
Low-dimensional geometry—a variational approach

Lectures by Nigel Hitchin
Notes by Marco Gualtieri

Lecture 1: Open orbits and stable forms

Introduction

These lectures are about a variational approach to questions in geometry. In addition to providing a new
viewpoint on known geometries, this approach motivates the definition of new kinds of geometrical structures.
We are already familiar with the idea that certain geometries can be obtained from the variational principle;
for example, the critical points of the Einstein-Hilbert functional are Einstein metrics.

We will focus mainly on ‘low dimensions’, which are, for us, dimensions 6,7 and 8 (unlike the topologists’
2, 3, and 4!) My personal starting point was a comment by Robert Bryant in his study of G2.

Why G2 is not exceptional

According to the classification of simple Lie groups, there are four infinite families and 5 exceptional groups:

Ak, Bk, Ck, Dk,

F4, G2, E6, E7, E8.

A standard description of G2 is as follows: Consider the octonions O, which is the largest normed division
algebra over R: it is 8-dimensional and non-associative. Then G2 is the automorphism group of this algebra.

This algebraic description of G2 gives the impression that it is indeed exceptional and depends on a
highly specialized multiplication table for the octonions. However there is a more ‘generic’ way to obtain
it, as we now describe. Since G2 preserves the structure of O, it fixes V = Im O, which is the orthogonal
complement to 1 ∈ O, and it preserves a cross product defined on this 7-dimensional space V by

x× y = 1
2 [x, y].

Using the metric g on O (obtained from the norm), this cross product gives rise to a skew 3-form ρ ∈ ∧3V ∗

via
ρ(x, y, z) = g(x× y, z). (1)

Bryant’s observation is that ρ lies in an open orbit of the action of GL(7,R) on ∧3V ∗, and that the stabilizer
of any 3-form in this orbit is exactly G2. By a dimension count

dimGL(7,R) = 49 dim∧3V ∗ = 35,

we see that dimStab(ρ) = 14, making the claim plausible. To see how G2 can be obtained as the stabilizer of
such a 3-form, we show how the cross product is recovered. View the 3-form as a map ∧2V → V ∗. According
to (1), the cross product is the composition of ρ with the inverse of the metric g : V → V ∗:

∧2V
ρ //

×

66V ∗
g−1

// V

However, the metric g must be constructed out of ρ itself. Let us see how this is done. For any X,Y ∈ V ,
define the symmetric bilinear map

(X,Y ) 7−→ iXρ ∧ iY ρ ∧ ρ ∈ ∧7V ∗.
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This is not quite a metric, since it takes values in the determinant of V ∗, rather than in R. To correct this
problem, view this bilinear map as defining a linear map

h : V −→ V ∗ ⊗ ∧7V ∗,

and take its determinant
∧7h : ∧7V −→ (∧7V ∗)8,

or in other words,
∧7h ∈ (∧7V ∗)9.

This has a unique 9th root, which we denote by (∧7h)1/9 ∈ ∧7V ∗. Finally we define

g =
h

(∧7h)1/9
,

which for ρ in the open orbit, defines a positive-definite metric (depending non-linearly on ρ) on the 7-
dimensional space V . Composing with ρ, we are able to reconstruct the full octonionic structure. In this
way we see that G2 may be thought of as the symmetry group of a ‘generic’ 3-form in 7 dimensions, and
hence is not so exceptional after all.

More examples of open orbits

Let V be a real vector space of dimension n. There are very few examples of open orbits of GL(V ) acting on
∧pV ∗, for obvious dimensional reasons. Indeed open orbits are only possible for low values of p. We provide
the classification for p > 1 here:

• (p = 2) If V is even-dimensional, there is an open orbit of non-degenerate 2-forms, each with stabilizer
conjugate to Sp(2m,R). If V is odd-dimensional there is the open orbit of maximal rank 2-forms.

• (p = 3, n = 6) There is an open orbit of 3-forms in 6 dimensions with stabilizer SL(3,C), acting in the
usual representation on C3 ∼= R6.

• (p = 3, n = 7) This is the G2 case studied above.

• (p = 3, n = 8) There is an open orbit of 3-forms in 8 dimensions with stabilizer PSU(3) acting in the
adjoint representation.

Note that the symmetry p ↔ n − p provides more open orbits, but it suffices to consider those mentioned
above, and we shall in fact meet the complementary forms in a natural way. We must now investigate the
geometrical consequences of this curious classification result.

Volume forms

An important observation is that each stabilizer group in the above classification preserves a volume form.
The compact examples G2 and PSU(3) preserve a metric and hence a volume form, but Sp(2n,R) preserves
the Liouville volume ωn/n!, and SL(3,C) preserves a complex 3-form Ω, and hence the real volume form
iΩ ∧ Ω. We will now investigate some elementary properties of this volume form.

Let U ⊂ ∧pV ∗ be the open orbit of forms, and let

φ : U ⊂ ∧pV ∗ −→ ∧nV ∗

be the nonlinear map determining the invariant volume form. We easily determine the homogeneity of this
map by applying scalar elements λ ∈ GL(V ): By invariance we know that φ(λpρ) = λnφ(ρ), and hence φ is
homogeneous of degree n

p . The first derivative of φ at ρ is a linear map

Dφ : ∧pV ∗ −→ ∧nV ∗,
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and hence Dφ(ρ̇) must be given by wedge product of ρ by a form of complementary degree n− p:

Dφ(ρ̇) = ρ̂ ∧ ρ̇.

In this way we see that ρ determines not only a volume form φ(ρ) but also a form ρ̂ of complementary degree,
both in a nonlinear fashion. Let us work out two examples of this complementary form.

• In the symplectic case, φ(ω) = ωm/m!, and

Dφ(ω̇) =
ωm−1 ∧ ω̇
(m− 1)!

,

so that the complementary form ω̂ = ωm−1/(m− 1)!.

• In the G2 case, the complementary form ρ̂ must be a 4-form invariant under G2. By the representation
theory of G2, it must be some multiple of ?ρ, where ? is the Hodge star associated to the metric defined
by ρ. After rescaling φ(ρ), we obtain the nonlinear relation

ρ̂ = ?ρρ.

As a final comment on the volume form before moving on to geometry, we note that by the homogeneity of
φ, if we apply the derivative of φ at ρ to the vector ρ, we obtain the relation

Dφ(ρ) = ρ̂ ∧ ρ = n
pφ(ρ),

showing that the volume form can be recovered from the complementary form ρ̂.

Stable forms on manifolds: the variational problem

Now suppose that M is a smooth n-dimensional manifold, and let ρ ∈ Ωp(M) be, at each point x ∈ M , an
element of the open orbit of GL(n,R) acting on the tangent space TxM .

ρx ∈ Ux ⊂ ∧pT ∗xM ∀x ∈M.

Such a differential form is called a stable form. The existence of such a stable form already places a
global constraint on the manifold, i.e. that the structure group of the tangent bundle admits a topological
reduction to the stabilizer group Stab(ρ). For example, in order for an even-dimensional manifold to admit
a nondegenerate 2-form, it must be almost complex, i.e. admit a topological reduction to Sp(2n,R) ' U(n).

Without any extra structure but the choice of this differential form, we may define a functional, which
we call the volume associated to ρ:

V (ρ) =
∫
M

φ(ρ).

In analogy with Hodge theory, we wish to find the critical points of this functional upon restriction to a de
Rham cohomology class. In particular, we suppose that we can find closed stable forms ρ, and we attempt
to determine critical points of V in the class [ρ] ∈ Hp(M). Because the volume depends in a nonlinear way
upon ρ, one might think of this as a kind of nonlinear version of Hodge theory.

