Sets A set is a collection of objects viewed as an object 1- its own right-It an object x is contained in the set S element of S" "x is wh $x \in S$ $() \ \phi \quad \text{the empty set.}$ $E_{X::} \quad P = \{R, G, B\} \quad a$ a set of three letters. $= \{ G, B, R \}$ $= \{R,R,B,G,B\}.$ the set of integers. 3Q = {P/q : PEZ, gEZ \ {o} } (4) R, C the real or complex numbers.

A set is finite when it has a finite number of elements. This number S € {0, 1, 2, ··· } is called the "cardinality" of S. Maps between sets CODOMAIN SET DOMAIN SET A map from set X to set Y assigns to each se EX an element f(x) & Y Х - , , Х $x \longmapsto f(x)$

Ex: (1) A colour in the RGB system
is a map
$\mathcal{P} = \{\mathcal{R}, \mathcal{G}, \mathcal{B}\} \longrightarrow \{\mathcal{O}, \mathcal{I}, \dots, \mathcal{I}\}$
white: $R \longrightarrow 255$ $G \longleftrightarrow 255$ $B \longleftarrow 255$
red: $R \longrightarrow 255$ $G \longmapsto 0$ $R \longmapsto 0$ $R \longmapsto 0$ F
2) You studied maps R -> R
Such as $f(x) = x^2 + x$ f(x) =
graphing:
"functions" codemain = numbers
R. R

-> { 1, 2, 3 } Ex. Bijections $\{1, 2, 3, \}$ Identity map 2 $| \sim \rightarrow$ 3 3 3 $3 \rightarrow 3$ 3 ----- 3 2 2 2 3 3 3 $\begin{array}{c|c} 2 \\ 2 \\ 3 \\ 3 \\ \end{array} \begin{array}{c} 2 \\ 3 \\ 3 \\ \end{array} \begin{array}{c} 2 \\ 2 \\ 3 \\ 3 \\ \end{array} \begin{array}{c} 2 \\ 3 \\ 3 \\ \end{array}$ · { 1,2,3} {1,2,3} -6 possible bijections Ex.; When Domain = Codomain of f $f:X \longrightarrow X$ there is a specific map called The (dentity map $1d_X = I_X$ ¥ x e X $Id_X: X \longmapsto X$

Composition of Maps (Definition) The composition of $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ (defined only if codom(f) = dom(g)) is a map $(g \circ f) : X \longrightarrow Z$ which takes $x \in X$ to $g(f(x)) \in Z$. fog undefined X + Y - g > Z gof gof gof $\overset{\text{f}}{\subset} X \overset{\text{f}}{\underset{g}{\sim}} X \overset{\text{f}}{\overset{\text{f}}{\sim}} X$ εχ.'. $\begin{array}{cccc} x & \xrightarrow{\gamma} & \gamma & \xrightarrow{\gamma} & \xrightarrow{\gamma}$ Prove that Q.: composition is Associative $\begin{array}{ccc} f & g & h \\ S \longrightarrow T \longrightarrow \mathcal{U} \longrightarrow \mathcal{V} \end{array}$ i.e. foc maps Assoc. $h \circ (g \circ f) = (h \circ g) \circ f$ map Law At this point, we have <u>Sets</u> Maps between sets, and Composition of Maps Category of Sets

Deliberate confusion $Z \stackrel{g}{\leftarrow} Y \stackrel{f}{\leftarrow} X$ phrists: draw in revense. goff Inverses of maps: the inverse of a map f: X -> Y is, by defn: a map $g: Y \rightarrow X$ s.t . $\begin{cases} g \cdot f = T_X \end{cases}$ $\left(\pm\frac{1}{5}\right)$ $\int f \circ g = I_{Y}$ but if it does, we call it f⁻¹ a map f may not have an inverse f⁻¹ f 2 2 3 $\begin{array}{c}1\\1\\2\\3\\3\\3\\3\end{array}$ has inverse The bijections from a set X to itself Bij(X,X) is a very special set of maps: any two of them may be composed to give a third, gives an associative multiplication on Bij (X,X)

Bij(X,X) contains a special element IX which acts as multiplicative identity every element in Bij(X,X) has an inverse. $\Rightarrow (Bij(X,X), \circ, T_X)$ is a group culled Sx the permutations of symmetries Binary operation on set X of the set X. $\begin{array}{ccc} X \times X & \xrightarrow{m} & X \\ (a, b) & \longmapsto & m(a,b) = a \cdot b \end{array}$ F $\begin{array}{c}1\\2\\3\\3\\3\\3\end{array}$ 67 ٩

