgery on a symplectic 4-manifold, an example

of a compact, simply-connected generalized complex 4-manifold which admits

neither complex nor symplectic structures.
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5. Deformation theory

In the deformation theory of complex manifolds developed by Kodaira,

Spencer, and Kuranishi, one begins with a compact complex manifold (M,J)

with holomorphic tangent bundle T , and constructs an analytic subvariety Z ⊂
H1(M, T ) (containing 0) which is the base space of a family of deformations

M = {ε(z) : z ∈ Z, ε(0) = 0} of the original complex structure J . This

family is locally complete (also called miniversal), in the sense that any family

of deformations of J can be obtained, up to equivalence, by pulling M back

by a map f to Z, as long as the family is restricted to a sufficiently small open

set in its base.

The subvariety Z ⊂ H1(M, T ) is defined as the zero set of a holomorphic

map Φ : H1(M, T ) → H2(M, T ), and so the base of the miniversal family is

certainly smooth when this obstruction map vanishes.

In this section we extend these results to the generalized complex setting,

following the method of Kuranishi [25]. In particular, we construct, for any

generalized complex manifold, a locally complete family of deformations. We

then proceed to produce new examples of generalized complex structures by

deforming known ones.

5.1. Lie bialgebroids and the deformation complex. The generalized com-

plex structureJ on the exact Courant algebroidE is determined by its +i-eigen-

bundle L ⊂ E ⊗ C which is isotropic, satisfies L ∩ L = {0}, and is Courant

involutive. Recall that since E ⊗ C = L⊕ L, we use the natural metric 〈, 〉 to

identify L with L∗.

To deform J we will vary L in the Grassmannian of maximal isotrop-

ics. Any maximal isotropic having zero intersection with L (this is an open

set containing L) can be uniquely described as the graph of a homomorphism

ε : L −→ L satisfying 〈εX, Y 〉+ 〈X, εY 〉 = 0 for all X,Y ∈ C∞(L), or equiva-

lently ε ∈ C∞(∧2L∗). Therefore the new isotropic is given by

Lε = (1 + ε)L = {u+ iuε : u ∈ L}.

As the deformed J is to remain real, we must have Lε = (1 + ε)L. Now

we observe that Lε has zero intersection with its conjugate if and only if the

endomorphism we have described on L⊕ L∗, namely

(5.1) Aε =

Ç
1 ε

ε 1

å
,

is invertible; this is the case for ε in an open set around zero.

So, providing ε is small enough, Jε = AεJA−1
ε is a new generalized almost

complex structure, and all nearby almost structures are obtained in this way.

Note that while Aε itself is not an orthogonal transformation, of course Jε is.
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To describe the condition on ε ∈ C∞(∧2L∗) which guarantees that Jε is

integrable, we observe the following. Since L∗ = L, we have not only an elliptic

differential complex (by Proposition 3.12)

(C∞(∧•L∗), dL) ,

but also a Lie algebroid structure on L∗ coming from the Courant bracket on L.

In fact, by a theorem of Liu-Weinstein-Xu [27], the differential is a derivation

of the bracket and we obtain the structure of a Lie bialgebroid in the sense of

Mackenzie-Xu [28], also known as a differential Gerstenhaber algebra.

Theorem 5.1 ([27, Th. 2.6]). Let E be an exact Courant algebroid and

E = L⊕ L′ for Dirac structures L,L′. Then L′ = L∗ using the inner product,

and the dual pair of Lie algebroids (L,L∗) defines a Lie bialgebroid, i.e.

dL[a, b] = [dLa, b] + [a, dLb],

for a, b ∈ C∞(L∗), where [·, ·] is extended in the Schouten sense to C∞(∧•L∗).
Therefore the data

(C∞(∧•L∗), dL, [·, ·])
define a differential Gerstenhaber algebra.

Interpolating between Examples 2.11 and 2.12, Liu-Weinstein-Xu [27] also

prove that, under the assumptions of the previous theorem, the graph Lε of

a section ε ∈ C∞(∧2L∗) defines an integrable Dirac structure if and only if it

satisfies the Maurer-Cartan equation.

Theorem 5.2 ([27, Th. 6.1]). The almost Dirac structure Lε, for ε ∈
C∞(∧2L∗), is integrable if and only if ε satisfies the Maurer-Cartan equation

(5.2) dLε+ 1
2 [ε, ε] = 0.

Here dL : C∞(∧kL∗) → C∞(∧k+1L∗) and [·, ·] is the Lie algebroid bracket

on L∗.

Therefore we conclude that the deformed generalized almost complex

structure Jε is integrable if and only if ε satisfies the Maurer-Cartan equa-

tion (5.2). We may finally define a smooth family of deformations of the gen-

eralized complex structure J . We are only interested in “small” deformations.