A critical point occurs when the first variation of the volume functional vanishes, so let us calculate this
first variation:

δV (ρ̇) =
∫
M

Dφ(ρ̇) =
∫
M

ρ̂ ∧ ρ̇.

Since we are restricting the variations to a cohomology class, ρ̇ is exact, i.e. ρ̇ = dσ. Hence we have

δV (ρ̇) =
∫
M

ρ̂ ∧ dσ = ±
∫
M

dρ̂ ∧ σ.

This vanishes for all σ precisely when dρ̂ = 0. That is, a closed stable form is a critical point of the volume
functional if and only if the complementary form ρ̂ is closed.

By considering such critical closed stable forms, we can recover several interesting geometries without
any mention of the associated Riemannian invariants, such as holonomy:
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• Sp(2m,R) The condition dω = 0 on the stable form ω is precisely the definition of a symplectic
structure. The complementary form ω̂ is automatically closed, and so the volume functional is simply
a constant on each de Rham cohomology class.

• G2 The conditions dρ = 0 and d ? ρ = 0 are known, by a theorem of Fernandez and Gray, to be
equivalent to the fact that the associated metric has holonomy G2, in particular we obtain a Ricci-flat
metric.

• SL(3,C) The 3-form ρ together with its complement ρ̂ determine the invariant complex 3-form Ω =
ρ+ iρ̂ which determines an almost complex structure on the manifold. The condition dΩ = 0 ensures
that this almost complex structure is integrable. Then Ω is a nonvanishing holomorphic section of the
canonical bundle, implying that M is a Calabi-Yau 3-fold (in terms of its complex geometry).

• PSU(3) The nature of this geometry is a work in progress with Frederik Witt. The resulting metric
is not Einstein but certain components of the Ricci tensor vanish. So far the group manifold SU(3) is
the only known compact example.

The variational approach gives information about moduli spaces, as we shall see, but no direct benefit to
finding examples. A related problem however yields quite effectively to the variational approach.

The constrained variational problem: Weak holonomy G2

In this section we show how to constrain the variational problem on the 4-forms of a 7-manifold in a simple
way which gives rise to a geometry with weak holonomy G2, as defined by Gray.

Given an exact p-form dβ ∈ Ωpex and a closed (n− p)-form γ ∈ Ωn−pcl , their integral pairing vanishes, i.e.∫
M

dβ ∧ γ = 0.

That is, we obtain a formal equivalence

(Ωpex)
∗ = Ωn−p/Ωn−pcl ,

and the exterior derivative maps the right hand side isomorphically to Ωn−p+1
ex , i.e.

(Ωpex)
∗ = Ωn−p+1

ex .

On a 7-dimensional manifold, we obtain in particular

(Ω4
ex)

∗ = Ω4
ex.

In other words, the integral pairing defines a quadratic form

q(dβ) =
∫
M

dβ ∧ β

on the infinite-dimensional space of exact 4-forms of a 7-manifold.
Now that we have this quadratic form in hand, we might ask the question: what are the critical points

of the volume functional on exact 4-forms, given the constraint that q(dβ) = 1? Computing the variations
at ρ = dβ, we obtain

δV (ρ̇) =
∫
M

ρ̂ ∧ dβ̇

δq(ρ̇) = 2
∫
M

ρ ∧ β̇,

And by introducing a Lagrange multiplier, we obtain the constrained variational equation:

dρ̂ = λρ.
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The complementary form ρ̂ = ?ρ so
d ? ρ = λρ,

which is an equation defining a geometry called weak holonomy G2; the metric is Einstein but with positive
scalar curvature. It is a result of Bär that the metric cone on such a 7-manifold is an 8-manifold with holonomy
Spin(7). This is our first contact with Spin(7), which does not fall directly within our classification: the
4-form which Spin(7) preserves is not stable.

There do exist homogeneous examples of metrics with weak holonomy G2, and it is possible to use the
variational principle to obtain examples explicitly. This is done by searching for critical points among the
invariant forms, a finite-dimensional problem.

For example, view S7 as an SU(2) bundle over S4 acted on transitively by Sp(2) · Sp(1) with stabilizer
Sp(1) · Sp(1). In this case, the space of invariant exact 4-forms form a 2-dimensional space. If α1, α2, α3 are
the components of the connection form relative to the standard basis of su(2) and ω1 = dα1 + 2α2α3 etc.
are the components of the curvature, then the invariant exact 4-forms are spanned by

d(α1α2α3),
d(α1ω1 + α2ω2 + α3ω3).

Finding the critical points of the volume functional, subject to the constraint q(dβ) = 1, is an easy exercise
with an interesting result: one obtains the squashed S7, a well-known manifold with weak holonomy G2.

Lecture 2: Geometrical structures on moduli spaces

Moduli space of critical points

In the previous lecture, we characterized geometries such as symplectic, G2, and 3-dimensional Calabi-Yau
geometry as critical points of the volume functional

V (ρ) =
∫
M

φ(ρ),

restricted to a de Rham cohomology class, in analogy with Hodge theory. In Hodge theory, however, we
know that there is a unique critical point (the harmonic representative) in each cohomology class. In our
case, a critical point of the volume functional could never be unique, since V (ρ) is diffeomorphism invariant,
i.e. V (f∗ρ) = V (ρ) for any diffeomorphism f . Nevertheless, we can hope that by quotienting by the
action of Diff(M), we would obtain a unique critical class, and therefore a finite-dimensional moduli space
parametrized by the cohomology group, formally

M = {critical points of V } /Diff(M).

Such a space is difficult to handle in practice due to the complicated nature of the action of Diff(M); a more
tractable space would be a local moduli space; we produce such a space by showing that near a critical point
there exists a smooth finite-dimensional slice of critical points in the closed p-forms, transverse to the action
of Diff(M) and mapping via a local diffeomorphism to Hp(M).

We will illustrate the procedure with a finite-dimensional version. Let F be a function, representing the
functional V , of variables x1, . . . , xm, representing the space of exact p-forms, and also of variables t1, . . . , tn,
representing coordinates for Hp(M) (for example harmonic forms):

F (x1, . . . , xm, t1, . . . , tn).

Then its x-derivative is
DFx : Rm × Rn −→ Rm,

whose zeros are the critical points of F . If the second x-derivative, i.e. the Hessian, at a

D2Fx(a) : Rm −→ Rm
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is an isomorphism, then the implicit function theorem says that there is a locally invertible smooth function
x(t) such that

DFx(x(t), t) = 0.

In our infinite-dimensional case, we must of course utilize Sobolev Banach spaces of sufficiently high
degree, but this procedure can in fact be implemented, as long as we can show that the Hessian D2V is
non-degenerate transverse to the orbits of Diff(M). This condition can be phrased in the following way:

Non-degeneracy condition If the Hessian at ρ, D2V (ρ), is degenerate in the ρ̇1 direction, i.e.

D2V (ρ̇1, ρ̇2) = 0 ∀ρ̇2 ∈ Ωpcl,

then this implies that ρ̇1 must be in the infinitesimal orbit of Diff(M), i.e.

ρ̇1 = LXρ for some vector field X.

If this non-degeneracy condition holds, then we obtain a local moduli space M which is locally diffeomorphic
to Hp(M).

Example 1: Symplectic moduli space We have seen already that the volume functional is constant on
the cohomology class of a symplectic structure, simply because

V (ω) =
∫
M

ωm

m!
=

1
m!

[ω]m([M ]).