Subsets

Defn: Given a set Y, a subset $X \subseteq Y$ is a set comprising some (possibly none, or all) of the elements of Y. as the elements of Y satisfying some constraint-set of integers such that $X = \{ n \in \mathbb{Z} : n \text{ is odd} \text{ and } 1 \leq n \leq 6 \}$ can think of X E<u>x:</u> Z $X \in \mathbb{Z}$ = {1,3,5} If Y + Z and X = Y then the restriction of f to X is a map $X \xrightarrow{f|_{X}} Z$ $x \longrightarrow f(x)$ About Subsets: The set of all subsets of X is called $\mathcal{B}(X)$, the Power set of X. $\mathcal{P}(\{R, \zeta \in S\}) = \{\phi, \{R, \zeta, S\}, \{R\}, \{R\}, \{S\}\}, \{R, G\}, \{R$ {R, B}, {G, B} } set of cardinulity

 $X \in Y_{n}$ Basic operations on subsets $x \in X, \text{ or } x \in X_2$ $\chi_1 \cup \chi_2$ union of subsets $x \in X_1$ and $x \in X_2$ = { x e Y $X_1 \cap X_2$ intersection of subsuts Both of these are on $\mathcal{P}(Y)$. Binary operations Subsets coming from a map f: X -> Y Def": The Image of f, Im(f), is the subset of Y defined by] XEX with f(x)=y) $Imf = \xi y \in Y$:

 $f: X \longrightarrow Y$ and Defn: If we fix an element yEY then its PRE(MAGE is $f^{-1}(y) = \{x \in X \text{ s.t. } f(x) = y\}$ $f_{1}^{(1)} = f_{1}^{(1)} =$ <u>(</u>. n a a a a a X this means that for each yEY we get a subset $f^{-1}(y) \in X$. this defines a Partition of domain into subsets labeled by the elements of Imf.

given a map $f: X \rightarrow Y$, we obtain: (1) $lmf = \{y \in Y : \exists x \in X \text{ with } y = f(x)\}$. $\leq Y$ 2 Partition of X into preimages: Partition of X labeled by Imf. $P = \left\{ f^{-1}(v_{\theta}) : v_{\theta} \in \operatorname{Im} f^{\prime} \right\}$ Note: (1) There is a natural map from $X \xrightarrow{\pi} P$ $x \xrightarrow{\mu} f^{-}(f(x))$ X to P surjective! $P \rightarrow Imf$ 2) There is a natural map. f^{-'}(y) → y Bijection $(p \xrightarrow{j} \gamma)$ 2) There is a natural map $f'(y) \mapsto y$ Injectin 3) If we compose, we get x +> f(x) ! $X \xrightarrow{\pi} P \xrightarrow{j} Y$ f = joit Factorization of f into a surjection followed by injection

Prop: Any map f: X→Y may be factorized T surjective and j injective. f=joTT ė -T surjective. p={K, , X2, X3} $\left(\begin{array}{c} A & (H) \text{ and } (only if B) \\ B \Rightarrow A & A \Rightarrow B \end{array}\right)$ $A \Leftrightarrow B$

Explicit description of maps
The standard set of n elements n=0,1,2,
$B_n = \{1, 2, 3,, n\}$ $B_o = \phi$.
Instead of writing a map Bm -> Bn as follows
$\int \frac{1}{2\pi i r} \frac$
ve con encode j est follow , as a graph.
4×3 [100] grid
$\frac{2}{3}$
[f] matrix rep. Cod of map
$f: B_3 \longrightarrow B_4$
the representation of f as
a 4×3 matrix uses
the fact that Bn has a preferred order.
(we put the domain and codomain in specific
order on graph)
Note: permute codomain => permute rows
permite domain =) permute columns

Cartesian Product given sets X Y, their (Cartesian) product XXY is defined as follows XEX and yEY } $X \star Y = \{(x,y):$ ordered pair. (list of length $(1,2) \neq (2,1)$ $\{1,2\} = \{2,1\}$ 2) $P = \{R, G, B\}$ eg. (1, 0, 0), (2, 0) $\{(1,R),(2,R),$ B2×P (i, B), (2, B)Similarly of X, ..., Xx are sets $X_{x} X_{z} \times \cdots \times X_{k} = \{(x_{i}, \cdots, x_{k}) : x_{i} \in X_{i} \forall i \}$ X. k-tuple or list of TTX;length k $\hat{i} = 1$ Special case XX...x X = Xk

of a map The graph Def: is the subset f: X-1Y $\Gamma_f = \{(x, y) \in X \times Y\}$ y = f(x)(x2) (x2) Graph (f) $(x_{3},f(x_{3}))$ X, X₂ 2 1/2 Dom

Bz Bz B, $\{1\} \longrightarrow \{1, 2\}$ ⇒ {1,2} surjective R² = R×IR×IR.(2,4) (R×R) = (R²) notation AT S , COP = R oduet. Ĺ DOM=R F R ١K-