Definition 5.3. Let U be an open ball containing the origin of a finite-

dimensional vector space. A smooth family of deformations of J over U is a

family of sections ε(u) ∈ C∞(∧2L∗), smoothly varying in u ∈ U , with ε(0) = 0,

such that (5.1) is invertible and satisfying the Maurer-Cartan equation (5.2)

for each u ∈ U . Two such families ε1(u), ε2(u) are equivalent if Fu(Lε1(u)) =

Lε2(u) for all u ∈ U , where Fu is a smooth family of Courant automorphisms

with F0 = id.
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The space of solutions to (5.2) is infinite-dimensional, however due to the

action of the group of Courant automorphisms we are able, as in the case of

complex manifolds, to take a suitable quotient, forming a finite-dimensional

locally complete family. To obtain this finite-dimensional moduli space of

deformations, it will suffice to consider equivalences Fu which are families of

exact Courant automorphisms in the sense of Definition 2.4, generated by

time-independent derivations ad(v(u)) given by a smooth family of sections

v(u) ∈ C∞(E), u ∈ U . A similar situation occurs in the case of deformations

of complex structure.

Suppose v ∈ C∞(E) and let F 1
v denote its time-1 flow defined by (2.9), so

that in a splitting for E with curvature H, we have v = X + ξ and by (2.10),

(5.3) F 1
v = ϕ1

∗e
B1 , B1 =

∫ 1

0
ϕ∗s(iXH + dξ) ds,

where ϕt∗ is the flow of the vector field X. The Courant isomorphism F 1
v acts

on generalized complex structures, taking a given deformation Lε to F 1
v (Lε). If

v has sufficiently small 1-jet, then F 1
v (Lε) may be expressed as Lε′ for another

section ε′ ∈ C∞(∧2L∗), and we denote it F 1
v (ε) := ε′. We now determine an

approximate formula for F 1
v (ε) in terms of (ε, v).

Proposition 5.4. Let J be a generalized complex structure with +i-eigen-

bundle L ⊂ E⊗C, and let ε ∈ C∞(∧2L∗) be such that (5.1) is invertible. Then

for v ∈ C∞(E) with sufficiently small 1-jet, the time-1 flow (5.3) satisfies

(5.4) F 1
v (ε) = ε+ dLv

0,1 +R(ε, v),

where v = v1,0 + v0,1 according to the splitting L⊕ L∗, and R satisfies

R(tε, tv) = t2‹R(ε, v, t),

where ‹R(ε, v, t) is smooth in t for small t.

Proof. Define ε(s, t) for s, t ∈ R by

(5.5) ε(s, t) = F 1
tv(sε),

so that ε = ε(1, 1) and ε(0) = 0. We first compute the derivatives of (5.5) at

s = t = 0. The derivative in s is easily computed:

∂ε(s, t)

∂s

∣∣∣∣∣
(0,0)

=
∂(sε)

∂s
= ε.

The derivative in t may be computed using the property of flows that F 1
tv = F tv ,

together with the fact that the flow F tv is generated by the adjoint action

ad(v) = [v, ·] of v on the Courant algebroid. Using the properties of the
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Courant bracket, we obtain, for y, z ∈ C∞(L),

∂ε(s, t)

∂t

∣∣∣∣∣
(0,0)

(y, z) =
∂F tv(0)

∂t
(y, z) = 〈−[v, y], z〉 = dLv

0,1(y, z).

By Taylor’s theorem we obtain

F 1
tv(sε) = sε+ tdLv

0,1 + r(s, t, ε, v),

where r is smooth of order O(s2, st, t2) at zero. Setting R(ε, v) = r(1, 1, ε, v), we

obtain the result, since clearly r(1, 1, tε, tv) = r(t, t, ε, v) is of order O(t2). �

Whereas the Maurer-Cartan equation (5.2) indicates that, infinitesimally,

deformations of generalized complex structure lie in ker dL ⊂ C∞(∧2L∗), the

previous proposition shows us that, infinitesimally, deformations which differ

by sections which lie in the image of dL are equivalent. Hence we expect

the tangent space to the moduli space to lie in the Lie algebroid cohomology

H2(M,L), which by ellipticity is finite-dimensional for M compact. We now

develop the Hodge theory required to prove this assertion.

We follow the usual treatment of Hodge theory as described in [38]. Choose

a Hermitian metric on the complex Lie algebroid L and let |ϕ|k be the L2
k

Sobolev norm on sections ϕ ∈ C∞(∧pL∗) induced by the metric. We then

have the elliptic, self-adjoint Laplacian

∆L = dLd
∗
L + d∗LdL.

Let Hp be the space of ∆L-harmonic forms, which is isomorphic to Hp(M,L)

by the standard argument and let H be the orthogonal projection of C∞(∧pL)

onto the closed subspace Hp. Also, let G be the Green smoothing operator

quasi-inverse to ∆L, i.e. G∆ +H = Id and

G : L2
k → L2

k+2.

We will find it useful, as Kuranishi did, to define the once-smoothing operator

Q = d∗LG : L2
k → L2

k+1,

which then satisfies

Id = H + dLQ+QdL,(5.6)

Q2 = d∗LQ = Qd∗L = HQ = QH = 0.

We now have the algebraic and analytical tools required to prove a direct

analog of Kuranishi’s theorem for generalized complex manifolds.
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5.2. The deformation theorem.

Theorem 5.5. Let (M,J ) be a compact generalized complex manifold.

