The Gaussian Elimination algorithm.

Input: A list of vectors
$$(v_1, ..., v_R)$$
 in V and a
basis $(e_1, ..., e_n)$ of V.
We can write input data as follows:
$$\begin{cases} v_1 = a_{11}e_1 + ... + a_{nn}e_n \\ \vdots \\ v_k = a_{k1}e_1 + ... + a_{kn}e_n \end{cases}$$

The purpose of GE is to make it easy to understand span (VI,..., VK). Can easily answer questions like

- · Is (V1,..., VK) linearly independent?
- · What is dim Span (Vij..., Vie) ?
- · find a basis for span (Vig..., Vie)
- 15 Span (V1,..., VK) = Span (U1,..., UE)?
- Solving systems of (in) homogeneous linear equations.

Elementary Row Operations:

- GE proceeds by successively applying one of three basic transformations:
- 1) switching: $(v_{1,...,}, v_{i_{3},...,}v_{k}) \xrightarrow{R_{i}\leftrightarrow R_{j}} (v_{1,...,}, v_{j_{3},...,}v_{k})$ 2) scaling $\lambda \neq 0$ $(v_{1,...,}, v_{i_{3},...,}v_{k}) \xrightarrow{R_{i}\rightarrow \lambda R_{i}} (v_{1,...,\lambda v_{i_{1}}...,v_{k})$ 3) shearing $(v_{1,...,v_{i_{3}}...,v_{i_{3}}...,v_{k}) \xrightarrow{H\rightarrow} (v_{1,...,\lambda v_{i_{1}}...,v_{k})$

Each operation is reversible and does not change the span. Since we are changings the list of vectors, the matrix will change by switching, scaling, or shearing the <u>rows</u>. Obtaining the RE form: "Forward pass"

• If any other vector
$$V_m$$
 has
nonzero A_{mi} , shear it, replacing (shear)
 V_m by $V_m - A_{mi} (A_{ei}^{-1} V_i)$
 $\int \tilde{V}_i = (A_{ei})^{-1} V_e$

$$otest of Step 1 : \begin{cases} V_e = V_1 - (a_{1i} a_{ei}) V_e \\ V_m = V_m - (a_{mi} a_{ei}) V_e , m \neq 1, e \end{cases}$$

$$otest matrix : \begin{bmatrix} 1 & * - & * \\ 0 & 1 & 1 \\ * & - & * \end{bmatrix}$$

Step
$$j$$
: Let $(\tilde{v}_1, ..., \tilde{v}_k)$ be the output of
step $j-1$. Repeat the above process
with the list $(\tilde{v}_j, ..., \tilde{v}_k)$

After k steps, the algorithm arrives at
the RE form. To get the RRE form,
we simply shear off entries above the edilon
RE-> RRE: "Backward Pass"
Let
$$(V_{13}...,V_{k})$$
 be a list in RE form.
Step 1: Let e be the echelon position of V_{K} .
Use V_{K} to shear all of $V_{13}...,V_{K-1}$
so that their coefficient in position e is=0
 $v_{1} = V_{1} - Q_{1e} V_{K}$
 \vdots
 $V_{K-1} = V_{K-1} - Q_{K-1}e V_{K}$
 $v_{K} = V_{K}$
Step 2: Use V_{K-1} to shear $V_{13}...,V_{K-2}$
in same array and so on.
after K steps, this terminates in RRE form.