Inverses

The inverse of a map f; X -> Y is a map If f has an inverse, we usually denote it by f⁻¹ Q.; which of these maps has an inverse, and what is it? a) $\frac{1}{2} + \frac{1}{2}$ b) $\frac{1}{2} + \frac{1}{2}$ c) $\frac{1}{2} + \frac{1}{2}$ 3 + 3 Q.: Give an example of a non-invertible map Q: Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be such that $g \circ f = I_X$. Does it follow that fog=1y ? Why? Q: Let f:X->Y and g:Y->X be sit. fog=ly, Under what condition on f could we prove gof=lx? Q.: Prove that f is invertible if and only if it is a bijection. The bijections from a set X to itself are very special: they form a group (a "permutation" group if X finite) and are therefore sometimes called "Symmetries" of X.

$$S_{x} = (B_{ij}(X, X), \tilde{J}_{x})$$
 identity The symmetry group of X.

How to construct sets

Subsets: Given a set Y, a subset
$$X = Y$$
 is a
set comprised of some of the objects in Y. That is,
every element of X is also an element of Y.
we can think of X as the set of elements of Y
satisfying some constraints:
 $X = \{n \in \mathbb{Z} : n \text{ is odd and } i \leq n \leq G\}$
 $X = \{1,3,5\}$ a set of three elements.
note that if $f: Y \rightarrow \mathbb{Z}$ is a map and $X \equiv Y$
If $f: Y \rightarrow \mathbb{Z}$ then the restriction of f to $X \equiv Y$
is the map $f|_X: X \longrightarrow \mathbb{Z}$
 $x \mapsto f(X)$
You should be familiar with the basic operations on
subsets: if X_1, X_2 are subsets of Y then
 $X_1 \cup X_2 = \{x \in Y: x \in X_1 \text{ or } z \in X_2\}$

•
$$X_1 \cap X_2 = \{x \in Y : x \in X_1 \text{ and } x \in X_2\}$$

INTERSECTION

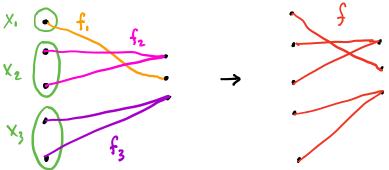
using these we can create many sets.

The Power Set $\mathcal{P}(X)$ of X is the set of all subsets of X.

Disjoint subsets: Subsets
$$X_{1}, X_{2}$$
 of Y are disjoint
when $X_{1} \cap X_{2} = 0$.

Partitions
If
$$X_{1},...,X_{k}$$
 are pairwise disjoint nonempty subsets of Y and
 $Y = X_{1} \cup \cdots \cup X_{k}$, we say $\{X_{1},...,X_{k}\}$ is a Partition of Y

Q.i. List all partitions of
$$\{1,2,3,4\}$$
.
Building a map from pieces
Let $\{X_1,...,X_k\}$ be a partition of Y_1 and
let $f_i: X_i \rightarrow Z$ be a map for each $i \in \{1,...,k\}$.
then we can define a map $f: Y \longrightarrow Z$ as follows
For each $y \in Y$, there is a unique X_i containing it.
Then define $f(y) = f_i(y)$.
 $f = \bigcup_{i=1}^{k} f_i$



Preimages
Fix a map
$$f: Y \rightarrow Z$$
. The image (or range)
of f is $f(Y) \subseteq Z$, where
 $f(Y) = \{f(e_f): y \in Y\}$.
Thuraisalso the idea of Preimage (or inverse image)
For any $Z \in Z$, its Preimage is
 $f^{-1}(Z) = \{Y \in Y : f(Y) = Z\}$
Ex.!
 $i = 1 - im(f) = \{2,3\}$
 $i = 1 - im(f) = \{2,3\}$
 $i = 1 - im(f) = \{2,3\}$
 $i = 1 - im(f) = \{2,3\}$

Theorem: Any map
$$f: Y \rightarrow Z$$
 determines
• Image subset: $Im(f) \subseteq Z$
• Partition of $Y: \{ S^{-1}(z) : z \in Im(f) \}$.
(labeled by Im(f))
and these data suffice to reconstruct the map:
we simply let $f_{\chi}: f^{-1}(z) \longrightarrow Z$ be constant,
with value Z.

The standard set of n elements Fix ne {1,2,...} a natural number The standard set of size n is B_= {1,2,...,n} Q.: How many maps are there Bm -> Bn ? Instead of writing a map f: B3 -> By as a diagram $f: \frac{2}{3}$ by drawing the graph we could capture the information $Graph(f) = \{(1,2), (2,4), (3,1)\}$ In other words, f can be described as 4×3 grid where entries are either in the graph or not. Equivalently, it is a 4x3 grid of 0's and 1's where each column has exactly one 1.