There exists an open neighbourhood U ⊂ H2(M,L) containing zero, a smooth

family ›M = {ε(u) : u ∈ U, ε(0) = 0} of generalized almost complex

deformations of J , and an analytic obstruction map Φ : U → H3(M,L)

with Φ(0) = 0 and dΦ(0) = 0, such that the deformations in the sub-family

M = {ε(z) : z ∈ Z = Φ−1(0)} are precisely the integrable ones. Furthermore,

any sufficiently small deformation ε of J is equivalent to at least one member

of the familyM. In the case that the obstruction map vanishes, M is a smooth

locally complete family.

Proof. The proof is divided into two parts: first, we construct a smooth

family ›M, and show it contains the family of integrable deformations M de-

fined by the map Φ; second, we describe its miniversality property. We follow

the paper of Kuranishi [25], where more details can be found.

Part I: For sufficiently large k, L2
k(M,R) is a Banach algebra (see [31]),

and the map f : ε 7→ ε+ 1
2Q[ε, ε] extends to a smooth map

f : L2
k(∧2L∗) −→ L2

k(∧2L∗),

whose derivative at the origin is the identity mapping. By the inverse function

theorem, f−1 maps a neighbourhood of the origin in L2
k(∧2L∗) smoothly and

bijectively to another neighbourhood of the origin. Hence, for sufficiently small

δ > 0, the finite-dimensional subset of harmonic sections,

U = {u ∈ H2 < L2
k(∧2L∗) : |u|k < δ},

defines a family of sections as follows:

M̃ = {ε(u) = f−1(u) : u ∈ U},

where ε(u) depends smoothly (in fact, holomorphically) on u, and satisfies

f(ε(u)) = u. Applying the Laplacian to this equation, we obtain

∆Lε(u) + 1
2d
∗
L[ε(u), ε(u)] = 0.

This is a quasi-linear elliptic PDE, and by a result of Morrey [29], we conclude

that the solutions ε(u) of this equation are actually smooth, i.e.

ε(u) ∈ C∞(∧2L∗).

Hence we have constructed a smooth family of generalized almost complex

deformations of J , over an open set U ⊂ H2 ∼= H2(M,L).
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We now ask which of these deformations satisfy the Maurer-Cartan equa-

tion (5.2). By definition of ε(u), and using (5.6), we obtain

dLε(u) + 1
2 [ε(u), ε(u)] = −1

2dLQ[ε(u), ε(u)] + 1
2 [ε(u), ε(u)]

= 1
2(QdL +H)[ε(u), ε(u)].

Since the images of Q and H are L2-orthogonal, we see that ε(u) is integrable

if and only if H[ε(u), ε(u)] = QdL[ε(u), ε(u)] = 0. We now use the argument of

Kuranishi [25] which, using the compatibility between [·, ·] and dL, shows that

QdL[ε(u), ε(u)] vanishes if H[ε(u), ε(u)] does.

Hence, ε(u) is integrable precisely when u lies in the vanishing set of the

analytic mapping Φ : U → H3
L(M) defined by

(5.7) Φ(u) = H[ε(u), ε(u)].

Note furthermore that Φ(0) = dΦ(0) = 0.

Part II: For the second part of the proof, we give an alternative charac-

terisation of the family M = {ε(z) : z ∈ Z = Φ−1(0)}. We claim that M is

actually a neighbourhood around zero in the set

M′ =
¶
ε ∈ C∞(∧2L∗) : dLε+ 1

2 [ε, ε] = 0, d∗Lε = 0
©
.

To show this, let ε(u) ∈M. Then since ε(u) = u− 1
2Q[ε(u), ε(u)] and d∗LQ = 0,

we see that d∗Lε(u) = 0, showing that M ⊂ M′. Conversely, let ε ∈ M′.
Then since d∗Lε = 0, applying d∗L to the equation dLε + 1

2 [ε, ε] = 0 we obtain

∆Lε+
1
2d
∗
L[ε, ε] = 0, and applying Green’s operator we see that ε+1

2Q[ε, ε] = Hε,

i.e. F (ε) = Hε ∈ H2, proving that a small open set in M′ is contained in M,

completing the argument.

We now show that every sufficiently small deformation of the generalized

complex structure is equivalent to one in our finite-dimensional familyM. Let

P ⊂ C∞(L∗) be the L2 orthogonal complement of ker dL ⊂ C∞(L∗), or in other

words, sections in the image of d∗L. We show that there exist neighbourhoods

of the origin V ⊂ C∞(∧2L∗) and W ⊂ P such that for any ε ∈ V there is a

unique v ∈ C∞(E) such that v0,1 ∈W and the time-1 flow F 1
v (ε) satisfies

(5.8) d∗LF
1
v (ε) = 0.

This would imply that any sufficiently small solution to dLε + 1
2 [ε, ε] = 0 is

equivalent to another solution ε′ such that d∗Lε
′ = 0, i.e. a solution inM′ =M.

Extended to smooth families, this result would prove local completeness.

We see from (5.4) that (5.8) holds if and only if

d∗Lε+ d∗LdLv
0,1 + d∗LR(ε, v) = 0.