Calculating the Hessian at ω, we obtain

D2V (ω̇1, ω̇2) = const.
∫
M

ωm−2ω̇1ω̇2,

which vanishes for all closed ω̇2 only if [ωm−2ω̇1] = 0, by Poincaré duality. If we now suppose that the strong
Lefschetz property holds for ω at the level of H2(M), meaning that

H2(M)
[ω]m−2

// H2m−2(M)

is an isomorphism, then we can conclude that [ω̇1] = 0, i.e. ω̇1 = dθ for some 1-form θ. But then there must
exist a vector field X with θ = iXω, and we conclude that

ω̇1 = diXω = LXω,

proving that the Hessian is non-degenerate transverse to the Diff(M) orbits. This gives a local moduli space
as an open set in H2(M). Of course this is not too surprising since we have access to this information
through Moser’s theorem in symplectic geometry, but the example is illustrative nonetheless.

While we will not describe the other examples in detail, it is possible to show that the Hessian is non-
degenerate in the G2 case using harmonic theory, and in the Calabi-Yau case if the ∂∂̄-lemma holds.

Structure on the moduli space

Now that we have a concrete description of the local moduli space as an open subset M ⊂ Hp(M), it
becomes clear that there are additional structures on this space.

• Since M⊂ Hp(M), a vector space, there are flat coordinates on M, which we denote by xi.

• The critical value V of the volume functional determines a function on M.

• The function V defines a pseudo-Riemannian metric on M of Hessian type:

g =
∑ ∂2V

∂xi∂xj
dxidxj
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There is an invariant way of describing such a metric, which we now explain. Suppose W is a vector space;
then W ×W ∗ is naturally a symplectic manifold using

ω((w1, ξ1), (w2, ξ2)) = iw1ξ2 − iw2ξ1

and has a natural split-signature metric

g((w1, ξ1), (w2, ξ2)) = iw1ξ2 + iw2ξ1.

Now suppose that L < W ×W ∗ is a Lagrangian submanifold transverse to W ∗. Then the metric induced
on L by g, and then projected to W , is a Hessian metric on W . For example, if L is the graph of df , for f a
function on W , then we obtain the Hessian metric on W written above.

In our case, the vector space W = Hp(M) has dual W ∗ = Hn−p(M), and the subset

{([ρ], [ρ̂]) ∈W ×W ∗}

is Lagrangian, generated by the volume function

V = p
n

∫
M

ρ ∧ ρ̂ = p
n [ρ] ∪ [ρ̂],

as we saw before. We will now investigate the properties of this metric induced on the moduli space, for our
usual examples.

Metric on the symplectic moduli space

If our symplectic manifold is actually Kähler, then as a consequence of the Hodge-Riemann bilinear relations,
the Hessian metric can be shown to be positive-definite on 〈ω〉 ⊕H2,0 ⊕H0,2 and negative on the primitive
(1, 1) forms H1,1

0 . Let us assume that H2,0 = 0. Then the Hessian has signature (1, b2−1), and by restricting
our attention to forms such that ∫

M

ωm = 1,

we obtain a Riemannian metric. This metric has been studied by P. Wilson [7] and his findings prompted
him to conjecture the following:

Conjecture: For a Kähler manifold, the sectional curvatures of the Riemannian metric above are non-
positive and bounded below by − 1

2m(m− 1).

Now suppose that H2,0 6= 0 and more particularly that M is actually a compact hyperkähler manifold of
dimension 4k. Then the signature of the Hessian metric is (3, b2 − 3), and the volume functional is actually
the kth power of the Beauville-Bogomolov form∫

M

ω2k = q(ω)k,

which is a topological invariant of a hyperkähler manifold. In this case the Hessian metric is a homogeneous
pseudo-Riemannian metric of constant negative curvature.

Metric on the G2 moduli space

In the G2 case the 3-forms decompose as

∧3T ∗ = Rρ⊕ iX(?ρ)⊕ ∧3
0,

where harmonic representatives in the second summand correspond to harmonic 1-forms, of which there are
none if M is irreducible, due to the Ricci-flat condition. As a consequence, the Hessian metric has signature
(1, b3 − 1). It would be possible to normalize as in the Kähler case and study the resulting Riemannian
metric, but it has not yet been explored.
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Special Kähler metrics on the Calabi-Yau moduli space

In this final example, we explore how the variational point of view provides a natural explanation for the
Special Kähler metric on the moduli space of Calabi-Yau 3-folds. This moduli space is particularly important
for the study of mirror symmetry, since it is conjectured to be isomorphic to the quantum cohomology of a
different Calabi-Yau 3-fold, called the ‘mirror’.

A special Kähler metric, as introduced by Freed, is defined as follows:

Definition: A special Kähler metric consists of

• A flat torsion-free symplectic connection (∇, ω)

• A complex structure J compatible with ω

• A locally defined vector field X such that J = ∇X ∈ C∞(T ⊗ T ∗).

The first component of the special Kähler structure is easily obtained: since M ⊂ H3(M), we obtain
immediately flat coordinates as well as a symplectic form given by the cup product:

ω(a, b) = a ∪ b ∈ H6(M) = R,

Hence by taking ∇ = D, we obtain a flat symplectic connection.
The vector field X is obtained from the fact that there is a natural S1 action on the moduli space, as

follows: if ρ+ iρ̂ is a holomorphic 3-form, so is eiθ(ρ+ iρ̂). Therefore, there is an action on the open set of
H3(M)

[ρ] 7−→ cos θ[ρ] + sin θ[ρ̂],

and hence a vector field

X = d
dθ (cos θ[ρ] + sin θ[ρ̂])|θ=0

= [ρ̂]

In fact, since we have
(iXω)([ρ̇]) = [ρ̂ ∧ ρ̇] = DV ([ρ̇]),

we see that V is a moment map for this Hamiltonian S1-action on the moduli space.
To obtain the complex structure, we simply define J = ∇X and verify that it is an integrable almost

complex structure compatible with ω. The fact that it is an almost complex structure follows from the fact
that

ˆ̂ρ = −ρ.

Since X is Hamiltonian and ∇ preserves ω, it follows that J preserves ω; more explicitly, write

X =
∑

ωij
∂V

∂xi

∂

∂xj

and then

J =
∑

ωij
∂2V

∂xi∂xj
dxk ⊗

∂

∂xj
,

implying that
Jjk =

∑
ωijgik,

where g is the Hessian metric, as required.
To show that J is integrable, we explicitly compute some complex functions whose derivatives span T ∗1,0.

In particular, define

zj = xj − i
∑

ωjk
∂V

∂xk
,
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so that

dzj = dxj − i
∑

ωjk
∂2V

∂xk∂xl
dxl

= dxj − i
∑

J ljdxl,

which are obviously forms of type (1, 0). The 1-forms dz1, . . . dz2n span E ⊂ T ∗ ⊗ C with dimE ≤
dim(T ∗)1,0 = n, but we see that 2dxj = dzj +dz̄j , showing that dim(E+ Ē) = 2n. Consequently dimE = n,
proving that J is integrable. Hence M⊂ H3(M) has a special Kähler metric.

Special Kähler structures appear on moduli spaces of superconformal field theories, and they can be used
to create examples of (pseudo) hyperkähler manifolds. In particular, if we consider the cotangent bundle of
M, or more explicitly M× R2n, where we use yk as cotangent coordinates, and if we define the following
closed forms:

ω1 =
∑ ∂2V

∂xj∂xk
dxj ∧ dyk,

ω2 + iω3 = − 1
2

∑
ωjkd(xj + iyj) ∧ d(xk + iyk),

then these satisfy the algebraic relations for a pseudo-hyperkähler structure (the associated metric g is not
necessarily positive-definite). A natural question then arises as to whether this hyperkähler space parame-
trizes some extra structure on top of the Calabi-Yau space; the obvious choice are objects classified by a flat
H3(M,R/Z) bundle over the original moduli space M.

Lecture 3: Generalized Calabi-Yau manifolds

So far we have seen that open orbits of the action of GL(n,R) acting on the particular representation space
∧p(Rn)∗ give rise to special geometries. Let us return to this idea in greater generality.