Assuming v0,1 ∈ P , we see that d∗Lv
0,1 = Hv0,1 = 0, so that

(5.9) d∗Lε+ ∆Lv
0,1 + d∗LR(ε, v) = 0.
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Applying the Green operator G, we obtain

(5.10) v0,1 +Qε+QR(ε, v) = 0.

By the definition (5.4) of R(ε, v), the map

F : (ε, v0,1) 7→ v0,1 +Qε+QR(ε, v)

is continuous from a neighbourhood of the origin V0 ×W0 in C∞(∧2L∗) × P
to P , where all spaces are endowed with the L2

k norm, k sufficiently large. Also,

the derivative of F with respect to v0,1 (at 0) is the identity map. Therefore

by the implicit function theorem, there are neighbourhoods V ⊂ V0,W1 ⊂ Ŵ0

such that given ε ∈ V , equation (5.10), i.e. F = 0, is satisfied for a unique

v0,1 ∈W1, and which depends smoothly on ε ∈ V . Furthermore, since ε ∈ V is

itself smooth, the unique solution v satisfies the quasi-linear elliptic PDE (5.9),

implying that v is smooth as well, hence v0,1 lies in the neighbourhood W =

W1 ∩ P . Therefore we have shown that every sufficiently small deformation of

the generalized complex structure is equivalent to one in our finite-dimensional

family M.

If the obstruction map Φ vanishes, so that M is a smooth family, then

given any other smooth familyMS = {ε(s) : s ∈ S, ε(s0) = 0} with basepoint

s0 ∈ S, the above argument provides, for s in some neighbourhood T of s0,

a smooth family of sections v(s) ∈ C∞(E) whose time-1 flow takes each ε(s)

to ε(f(s)), f(s) ∈ U ⊂ H2(M,L). This defines a smooth map f : T → U ,

f(s0) = 0, such that f∗M = MS . Thus we establish that M is a locally

complete family of deformations. �

5.3. Examples of deformed structures. Consider deforming a compact com-

plex manifold (M,J) as a generalized complex manifold. Recall that the asso-

ciated Lie algebroid is L = T0,1 ⊕ T ∗1,0, so the deformation complex is simply

the holomorphic multivector Dolbeault complex
Ä
Ω0,•(∧•T1,0), ∂

ä
. The base of

the Kuranishi family therefore lies in the finite-dimensional vector space

H2(M,L) = ⊕p+q=2H
q(M,∧pT1,0),

whereas the image of the obstruction map lies in

H3(M,L) = ⊕p+q=3H
q(M,∧pT1,0).

In this way, generalized complex manifolds provide a geometrical interpreta-

tion of the “extended complex deformation space” defined by Kontsevich and

Barannikov [4]. Any deformation ε has three components

β ∈ H0(M,∧2T1,0), ϕ ∈ H1(M,T1,0), B ∈ H2(M,O).

The component ϕ is a usual deformation of the complex structure, as described

by Kodaira and Spencer. The component B represents a residual action by

cohomologically nontrivial B-field transforms; these do not affect the type. The
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component β, however, is a new deformation for complex manifolds. Setting

B = ϕ = 0, the integrability condition reduces to

∂β + 1
2 [β, β] = 0,

which is satisfied if and only if the bivector β is holomorphic and Poisson.

Writing β = −1
4 (Q + iP ) for Q,P real bivectors of type (0, 2) + (2, 0) such

that Q = PJ∗, we may explicitly determine the deformed generalized complex

structure:

Jβ = eβ+βJJe−(β+β) =

Ç
J P

−J∗

å
.

In this way, we obtain a new class of generalized complex manifolds with type

controlled by the rank of the holomorphic Poisson bivector β.

Example 5.6 (Deformed generalized complex structure on CP 2). For CP 2,

∧2T1,0 = O(3), and for dimensional reasons, any holomorphic bivector β ∈
H0(M,O(3)) is automatically Poisson. Hence any holomorphic section of O(3)

defines an integrable deformation of the complex structure into a generalized

complex structure. Since H1(T1,0) = H2(O) = 0, we may conclude from the

arguments above that the locally complete family of deformations is smooth

and of complex dimension 10. However, one can also check that the obstruction

space vanishes in this case, by the Bott formulae.

The holomorphic Poisson structure β has maximal rank outside its van-

ishing locus, which must be a cubic curve C. Hence the deformed generalized

complex structure is of B-symplectic type (type 0) outside C and of complex

type (type 2) along the cubic. The complexified symplectic form B+ iω = β−1

is singular along C. We therefore have an example of a compact generalized

complex manifold exhibiting type change along a codimension 2 subvariety.

Note that while holomorphic Poisson bivectors may be thought of as infin-

itesimal noncommutative deformations in the sense of quantization of Poisson

structures, we are viewing them here as genuine (finite) deformations of the

generalized complex structure. For more details about this distinction and its

consequences, see [19], [16].

6. Generalized complex branes

In this section we introduce the natural “sub-objects” of generalized com-

plex manifolds, generalizing both holomorphic submanifolds of a complex man-

ifold and Lagrangian submanifolds in symplectic geometry. In fact, even in

the case of a usual symplectic manifold, there are generalized complex branes

besides the Lagrangian ones: we show these are the coisotropic A-branes dis-

covered by Kapustin and Orlov [21].
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As has been emphasized by physicists, a geometric description of a brane

in M involves not only a submanifold ι : S −→ M but also a vector bundle

supported on it; in cases where a nontrivial S1-gerbe G is present one replaces

the vector bundle by an object (“twisted vector bundle”) of the pullback gerbe

ι∗G. Since the Courant bracket captures the differential geometry of a gerbe,

we obtain a convenient description of branes in terms of generalized geometry.

For simplicity we shall restrict our attention to branes supported on loci where

the pullback gerbe ι∗G is trivializable. We begin by phrasing the definition of

a gerbe trivialization in terms of the Courant bracket. Recall that ι∗E denotes

the pullback of exact Courant algebroids, defined in the appendix.

Definition 6.1. Let E be an exact Courant algebroid on M and let ι :

S −→ M be a submanifold. A (Courant) trivialization of E along S con-

sists of a bracket-preserving isotropic splitting s : TS −→ ι∗E inducing an

isomorphism

s+ π∗ : (TS ⊕ T ∗S, [·, ·]0) −→ ι∗E.

If an isotropic splitting s̃ : TM −→ E is chosen, with curvature H ∈
Ω3
cl(M), then ι∗E inherits a splitting with curvature ι∗H, and any trivialization

(ι, s) is characterized by the difference s− ι∗s̃ = F ∈ Ω2(S), which satisfies

(6.1) ι∗H = dF.

Therefore the gerbe curvature is exact when pulled back to S. Indeed, we

obtain a generalized pullback morphism ρ 7→ eF ∧ ι∗ρ, defining a map from the

twisted de Rham complex of M to the usual de Rham complex of S:

(Ω•(M), dH)
eF ι∗ // (Ω•(S), d).

This may be viewed as the the image under the Chern character of a morphism

from the twisted K-theory of M to the usual K-theory of S.

To avoid confusion, let E|S denote the restriction of the bundle E to S,

as opposed to ι∗E = K⊥/K, for K = Ann(TS), which defines the pullback

Courant algebroid over S. The trivialization (ι, s) defines a maximal isotropic

subbundle s(TS) ⊂ ι∗E. Further, the quotient map q : K⊥ −→ K⊥/K deter-

mines a bijection taking maximal isotropic subbundles L ⊂ ι∗E to maximal

isotropic subbundles q−1(L) ⊂ E|S contained in K⊥.

Definition 6.2. The generalized tangent bundle to the trivialization L =

(ι, s) of E is the maximal isotropic subbundle τL ⊂ E|S defined by τL =

q−1(s(TS)).
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Note that Ann(TS) = N∗S, so that τL is actually an extension of the

tangent bundle by the conormal bundle:

(6.2) 0 // N∗S // τL
π // TS // 0.

If a splitting s̃ : TM −→ E is chosen, with s − ι∗s̃ = F ∈ Ω2(S) as in (6.1),

then τL has the explicit form

(6.3) τL = {X + η ∈ TS ⊕ T ∗M : ι∗η = iXF}.

Comparing this with Proposition 2.7, we obtain the following canonical exam-

ple of a Courant trivialization:

Example 6.3. Let L ⊂ (TM ⊕ T ∗M, [·, ·]H) be a Dirac structure and let

ι : S ↪→M be a maximal integral submanifold for the (generalized) distribution

∆ = π(L) ⊂ TM . Then along S, we have L = L(∆, ε) for a unique ε ∈ Ω2(S),

and by the same argument as in Proposition 2.7, we obtain

ι∗H = dε.

Therefore we see that a Dirac structure induces a (generalized) foliation of the

manifold by trivializations L = (ι, ε).

Note that in this example, τL = L|S inherits a Lie algebroid structure

over S, since any sections u, v ∈C∞(S, τL) may be extended to ũ, ṽ ∈C∞(M,L)

and then the expression

[u, v] := [ũ, ṽ]|S
is independent of extension and defines a Lie bracket. For general trivializa-

tions, however, the ambient Dirac structure L is unavailable, and the argument

fails.

A complex submanifold S ⊂ M of a complex manifold is defined by the

property that J(TS) = TS. Similarly, we define a compatibility condition

between a Courant trivialization and a generalized complex structure.

Definition 6.4. A Courant trivialization L = (ι, s) is said to be compatible

with the generalized complex structure J if and only if

J (τL) = τL,

i.e. its generalized tangent bundle is a complex subbundle of E.

An immediate consequence of the definition is that π(J (N∗S)) ⊂ TS,

which by (3.17) is the statement that P (N∗S) ⊂ TS, i.e. S is a coisotropic

submanifold for the Poisson structure P . Since P is Poisson, ∆ = P (N∗S)

integrates to a singular foliation called the characteristic foliation of S.

Decomposing τL ⊗ C into ±i-eigenspaces for J , we obtain

τL ⊗ C = `⊕ `.
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Note that the isotropic subbundle ` ⊂ (E ⊗ C)|S is contained in the +i-

eigenbundle L of J , i.e.