Let G be a Lie group with representation space V in which it has an open orbit: V is then called
a prehomogeneous vector space. A classification of these structures was carried out by Kimura and Sato
in 1977 [5]. Some of the groups they found are familiar to us from Berger’s holonomy classification: the
Lie groups which he identified as possible irreducible holonomy groups G ⊂ SO(n) of a Riemannian (non-
symmetric) manifold are as follows:

U(n), SU(n), Sp(n), Sp(n) · Sp(1), G2, Spin(7), Spin(9).

While Spin(9) was later eliminated as a holonomy group, it remains true that these are the subgroups
G ⊂ SO(m) which act transitively on Sm−1. Because of this, the groups

G̃ = R∗ ·G

have an open orbit in Rm.
More examples of prehomogeneous vector spaces can be found in the work of Merkulov and Schwachhöfer

[6], who extended Berger’s work by classifying the possible holonomy groups of torsion-free affine connections
in general; in particular they considered such connections which preserve a symplectic structure:

Symplectic holonomy group G ⊂ Sp(V, ω) V
Sp(2m,R) R2m

SL(2,R) · SO(n) R2 ⊗ Rn
SL(2,R) Sym3R2

SL(6,R) ∧3(R6)∗

Sp(3,R) R14 ⊂ ∧3(R6)∗

Spin(6, 6) R32

E7 R56

Representative list of holonomy groups for torsion-free symplectic connections.
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These groups can also be characterized in terms of transitive actions on invariant hypersurfaces. Since they
preserve a symplectic structure, there is an associated moment map

µ : V −→ g∗,

and for semisimple groups the Killing inner product of µ with itself,

q = (µ, µ),

is an invariant quartic function on V . Except for Sp(2m,R), where q ≡ 0, the symplectic holonomy groups
act transitively on components of q−1(c), c 6= 0. For this reason we obtain, as before, the fact that the groups

G̃ = R∗ ·G

have open orbits in V .
In the middle of this list is the case SL(6,R) which led us to Calabi-Yau 3-folds. In the next section,

we will focus on the group Spin(6, 6), which acts in its 32-dimensional spin representation. The group
R∗ · Spin(6, 6) has an open orbit with stabilizer SU(3, 3), and we ask what geometrical structure underlies
this group-theoretic fact.

Spin(6, 6) acting on T ⊕ T ∗

Instead of viewing Spin(6, 6) as the structure group of the tangent bundle of a pseudo-Riemannian 12-
manifold, consider the sum T ⊕ T ∗ of the tangent and cotangent bundles of a six-dimensional manifold M .
The bundle T ⊕ T ∗ has a natural indefinite metric of signature (6, 6):

g(X + ξ,X + ξ) = −iXξ,

for which the tangent and cotangent bundles are maximally isotropic (null) sub-bundles. So, we think of
T ⊕ T ∗ not as a GL(6,R)-bundle but as having structure group SO(6, 6). This bundle always admits a spin
structure, and since the metric has split signature, we can construct the spin representation as the exterior
algebra on a maximal isotropic subspace. For example, choosing the maximal isotropic T ∗,

S = ∧•T ∗

as the spinors for T ⊕ T ∗, where the Clifford action is given by

(X + ξ) · ϕ = iXϕ+ ξ ∧ ϕ.

We verify that
(X + ξ)2 · ϕ = −||X + ξ||2ϕ,

the defining relation of a Clifford module. The spin bundle decomposes into positive and negative spinors

S+ = ∧evT ∗, S− = ∧odT ∗,

and in this way we obtain the 32-dimensional spaces containing the open orbits:

R∗ · Spin(6, 6) has an open orbit in ∧ev/od T ∗x (M6) .

According to the symplectic holonomy classification, the spaces ∧ev/odT ∗ are supposed to be endowed with
Spin(6, 6)-invariant symplectic structures; these, givemn a choice of volume form, are nothing but the usual
bilinear pairing of spinors, which can be defined as follows: let ϕ1, ϕ2 ∈ ∧•T ∗. Then

〈ϕ1, ϕ2〉 = (ϕ1 ∧ σ(ϕ2))top ∈ ∧topT ∗,

where σ multiplies forms of degree p by (−1)p(p−1)/2. In 6 dimensions, 〈 , 〉 is skew-symmetric and Spin(6, 6)-
invariant on each of S±.
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Before we consider the geometry determined by a stable form of this type, it is worth explaining more
concretely how Spin(6, 6) acts on differential forms. The Lie algebra so(T ⊕T ∗) consists of the skew-adjoint
transformations

so(T ⊕ T ∗) =
{(

A β
B −AT

)
: A ∈ End(T ), β ∈ ∧2T, B ∈ ∧2T ∗

}
.

An important component of this Lie algebra for what follows is the space of 2-forms B ∈ ∧2T ∗, whose
spinorial action on forms is simply wedge product ρ 7→ B ∧ ρ. By exponentiation, therefore, we see that the
group of 2-forms forms a subgroup Ω2(M) ⊂ Spin(T ⊕T ∗) and acts via the exponential map in the following
way:

ρ 7−→ eBρ = (1 +B + 1
2B ∧B + · · · ) ∧ ρ.

Stable forms of mixed degree and the volume functional

The underlying structure group GL(n) embeds into Spin(n, n) and as a GL(n)-bundle, the spin bundle
should be written as

S = ∧•T ∗ ⊗ (∧nT )1/2,

reflecting the way that GL(n) acts through the spin representation. With this modification, we see that the
quartic form q = (µ, µ) on the positive spinors S+ = ∧evT ∗ ⊗ (∧6T )1/2 in 6 dimensions can be viewed as a
GL(6)-equivariant map

∧evT ∗
q // (∧6T ∗)2 ,

so that we obtain a volume form
φ(ρ) =

√
|q(ρ)| ∈ ∧6T ∗

for stable forms ρ, i.e. forms which lie pointwise in the open orbit of R∗ · Spin(6, 6). We emphasize that
unlike our previous situation, ρ is now a form of mixed degree and φ is invariant under the larger group of
symmetries Spin(T ⊕ T ∗).

As before, the first variation of the volume functional determines a complementary form, but in this case
it is not the wedge product but the spinor pairing which must be used, i.e. there is a unique form ρ̂ such
that

Dφ(ρ̇) = 〈ρ̂, ρ̇〉.

Following our earlier procedure, we restrict the functional to closed differential forms, obtaining the result
that a critical point ρ is characterized by the condition that ρ̂ is also closed, or in other words

d(ρ+ iρ̂) = 0.

Geometrical interpretation of critical points: generalized Calabi-Yau structures

In this section we ask the question: What sort of geometrical structure does a critical stable form for
R∗ ·Spin(6, 6) represent? The essential clue lies in the fact that while the real spinor ρ is generic, i.e. lies in
an open orbit, the complex spinor ϕ = ρ + iρ̂ is not: it is a complex spinor of pure type, which means that
the Clifford annihilator

Eϕ = {X + ξ ∈ (T ⊕ T ∗)⊗ C : (X + ξ) · ϕ = 0}

is maximal isotropic in the natural indefinite metric. A few examples of pure spinors are:

• 1 ∈ ∧0T ∗ is pure, since E1 = T ⊂ T ⊕ T ∗, which is certainly maximal isotropic.

• Any decomposable form ϕ = dx1 ∧ . . . ∧ dxm is pure since Eϕ = Kerϕ ⊕ 〈dx1, . . . , dxm〉, which is
maximal isotropic.

• We can act by any 2-form B via the spin representation, obtaining the pure form ϕ = eBdx1∧. . .∧dxm.
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The correspondence between pure spinors and maximal isotropic subspaces is such that the pairing on
spinors encodes the intersection theory of maximal isotropics; in particular,

〈ϕ,ψ〉 = 0 ⇐⇒ Eϕ ∩ Eψ 6= {0}.