` ⊂ L|S .

Therefore, the argument of Example 6.3 concerning restriction of Courant

brackets applies and we obtain the following result.2

Proposition 6.5. Let J be a generalized complex structure and let L be

a compatible Courant trivialization. Define ` = ker(J − i) ∩ (τL ⊗ C). Then

the Courant bracket induces a Lie bracket on C∞(S, `), making (`, [·, ·], π) into

a complex Lie algebroid over S.

The associated Lie algebroid complex (C∞(S,∧•`∗), d`) is actually elliptic,

by the same reasoning as in Proposition 3.12, and may be used to study the

deformation theory of L, which we leave for a future work.

The Lie algebroid ` projects to a generalized distribution A = π(`) ⊂
TS ⊗ C, which is integrable and satisfies A + A = TS ⊗ C. The intersection

A∩A = ∆⊗C coincides with the characteristic distribution of the coisotropic

submanifold S. Therefore, by the reasoning in Proposition 4.2, wherever ∆

has constant rank, A defines an invariant integrable holomorphic structure

transverse to the characteristic foliation.

Corollary 6.6. Let L be a compatible trivialization and let ` be the com-

plex Lie algebroid defined above. In a neighbourhood where the characteristic

distribution is of constant rank, A = π(`) ⊂ TS⊗C defines an integrable holo-

morphic structure transverse to the characteristic foliation, which descends to

the leaf space.

Since ` is a Lie algebroid, we may associate to any compatible trivialization

L the category of `-modules, i.e. complex vector bundles V over S, equipped

with flat Lie algebroid connections with respect to `. We call these generalized

complex branes on L.

Definition 6.7 (Generalized complex brane). Let J be a generalized com-

plex structure and L a compatible trivialization. A generalized complex brane

supported on L is a module over the Lie algebroid `.

Example 6.8 (Complex branes). Let L = (ι, F ), for ι : S ↪→ M and

F ∈ Ω2(S), be a generalized complex trivialization in a complex manifold, so

that ι∗H = dF and τL, given by (6.3), is a complex subbundle for the complex

structure JJ . This happens if and only if

2This Lie algebroid was obtained independently by Kapustin and Li [20], as defining the

BRST complex describing open strings with both ends on L.
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• TS ⊂ TM is a complex subbundle for J , i.e. S is a complex submani-

fold, and

• J∗iXF + iJXF ∈ N∗S for all X ∈ TS, i.e. F is of type (1, 1).

In this case, the Lie algebroid ` is given by

` = {X + ξ ∈ T0,1S ⊕ T ∗1,0M : ι∗ξ = iXF}

and is therefore isomorphic to T0,1S⊕N∗1,0S, where N∗1,0S denotes the holomor-

phic conormal bundle of S. As a result, a generalized complex brane supported

on L consists of a holomorphic vector bundle V over S, together with a holo-

morphic section φ : V −→ N1,0S ⊗ V satisfying

φ ∧ φ = 0 ∈ H0(S,∧2N1,0S ⊗ End(V )).

Example 6.9 (Symplectic branes). As in the previous example, let L =

(ι, F ) be a compatible trivialization, but for a symplectic structure Jω. If

F = 0, then τL = TS ⊕N∗S, and J (τL) = τL is simply the requirement that

ω−1(N∗S) ⊂ TS and ω(TS) ⊂ N∗S, i.e. S is a Lagrangian submanifold. In

this particular case, ` = {X − iω(X) : X ∈ TS}, so that ` is isomorphic as

a Lie algebroid to TS itself; hence `-modules are simply flat vector bundles

supported on S.

However, there are symplectic branes beyond the flat bundles over La-

grangians if we allow F 6= 0; in general, as we saw in Corollary 6.6, S

must be coisotropic and the Lie algebroid ` determines a complex distribu-

tion A = π(`) defining an invariant holomorphic structure transverse to the

characteristic foliation of S. However for a symplectic trivialization we have

explicitly ` = (τL ⊗ C) ∩ Γ−iω, and hence

(6.4) ` = {X − iω(X) ∈ (TS ⊕ T ∗M)⊗ C : iX(F + iι∗ω) = 0}.

Since A = π(`) and ∆ ⊗ C = A ∩ A defines the characteristic foliation, (6.4)

implies that F + iι∗ω is basic with respect to the foliation and defines a closed,

nondegenerate (0, 2)-form on the leaf space. Hence the leaf space inherits a

natural holomorphic symplectic structure. In this way we obtain precisely the

structure of coisotropic A-brane, discovered by Kapustin and Orlov [21] in their

search for objects of the Fukaya category beyond the well-known Lagrangian

ones.

For such coisotropic trivializations, ` is isomorphic as a Lie algebroid to

the distribution A = π(`), and so branes are vector bundles equipped with flat

partial A-connections. This implies that they are flat along the characteristic

distribution, transversally holomorphic and invariant along the distribution.

Holomorphic bundles on the leaf space would provide examples.

Example 6.10 (Space-filling symplectic brane). A special case of the pre-

ceding example is when the submanifold S coincides with M itself; then any
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brane over L = (id, s) is said to be space-filling. In this case, L may be de-

scribed by a closed 2-form F ∈ Ω2(M) such that

σ = F + iω

defines a holomorphic symplectic structure on M , with complex structure given

by J = −ω−1F .

If M supports such a space-filling brane, then any complex submanifold

ι : S ↪→M which is also coisotropic with respect to σ (for example, a complex

hypersurface) defines a compatible trivialization L′ = (ι, ι∗F ) in M , and we

may produce examples of branes on L′ by pullback. The holomorphic sym-

plectic structure on its leaf space is also known as the holomorphic symplectic

reduction of L′.

Example 6.11 (General space-filling branes). The existence of a space-

filling generalized complex brane places a strong constraint on the generalized

complex structure. Indeed, the generalized tangent bundle τL determines an

integrable isotropic splitting of the Courant algebroid

E = T ∗ ⊕ τL,

so that the curvature H vanishes. If J is the generalized complex structure,

the constraint J (τL) = τL implies that J must have upper triangular form in

this splitting:

J =

Ç
−J P

J∗

å
.

Here we use the canonical identification τL = TM . Since J is upper triangular,

J is an integrable complex structure, for which T0,1 = `. The real Poisson

structure P is of type (2, 0) + (0, 2) as can be seen from the fact JP = PJ∗,

and the complex bivector β = −1
4 (Q + iP ), for Q = PJ∗, is such that the

+i-eigenbundle of J can be written as L = T0,1 ⊕ Γβ, where β is viewed as a

map T ∗1,0 −→ T1,0. Courant integrability then requires that β be a holomorphic

Poisson structure. Therefore we see that space-filling branes only exist when

J is a holomorphic Poisson deformation of a complex manifold.

In fact, one can show using a combination of the above arguments, or as

is done in [39] by developing a theory of brane reduction, that for an arbitrary

generalized complex brane, the Poisson and holomorphic structures transverse

to the characteristic foliation (when it is regular) are compatible, defining an

invariant transverse holomorphic Poisson structure.

Interesting relations between the coisotropic branes discussed in this sec-

tion and noncommutative geometry have appeared in [18], [2] in particular; for

more on this connection as well as the relation between coisotropic branes and

generalized Kähler geometry, see [16].
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7. Appendix

Proposition 7.1. Let E be an exact Courant algebroid over M with

Ševera class [H] and suppose ι : S ↪→ M is a submanifold. Then ι∗E :=

K⊥/K , for K = Ann(TS) ⊂ E|S , inherits the structure of an exact Courant

algebroid over S with Ševera class ι∗[H].

Proof. We first show that ι∗E inherits a bracket. Let u, v ∈C∞(S,K⊥/K),

and choose representatives u′, v′ ∈ C∞(S,K⊥). Extend these over M as sec-

tions ũ, ṽ ∈ C∞(M,E). We claim that [ũ, ṽ]|S defines a section of ι∗E which

is independent of the choices made.

Firstly we observe that [ũ, ṽ]|S ∈ C∞(S,K⊥), since π[ũ, ṽ] = [πũ, πṽ] and

if X,Y are vector fields tangent to S then [X,Y ] is also tangent to S.

Secondly we claim that [ũ, ṽ] + K is independent of the choices made:

for p, q ∈ C∞(E) with p|S , q|S ∈ C∞(S,K), we have [ũ + p, ṽ + q] − [ũ, ṽ] =

[ũ, q] + [p, ṽ] + [p, q]. Given any x ∈ C∞(E) with π(x)|S ∈ C∞(S, TS), we

verify that 〈x, [ũ, q]〉 = π(ũ)〈x, q〉 − 〈[ũ, x], q〉 vanishes upon restriction to S,

since 〈x, q〉 vanishes along S and π([ũ, x]) is tangent to S. Similarly for the

other two terms. This shows that [ũ, ṽ]+K is independent of the choices made.

The remainder of the Courant algebroid properties are easily verified. �

Proposition 7.2. Let L ⊂ E be a Dirac structure and assume that

ι∗L :=
L ∩K⊥ +K

K

is a smooth subbundle of ι∗E. Then it is a Dirac structure.

Proof. We need only verify that the maximal isotropic subbundle ι∗L is

involutive. Let u, v ∈ C∞(S, (L ∩ K⊥ + K)/K). By the definition of the

Courant bracket in Proposition 7.1, we may choose representatives u′, v′ ∈
C∞(S,L ∩ K⊥ + K) for u, v and extend these as sections of E over M in

any way. In a neighbourhood U ⊂ S where L ∩K⊥ has constant rank, write

u′ = x′ + p′, v′ = y′ + q′, where x′, y′ ∈ C∞(U,L∩K⊥) and p′, q′ ∈ C∞(U,K).

Then choose extensions x, y ∈ C∞(V,L) for x′, y′ and p, q ∈ C∞(V,E) for p′, q′,

where V is an open set in M containing U . Then

[x+ p, y + q] = [x, y] + [x, q] + [p, y] + [p, q].