Now returning to our pure spinor ϕ = ρ+ iρ̂, we observe that

〈ρ+ iρ̂, ρ− iρ̂〉 = 2i〈ρ̂, ρ〉 = 2iλφ(ρ),

for nonzero λ. Since on the open orbit φ(ρ) 6= 0, this means that the maximal isotropic Eϕ satisfies

Eϕ ∩ Eϕ = {0}.

This immediately implies that (T ⊕ T ∗)⊗C = Eϕ ⊕Eϕ, implying that we have a complex structure on the
bundle T ⊕ T ∗ with ±i eigenspaces Eϕ, Eϕ, and which is compatible with the natural indefinite metric g on
T ⊕ T ∗.

In this way, the stable form ρ ∈ ∧ev/odT ∗(M6) gives rise to a complex structure J on T ⊕ T ∗ and hence
a reduction of structure from Spin(6, 6) to U(3, 3); the fact that we have the form ρ instead of simply the
line it generates reduces structure further to SU(3, 3).

This geometrical structure may now be generalized to higher dimensions:

Definition: A generalized Calabi-Yau manifold is a manifold M with a closed complex form ϕ such
that ϕ is pure when considered as a spinor for T ⊕ T ∗ and 〈ϕ,ϕ〉 is nowhere vanishing.

Examples:

• A Calabi-Yau manifold is generalized Calabi-Yau, with ϕ = Ω, the holomorphic m-form. Note that Ω
is pure since it is locally decomposable, and

〈ϕ,ϕ〉 = ±Ω ∧ Ω 6= 0.

• A symplectic manifold is generalized Calabi-Yau, with ϕ = eiω. This is clearly pure and satisfies

〈eiω, e−iω〉 = 〈e2iω, 1〉 = c · ωm 6= 0.

• We may transform any example by a real closed 2-form B via ϕ 7→ eBϕ; this is called a B-field
transformation.

This last example demonstrates that in addition to the diffeomorphism group, the additive group of real
closed 2-forms acts as B-field transformations sending critical points to critical points. For this reason, it is
clear that the moduli problem must be modified in some way, which we now address.

The moduli space of generalized Calabi-Yau structures in 6 dimensions

We wish to proceed exactly as before, by showing that the Hessian of the volume functional for even/odd
stable forms on a 6-manifold is suitably nondegenerate, obtaining a finite-dimensional moduli space, and
then investigate whether the map ρ 7→ ρ̂ defines a special Kähler structure on the moduli space. This would
be straightforward if not for the fact that the volume function φ(ρ), in addition to being diffeomorphism
invariant, is also invariant under the transformation

ρ 7−→ eBρ,

for B a real closed 2-form. This means that we must quotient the locus of critical points by a larger symmetry
group. But we mustn’t quotient by the action of all such 2-forms, since the variational problem is occurring
in a fixed cohomology class

[ρ] ∈ Hev/od(M).
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Hence we should consider the action of exact 2-forms, which would preserve the class, i.e.

edξρ = ρ+ d(ξ ∧ ρ+ 1
2ξ ∧ dξ ∧ ρ+ · · · ).

In conclusion, if one considers a local moduli space of nearby critical points modulo the action of the
semidirect product of Diff0(M) with the exact 2-forms Ω2

ex, one obtains a finite-dimensional moduli space
parametrized by an open set M ⊂ Hev/od(M) in the de Rham cohomology. This moduli space inherits a
special Kähler structure, as before.

Example: Symplectic structure. Let ϕ = eiω be the generalized Calabi-Yau structure associated to a
6-dimensional symplectic manifold, and suppose it satisfies strong Lefschetz so that the local moduli space
is a well-defined open set in Hev(M). Then

Re[eiω] = 1− 1
2 [ω]2 ∈ H0 ⊕H4,

while by rescaling ϕ by a nonzero complex number

Re[(a+ ib)eiω] = a− b[ω]− 1
2a[ω]2 + 1

6b[ω]3 ∈ Hev.

Furthermore, applying a B-field transformation, we obtain a mapping

(λ,B + iω) 7−→ λRe[eB+iω],

which defines a local coordinate chart

C×H2(M,C) −→ Hev(M)

whose induced complex structure is actually that which appears in the special Kähler structure on the moduli
space.

However, note that this ‘exponential map’ is not always surjective onto the moduli space. For example,
let M6 = M4

1 ×M2
2 be the product of a K3 surface with a symplectic surface, where we take the product

symplectic structure ω2 + ω transformed by the B-field ω1, where ω1 + iω2 is a holomorphic 2-form on the
K3 and ω is the symplectic structure on the surface. The spinor defining this product structure is

ϕ = eω1ei(ω2+ω),

and is clearly in the image of the holomorphic coordinate chart described above. However, introduce a
parameter t via

ϕt = te(ω1+iω2)/teiω.

For t 6= 0, this is clearly in the image of the chart. However

ϕ0 = (ω1 + iω2)eiω,

the product of a complex with a symplectic structure, something which is definitely not in the image of the
map.

In this lecture, we have seen how the concept of generalized Calabi-Yau manifold in arbitrary even dimen-
sion has arisen from interpreting geometrically the structure obtained as the critical point of a functional on
stable forms in 6 dimensions. The starting point was a simple group-theoretic fact concerning open orbits,
but following it up led to a different geometrical world. These lists contain the germs of a great deal of
geometry.

Lecture 4: Generalized Riemannian structures

In the previous lecture, we investigated generalized Calabi-Yau geometry, which resulted from an open orbit of
R∗ ·Spin(6, 6) in its 32-dimensional spin representation. Another open orbit from the list of prehomogeneous
spaces is that of the group

R∗ · Spin(7, 7)

acting in its 64-dimensional spin representation with 28-dimensional stabilizer. To properly interpret the
geometry which results from this fact, we will need a more complete picture of the geometry of T ⊕ T ∗.
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The geometry of T ⊕ T ∗

Recall the basic scenario of generalized geometry: we replace the tangent bundle T by T ⊕ T ∗ as the basic
object of consideration. This bundle is equipped with a natural inner product of signature (n, n), which we
take to be

(X + ξ,X + ξ) = −iXξ,

and so it should be thought of as a bundle with natural structure group SO(n, n). The lie algebra so(n, n)
consists of the skew adjoint transformations

so(n, n) = ∧2(T ⊕ T ∗) = End(T )⊕ ∧2T ∗ ⊕ ∧2T,

and so, in particular, 2-forms B ∈ ∧2T ∗ can be thought of as infinitesimal symmetries of the bundle T ⊕T ∗.
As we have seen, spinors for the metric bundle T ⊕ T ∗ can be expressed as differential forms S = ∧•T ∗.

This imposes variants of the usual tools. For example, we modify the usual Poincaré pairing of forms, in
favour of the spinorial bilinear form

〈ϕ,ψ〉 = [ϕ ∧ σ(ψ)]n.

and we use the Clifford action of T ⊕ T ∗ on forms

(X + ξ) · ϕ = iXϕ+ ξ ∧ ϕ.

instead of the interior product iX . We have already seen this, in replacing the action of Diff(M) on closed
forms, whose infinitesimal version is simply

ρ 7−→ LXρ = diXρ,

by an action of the semidirect product of Diff(M) with Ω2
ex(M), via

ρ 7−→ LXρ+ dξ ∧ ρ = d((X + ξ) · ρ).

Our general philosophy is to express usual operations on forms in terms which are Spin(n, n)-invariant.
Another example of generalization from T to T ⊕ T ∗ is the definition of an analogue of the Lie bracket.