Since x, y ∈ C∞(V,L) and π(x), π(y) are tangent to S, we have [x, y]|S ∈
C∞(U,L ∩K⊥). Also, [x, q]|S ∈ C∞(U,K) since, for z ∈ C∞(V,E) with π(z)

tangent to S, we have 〈z, [x, q]〉 = π(x)〈z, q〉 − 〈[x, z], q〉, which vanishes along

S since z and [x, z] are both tangent to S. The same argument applies to show

[p, y]|S , [p, q]|S ∈ C∞(S,K). This proves that

[x+ p, y + q]|S ∈ C∞(S,L ∩K⊥ +K)
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and hence that ι∗L is involutive in U . Since L ∩ K⊥ has locally constant

rank on an open dense set in S, this argument shows that ι∗L is involutive, as

required. �
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MR 0837203. Zbl 0615.58029.

[25] M. Kuranishi, New proof for the existence of locally complete families of com-

plex structures, in Proc. Conf. Complex Analysis (Minneapolis, 1964)), Springer-

Verlag, New York, 1965, pp. 142–154. MR 0176496. Zbl 0144.21102.

[26] U. Lindström, R. Minasian, A. Tomasiello, and M. Zabzine, Generalized

complex manifolds and supersymmetry, Comm. Math. Phys. 257 (2005), 235–

256. MR 2163575. Zbl 1118.53048. doi: 10.1007/s00220-004-1265-6.

[27] Z.-J. Liu, A. Weinstein, and P. Xu, Manin triples for Lie bialgebroids, J.

Differential Geom. 45 (1997), 547–574. MR 1472888. Zbl 0885.58030. Available

at http://projecteuclid.org/euclid.jdg/1214459842.

[28] K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke

Math. J. 73 (1994), 415–452. MR 1262213. Zbl 0844.22005. doi: 10.1215/

S0012-7094-94-07318-3.

[29] C. Morrey, Contributions to the Theory of Partial Differential Equations, Ann.

of Math. Studies 33, Princeton Univ. Press, Princeton, NJ, see chapter on second

order elliptic systems of partial differential equations.

[30] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or

K3 surface, Invent. Math. 77 (1984), 101–116. MR 0751133. Zbl 0565.14002.

doi: 10.1007/BF01389137.

http://www.arxiv.org/abs/math.DG/0401221
http://www.ams.org/mathscinet-getitem?mr=2681704
http://www.zentralblatt-math.org/zmath/en/search/?q=an:05853119
http://dx.doi.org/10.1093/acprof:oso/9780199534920.003.0018
http://dx.doi.org/10.1093/acprof:oso/9780199534920.003.0018
http://www.ams.org/mathscinet-getitem?mr=2013140
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1076.32019
http://dx.doi.org/10.1093/qjmath/54.3.281
http://www.arxiv.org/abs/hep-th/0502212
http://www.ams.org/mathscinet-getitem?mr=2055289
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1065.81108
http://dx.doi.org/10.1142/S0219887804000034
http://dx.doi.org/10.1142/S0219887804000034
http://www.ams.org/mathscinet-getitem?mr=2201105
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1129.81083
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1129.81083
http://www.ams.org/mathscinet-getitem?mr=2006226
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1029.81058
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1029.81058
http://dx.doi.org/10.1016/S0393-0440(03)00026-3
http://www.ams.org/mathscinet-getitem?mr=2104437
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1055.17016
http://dx.doi.org/10.1007/s11005-004-0608-8
http://www.ams.org/mathscinet-getitem?mr=2223167
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1097.53054
http://www.ams.org/mathscinet-getitem?mr=0837203
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0615.58029
http://www.ams.org/mathscinet-getitem?mr=0176496
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0144.21102
http://www.ams.org/mathscinet-getitem?mr=2163575
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1118.53048
http://dx.doi.org/10.1007/s00220-004-1265-6
http://www.ams.org/mathscinet-getitem?mr=1472888
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0885.58030
http://projecteuclid.org/euclid.jdg/1214459842
http://www.ams.org/mathscinet-getitem?mr=1262213
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0844.22005
http://dx.doi.org/10.1215/S0012-7094-94-07318-3
http://dx.doi.org/10.1215/S0012-7094-94-07318-3
http://www.ams.org/mathscinet-getitem?mr=0751133
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0565.14002
http://dx.doi.org/10.1007/BF01389137


GENERALIZED COMPLEX GEOMETRY 123

[31] R. S. Palais, Foundations of Global Non-linear Analysis, W. A. Benjamin, New

York, 1968. MR 0248880. Zbl 0164.11102.

[32] D. Roytenberg, Courant Algebroids, Derived Brackets and Even Symplectic

Supermanifolds, ProQuest LLC, Ann Arbor, MI, 1999, Ph.D. thesis, University

of California, Berkeley. MR 2699145.

[33] D. Roytenberg and A. Weinstein, Courant algebroids and strongly homotopy

Lie algebras, Lett. Math. Phys. 46 (1998), 81–93. MR 1656228. Zbl 0946.17006.

doi: 10.1023/A:1007452512084.
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