We are familiar with the Cartan formula for the exterior derivative, which implies that

i[X,Y ]α = d(iX iY α) + iXd(iY α)− iY d(iXα) + iX iY dα,

or equivalently,
i[X,Y ]α = d( 1

2 [iX , iY ]α) + iXd(iY α)− iY d(iXα) + 1
2 [iX , iY ]dα.

Now let us replace our vector fields X,Y ∈ T by sections A = X + ξ,B = Y + η ∈ T ⊕ T ∗, and replace all
interior products by Clifford products, to define a bracket operation [A,B] on sections of T ⊕ T ∗:

[A,B] · α = d( 1
2 (AB −BA) · α) +A · d(B · α)−B · d(A · α) + 1

2 (AB −BA) · dα.

This bracket is actually well-known in Poisson geometry as the Courant bracket, and can be written simply:

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ − 1
2d(iXη − iY ξ).

From our point of view, the bracket naturally arises from the interpretation of differential forms as spinors
for T ⊕ T ∗.

Generalized Riemannian metrics

In this section we see how Riemannian geometry obtains an alternative interpretation in terms of the geometry
of T ⊕ T ∗. A Riemmanian metric g determines an isomorphism

g : T −→ T ∗
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whose graph is a subbundle V ⊂ T ⊕T ∗ which is positive definite in the natural indefinite metric. Therefore
we obtain a decomposition

T ⊕ T ∗ = V ⊕ V ⊥,

where V ⊥ is the (negative definite) orthogonal complement to V . This reduces the structure group of
T ⊕ T ∗ from SO(n, n) to SO(n) × SO(n). The correspondence between Riemannian metrics and maximal
positive-definite subspaces is not, however, 1-1 because of the fact that a positive-definite subspace may have
a skew-symmetric component. A general maximal positive-definite subspace V ⊂ T ⊕ T ∗ is the graph of
g + B, where g is a Riemannian metric and B is a 2-form. In short, a generalized Riemannian metric is a
(non-closed) B-field transform of a usual Riemannian metric.

Equivalently, such a metric can be defined as a self-adjoint involution R ∈ End(T ⊕ T ∗), defined as
+1 on V and −1 on V ⊥. One consequence of this point of view is that since R ∈ O(n, n), we may lift
it to R̃ ∈ Pin(n, n) after choosing an orientation, and this involutive operation on differential forms is a
generalization of the Hodge star operator; for B = 0, R̃ = σ?, where ? is the usual Hodge star.

Generalized G2 structures

The stabilizer of a form in the open orbit of R∗ · Spin(7, 7) is the compact group G2 × G2, sitting inside
SO(7)× SO(7). From the discussion in the previous section, we now know how this should be interpreted:
we obtain a generalized metric g + B with a reduction on both V and V ⊥ to G2. Since V, V ⊥ are both
definite, the natural projection to the null bundle T is an isomorphism, and so we obtain two almost-G2

structures on the tangent bundle. As we know, G2 ⊂ Spin(7) is the stabilizer of a Riemannian spinor, so
the data induced from the G2 ×G2 structure above consists of

• A Riemannian metric g,

• A 2-form B,

• Two unit Riemannian spinors φ+, φ−.

The precise relationship between this data and the stable form was determined by my student Frederik Witt:

Theorem [F. Witt] A stable form ρ in the open orbit of R∗ · Spin(7, 7) which satisfies the variational
equations

dρ = 0 = dρ̂

is equivalent to the following data:

• A Riemannian metric g, 2-form B, and real function Φ,

• Unit spinors φ+, φ− which satisfy
∇±φ± = 0,

where ∇± are metric connections with skew torsion ±H(H = dB), and such that

• (dΦ± 2H) · φ± = 0.

The stable form can be expressed in terms of these data as follows:

ρ = eΦeBφ+ ⊗ φ−.

It is comforting to note that the total number of degrees of freedom in the above data (g,B,Φ, φ+, φ−) are
(28, 21, 1, 7, 7) and therefore sum to 64, which is the dimension of the open orbit. Also, such a geometrical
structure has actually arisen in the string theory literature, e.g. in the recent paper “Superstrings with
Intrinsic Torsion” [3].

A search for examples of generalized G2 which are not simply B-field transforms of usual G2 structures is
warranted, but unfortunately not in the compact case; the equations (dΦ+2H)·φ+ = 0 and ∇+φ+ = 0 imply
that ∆(e−Φ) = e−Φ|H|2, which after integration over a compact manifold yields H = 0 and Φ = constant.
In this case, both connections equal the Levi-Civita connection, φ± are equal, and the resulting geometry is
the B-field transform of a Riemannian metric with holonomy G2.
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Generalized Kähler structures

Another structure involving a generalized metric, studied by M. Gualtieri, is called a generalized Kähler
metric. To define it, we first define a generalized complex structure:

Definition: A generalized complex structure is a complex structure J on T ⊕T ∗ which preserves the
natural inner product and whose +i-eigenbundle E ⊂ (T ⊕ T ∗)⊗ C is closed under the Courant bracket.

While generalized Calabi-Yau structures, defined earlier, are a special case of such a structure, it is clear
that any complex manifold provides an example: if I : T → T is the complex structure tensor, then form

J =
(
I 0
0 −I∗

)
.

It is not difficult to verify that J is a generalized complex structure. Recall that any symplectic manifold is
generalized Calabi-Yau; indeed forming

J =
(

0 −ω−1

ω 0

)
,

we obtain the generalized complex structure associated with it.
From these two extreme examples we see that generalized complex geometry is a way of interpolating

between complex and symplectic geometry. Recall that Kähler geometry occurs when we have a complex
structure I and a compatible symplectic structure ω, in the sense that −ωI is a positive-definite Riemannian
metric. By generalizing this situation we obtain the definition of a generalized Kähler structure.

Definition: A generalized Kähler structure on a manifold M consists of two generalized complex
structures J1, J2 such that J1J2 = J2J1 and the inner product

(J1J2(X + ξ), Y + ξ)

is positive-definite. In other words, the involution R = J1J2 defines a generalized Riemannian metric on
T ⊕ T ∗.

A generalized Kähler structure gives a reduction of structure for T ⊕ T ∗ to U(n) × U(n), and as in the
G2 ×G2 case, this gives rise to two separate U(n) structures on the tangent bundle. The precise conditions
on these structures was determined by Gualtieri:

Theorem [M. Gualtieri [4]] A generalized Kähler structure is equivalent to:

• a Riemannian metric g and a 2-form B,

• metric connections ∇+,∇− with torsion ±H, (H = dB),

• integrable complex structures I+, I−, both Hermitian with respect to g, and such that ∇±I± = 0.

This kind of bi-Hermitian geometry first appeared in the physics literature in 1984, in the article [2]. In the
following section we show how one can reduce this U(n)× U(n) structure further, to SU(n)× SU(n).

0.1 Generalized Calabi-Yau metrics

The Calabi-Yau condition on a Kähler manifold with holomorphically trivial canonical bundle is that the
holomorphic m-form Ω and the Kähler form ω satisfy

Ω ∧ Ω = cωm,

where c is a constant. This equality of volume forms suggests a natural extension to the generalized frame-
work:
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Definition: A generalized Calabi-Yau metric consists of a pair of generalized Calabi-Yau structures
defined by differential forms ϕ1, ϕ2 such that their associated generalized complex structures J1, J2 form a
generalized Kähler structure and such that

〈ϕ1, ϕ1〉 = 〈ϕ2, ϕ2〉.

To gain some insight into the above constraint, we will investigate the 4-dimensional case in detail. A
special feature of 4 dimensions is that our symmetry group Spin(4, 4) enjoys the triality isomorphism between
its spin representations and its vector representation. A consequence of this fact is that the pure spinors are
the same as the null spinors, i.e. ϕ is pure if and only if 〈ϕ,ϕ〉 = 0. For even spinors α0 +α2 +α4 ∈ ∧evT ∗,
this condition is that

2α0 ∧ α4 − α2 ∧ α2 = 0.

Suppose that ϕ1 = ρ1 + iρ2, ϕ2 = ρ3 + iρ4 define the generalized Calabi-Yau metric structure. Since
these are pure, we deduce from 〈ϕ1, ϕ1〉 = 〈ϕ2, ϕ2〉 = 0 that

• 〈ρ1, ρ1〉 = 〈ρ2, ρ2〉 and 〈ρ1, ρ2〉 = 0,

• 〈ρ3, ρ3〉 = 〈ρ4, ρ4〉 and 〈ρ3, ρ4〉 = 0.

The fact that J1, J2 commute gives rise to the generalized Riemannian metric R = J1J2, which determines
a splitting T ⊕ T ∗ = V ⊕ V ⊥. The space V ⊗ C then decomposes as

V ⊗ C = V1 ⊕ V1,

the ±i eigenbundles of J1. Correspondingly we have V ⊥ ⊗ C = V ⊥1 ⊕ V ⊥1 . The Clifford annihilators E1, E2

of ϕ1, ϕ2 are simply the +i-eigenbundles of J1, J2, and so we have

E1 = V1 ⊕ V ⊥1 ,

E2 = V1 ⊕ V ⊥1 .

Thus we obtain the conditions dimE1 ∩E2 = 2, dimE1 ∩E2 = 2, which yield 〈ϕ1, ϕ2〉 = 0 and 〈ϕ1, ϕ2〉 = 0,
which happens if and only if

〈ρ1, ρ3〉 = 〈ρ2, ρ3〉 = 〈ρ1, ρ4〉 = 〈ρ2, ρ4〉 = 0.

The above conditions, from parity considerations, are actually equivalent to the commuting of J1, J2. Finally,
the Calabi-Yau metric condition, i.e. that 〈ϕ1, ϕ1〉 = 〈ϕ2, ϕ2〉, implies that

〈ρ1, ρ1〉+ 〈ρ2, ρ2〉 = 〈ρ3, ρ3〉+ 〈ρ4, ρ4〉.

All the conditions obtained so far, which define a generalized Calabi-Yau metric in 4 dimensions, may be
summarized in the following equations on four spinors ρ1, ρ2, ρ3, ρ4:

〈ρi, ρj〉 = δijν; dρi = 0,

where ν is a volume form on the 4-manifold. These are clearly expressed in SO(4, 4)-invariant terms, but
also note that phrased in this way, we encounter an O(4) symmetry in the problem.

Let us solve these equations in the case where ϕi are even forms. Note that by the closure of ϕi, their
zero degree components must be constants, and by a rotation in O(4) we may set ϕ(0)

1 = c for some real
constant and ϕ(0)

2 = ϕ
(0)
3 = ϕ

(0)
4 = 0. Therefore

ρ1 = c + α0 + β0

ρ2 = α1 + β1

ρ3 = α2 + β2

ρ4 = α3 + β3.
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The orthogonality of ρ2, ρ3, ρ4 implies that

α1α2 = α2α3 = α3α1 = 0,

α2
2 = α2

3 = α2
1 = ν.

These equations, together with dαi = 0, imply that (α1, α2, α3) = (ω1, ω2, ω3) for a hyperkähler structure
on M .

Now observe that c 6= 0 since if c = 0 we would have α0 ∧ ωi = 0, implying α2
0 is a negative multiple of

ν, a contradiction. Hence we may rescale ρ1 so that c = 1, and letting α0 = B, we have

ρ1 = 1 +B + β0.

The condition 〈ρ1, ρ2〉 = 0 implies that β1 = Bω1, and the condition 〈ρ1, ρ1〉 = 〈ρ2, ρ2〉 implies that β0 =
(B2 − ω2

1)/2. Similar identities hold for ρ3, ρ4, and we obtain

ρ1 = 1 +B + (B2 − ν)/2 = eB(1− ν/2)

ρ2 = ω1 +Bω1 = eBω1

ρ3 = ω2 +Bω2 = eBω2

ρ4 = ω3 +Bω3 = eBω3.

Forming ϕ1 = ρ1 + iρ2 = eB+iω1 and ϕ2 = ρ3 + iρ4 = eB(ω2 + iω3), we obtain the result: an even
generalized Calabi-Yau metric in 4 dimensions is nothing but the B-field transform of a hyperkähler metric.
We will investigate the odd case in the next lecture.

Lecture 5: Generalized Spin(7) geometry, and T-duality

We begin this lecture by addressing the question of how Spin(7) structures fit into the picture developed
so far. Then we shall explain a procedure called T-duality for constructing examples of many of the special
geometries described in these lectures.

Generalized Spin(7) structures

Like SU(3), G2 and PSU(3), the group Spin(7) viewed through its spin representation

Spin(7) ⊂ SO(8) ⊂ GL(8)

is the stabilizer of a differential form ϕ ∈ Ω4(M). However, this 4-form does not lie in an open orbit; it satisfies
certain pointwise algebraic conditions. Compensating for this algebraic complication is the relatively simple
integrability condition: a Spin(7) 4-form ϕ defines a metric of holonomy Spin(7) if and only if dϕ = 0.

This situation can be generalized to a Spin(7)×Spin(7) structure on T ⊕T ∗ of an 8-manifold M , in the
following way. Spin(7) is the stabilizer of a Riemannian spinor φ, and the tensor product

φ⊗ φ = 1 + ϕ+ ν ∈ ∧evT ∗,

where ϕ is the Spin(7) 4-form and ν is the volume form of the associated metric. By looking at the Spin(8, 8)
orbit of this differential form we obtain a class of even differential forms which reduce the structure of T ⊕T ∗
to the group Spin(7)×Spin(7). One may then say that such a differential form defines a generalized Spin(7)
structure when it is closed. The question of what this integrability condition implies for the two induced
Spin(7) structures was worked out by F. Witt:
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Theorem [F. Witt] A differential form ρ in the above-mentioned orbit which satisfies dρ = 0 is equivalent
to the following data:

• A Riemannian metric g and 2-form B, and real function Φ,

• Unit spinors φ+, φ− satisfying∇±φ± = 0, where∇± are metric connections with torsion±H (H = dB),
and such that

• (dΦ±H) · φ± = 0.

Just as in the generalized G2 case, we recover a geometry which appears in string theory [3] and which has
no exotic compact examples.

Evolution equation for (generalized) Spin(7) structures

We will now see how it is possible to use the variational approach we developed earlier to produce metrics
with holonomy Spin(7). The starting point is the observation that any hypersurface in a Spin(7) 8-manifold
acquires a reduction to G2, since G2 ⊂ Spin(7) is the stabilizer of a vector (in the spin representation),
which in this case is any normal vector field. Therefore, we will begin with a G2 metric on a 7-manifold M7

and attempt to extend it to a Spin(7) structure on M7 × R. Let t be the coordinate on R so that ∂/∂t is
the vector stabilized by G2 ⊂ Spin(7). Then the 4-form

ϕ = ?ρ+ dt ∧ ρ,

where ρ is an almost G2 3-form on M7 and ? is the Hodge star on M7, has the right algebraic type to define
a reduction to Spin(7) on M7 ×R. The integrability condition on ρ, namely dρ = d ? ρ = 0, is equivalent to
the closure of ϕ so the product is Spin(7).

Now suppose that ρ depends on time. Then the closure of ϕ imposes conditions on how ρ must evolve in
time, which we now derive:

0 = dϕ = dt ∧ ∂(?ρ)
∂t

+ d(?ρ)− dt ∧ dρ.

So, putting σ = ?ρ ∈ Ω4(M7), we have the following evolution equations on a stable 4-form on a 7-dimensional
manifold:

dσ = 0;
∂σ

∂t
= d ? σ

We now show how the evolution of this closed 4-form may be viewed as a gradient flow. Recall that there
is a quadratic form

q(dβ) =
∫
M

dβ ∧ β

on the space of exact 4-forms Ω4
ex(M) in 7 dimensions. Define the affine space

Aa =
{
σ ∈ a ∈ H4(M)

}
,

whose group of translations is Ω4
ex. Hence the tangent space

TAa = Aa × Ω4
ex,

and so, formally, q defines an indefinite metric g on the infinite-dimensional affine space Aa. Using this
metric and the volume functional V , we can define gradient flow for stable forms σ ∈ Aa.

Proposition: The gradient flow of V (σ) for stable σ ∈ Aa defines a Spin(7) metric on M × R.

Proof. The gradient flow equation is given by

g(
∂σ

∂t
, dβ) = DV (dβ) =

∫
M

?σ ∧ dβ.
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By Stokes’ formula and the definition of q, we obtain∫
M

∂σ

∂t
∧ β =

∫
M

d(?σ) ∧ β.

Hence we see that the gradient flow on closed stable 4-forms σ is precisely the equation

∂σ

∂t
= d ? σ,

as required.

This evolution method is particularly useful in the cohomogeneity one case, when it can be used to derive
ODEs whose solution yields metrics with holonomy Spin(7). The procedure is as follows:

• Begin by writing down a basis for the invariant forms in a cohomology class; for example on M = S7,
as we saw before, the (necessarily exact) invariant 4-forms form a 2-dimensional space spanned by

d(α1 ∧ α2 ∧ α3), d(α1ω1 + α2ω2 + α3ω3).

• One must then determine the volume as a nonlinear function on this vector space. This can often be
simplified by using a normal form, identifying a change of basis to map to the normal form, and taking
its determinant.

• Finally, determine the indefinite metric defined by q and write down the gradient flow equation, an
ODE on a finite dimensional space.

In principle, the same procedure holds for evolving a generalized G2 structure into a generalized Spin(7)
structure, since the variational formalism is similar.

T-duality

Another approach to producing examples of generalized geometrical structures is one which uses symmetry
essentially and has its roots in the physics of string theory. A good reference for the subject of T-duality is
the paper [1], and its application to the field of generalized geometry was studied by G. Cavalcanti and M.
Gualtieri.

A basic feature of T-duality is that it deals with geometries which are “twisted by a closed 3-form H”,
which we now explain. Recall that the space of 2-forms acts by isometries on T ⊕T ∗ and via exponentiation
on differential forms via the spin representation. Conjugating the exterior derivative by this transformation,
we obtain

e−BdeB = d+H, H = dB,

known as the twisted de Rham differential. In general, H need not be exact; d+H is a differential for any
closed 3-form H. By replacing d by d+H, we may consider H-twisted versions of all the geometries we have
considered in these lectures, by performing the variational procedure on twisted cohomology classes in

H
ev/od
H (M).

Locally, we are simply conjugating by eB for some 2-form.

T -duality can be performed if one has the following data:

• p : P −→M a principal S1-bundle,

• a connection θ ∈ Ω1(P ) with curvature dθ = F ,

• an S1-invariant closed 3-form H ∈ Ω3(P ) such that [H] ∈ H3(P, 2πZ).
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Once this data is in place, then let X be the vector field generating the S1 action on P . Then

iXH = p∗FT

for some closed 2-form FT such that [FT ] ∈ H2(M, 2πZ). We may therefore interpret this 2-form as the
curvature of a connection θT on a second principal bundle pT : PT −→ M , which we say is “T-dual” to P .
Any S1-invariant differential form ρ on P may be decomposed as

ρ = ρ0 + θρ1,

where ρ0, ρ1 are pulled back from the base. In particular, we can write

H = H0 + θFT .

We may then equip PT with an invariant 3-form as well, by defining

HT = H0 + θTF.

Note that dHT = dH0 + FTF = dH = 0.
The idea of T-duality is that we may transform S1-invariant geometrical structures from P to PT and

back. The important observation along these lines is the following:

T-duality transform: The invariant from ρ0 + θρ1 is dH -closed on P if and only if the invariant form
ρ1 − θT ρ0 is dHT -closed on PT .

Note that the parity of the form has been switched under this transformation. In fact, this transformation
can be viewed in terms of the Clifford action of T ⊕ T ∗ on forms, since

(X − θ) · ρ0 + θρ1 = ρ1 − θρ0.

Because (X − θ)2 = −iXθ = −1, we see that X − θ is the Clifford algebra element representing reflection in
the direction X − θ. In particular, it determines an orthogonal, orientation-reversing map of T ⊕ T ∗. From
this point of view, T-duality is interpreted as an orthogonal isomorphism

T ⊕ T ∗(P )/S1 ∼= T ⊕ T ∗(PT )/S1.

Because of this, any invariant structure on P defined by an SO(n, n) orbit maps to a similar structure for
PT . For example, given a generalized G2 structure ρ such that

dHρ = 0, dH ρ̂ = 0,

the transform above produces a generalized G2 structure ρT on PT satisfying

dHT ρT = 0, dHT ρ̂T = 0.

Using this, one could start with a usual G2 metric with S1 symmetry, and produce a generalized G2 metric
on the T-dual, in a quite explicit and straightforward way.

To illustrate the ability of T-duality to produce interesting examples, let us work out an example of
T-duality between 4-dimensional generalized Calabi-Yau metrics.

T-duality for 4-dimensional generalized Calabi-Yau metrics

We saw in the previous lecture that an even generalized Calabi-Yau structure in 4 dimensions is a hyperkähler
manifold transformed by a B-field.

The case of an odd generalized Calabi-Yau is different, of course, although the same equations

〈ρi, ρj〉 = δijν
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must be satisfied. Locally, we obtain the expression

ρi = eB(dxi + V ? dxi),

where ? is the Euclidean Hodge star. The ρi are closed if and only if

dxi + V ? dxi

is dH -closed, for H = dB, yielding equations

d(V ? dxi) +H ∧ dxi = 0,

i.e. H = − ? dV . since H is closed, this means V must be harmonic:

∆V = 0.

Suppose one wishes to find an S1-invariant hyperkähler metric. Then by T-duality, one could try to find
an S1-invariant odd generalized Calabi-Yau metric and then transform it back to obtain an even one, i.e. a
hyperkähler metric, possibly with a B-field. We now implement this strategy.

Suppose that V depends only on the first three variables, and that we impose periodic boundary conditions
on x4 = t so that we are now on a trivial S1-bundle P = R3 × S1 with trivial connection 1-form θ = dt and
hence F = 0. Then let H = dt∧?3dV , so that FT = i∂t

H = ?3dV and HT = θTF = 0. The odd generalized
Calabi-Yau is determined by forms

ρ1 = dx1 + V dt ∧ ?3dx1 = dx1 + V θ ∧ dx2 ∧ dx3, etc.,

which are transformed by T-duality to forms

ρT1 = V dx2dx3 − θdx1, etc.

on a nontrivial S1-bundle PT with curvature FT = ?3dV and connection form θT . These define a metric

g = V (dx2
1 + dx2

2 + dx2
3) + V −1(θT )2,

which is precisely the Gibbons-Hawking ansatz for S1-invariant hyperkähler metrics. In this way, we see
that T-duality can be used to produce quite interesting examples out of structures which at first glance seem
rather trivial.
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[6] Merkulov, S. and Schwachhöfer, L. Classification of irreducible holonomies of torsion-free affine con-
nections (1999) math.DG/9907206.

[7] Wilson, P. Sectional curvatures of Kähler moduli.(2003) math.AG/0307260.

22