Technically, a map										f		X	<u> </u>	Ŷ		MO	") ")	be	d	le f	ine	d			ter	m	5 ó	fi	its	Ĵ	ہ می	oh:
	Alternate definition: a sa														a map $f: X \rightarrow Y$ is a subset Γ_{f} of $X \times Y$ satisfying the "vertical line test", i.e. $\forall x \in X, \exists ! y \in Y$ such that $(x,y) \in \Gamma_{f}$ for all there exists a unique																	
Q.;		Does there exist				;t		e Q	•	map			J	from			the		empty		5	set		to		itself		?				
· · ·	• •	•	•	•	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·	•	•	•	•	•	•	•	· ·	•	•	•	•	· ·
••••	•••	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	0	•••	0	•	•	•	•••
	· ·	•	•	•	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	· ·	•	•	•	•	· ·
· · ·	• •	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	• •	•	•	•	•	• •
· · ·	••••	•	•	•	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	· ·	•	•	•	•	· ·
· · ·		•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	0	•••	•	•	•	•	• •
••••		•	•	•	••••	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	o o o	· ·	•	•	•	•	• •
		•	•	•	•••	•	•	•	•		•	•	•	•	•	•	•	•	• •		•	•		•	•	0	• •	•	•	•	•	• •
		•		•	• •	•			•	•	•	•	•	•	•	•	•	•	• •			•	•	•			• •		•	•	•	• •

Let f, g be maps Bm -> Bn Def : $f \sim q$ "f is similar to q" when we can find relabelings &, B of Cod, Dom dogoß =f st. j j 6 . 8 xogoB=f ---β g d Xog·β=f ~ is an example of an Note: EQUIVALENCE RELATION on a set S i) X~X ¥ X E S Reflexive ii) x~y (> y~x ¥ (x,y) e S×S Symmetric iii) if X~y and y~z then X~Z V(X,Y,Z) e S Transitive (EQUIVALENCE relations as partitions () Q: prove that similarity of maps relation an equivalence ۲۲

& -> row permutat B → column perhytetion codomain pelabeliz 123456 1 2 3 4 5 6 123456 1 11000 1 00010 1 00001 1 000001 4 000000 000000 100000 001011 010100 001011 100000 000000 Cop . 4×6 matrix M(xof) M(xofoB) M(f)d of o B partition of domain Thm: by relabeling dom a cod, any map Bm -> Bn is similar to one in standard form: $m_1 > m_2 > \cdots > m_k$ $N = \begin{bmatrix} 1 & \cdots & 1 \\ m_1 & \cdots & 1 \\ m_n & m_n & \cdots \\ 0 & m_n & \cdots \\ 0 & \cdots & \cdots$ m,+--+ m, = m is a partition. of domain.

Special case: Bijections from X to itself e.g. B, -> Bn Labeling a self-map: once ne choose a labeling of the domain A B C C C i.e. $(\alpha : \{A, B, C\} \rightarrow B_3)$ bijection "labeling" this automatically gives a label for codomain !! i.e. we do not have two indep. droices of (abeling! {A, B, C} = S (less freedom). d · f · d $B_3 \leftarrow S \xrightarrow{\alpha} S \xrightarrow{\alpha} B_3$ we obtain 50, by choosing labeling a: 5- B3 the map dofod': B3 - B3 If we relabel, this takes effect "afat" . on both dom & cod.

cannot relabel to obtain 20072 unless we allow independent relability of DOM + CODOMAIN. two equivalence relations () for maps $f: X \to Y$ say f, f' are similar when $\exists \alpha : Y \xrightarrow{\cong} Y$ and $\beta : X \xrightarrow{\cong} X$ with $f' = \alpha \circ f \circ \beta$. (2) for maps $f: X \longrightarrow X$ say f, f' are conjugate if $f \neq \alpha: X \xrightarrow{\cong} X$ s.t. f = xofod-

 $B_n \rightarrow B_n$ up to conjugation Classify Bijections 1) A fixed point of x e X $f: X \rightarrow X$ Ίs with f(x) = x① A cycle of f: X→ X is a subset S⊆X of the form $S = \{x, f(x), f(f(x)), \dots \}$ is a fixed at f(2)=2Ex: $\{1, 3=f(1), 4=f(3)\}$ cycle of length 3. $x \longrightarrow 1$ f(x) $\longmapsto 2$ K + >125 in a cycle, can label s cycle Zf f y en 3 f $f^{k}(x) \longmapsto k+1$

has a cycle labeled $\xrightarrow{}$ as above f = (123)(456)(78) $B_k \rightarrow B_k$ If f s k M(f) Classification : Any bijective self-map decomposes into cyclic parts. (cycle of leigth 1 fixed pt). This is why elements of the group Sn = Bij (Bn, Bn) are usually written in "Cycle notation" $\frac{1}{2}$ $\xrightarrow{2}$ $\xrightarrow{2}$ $\xrightarrow{3}$ (123)''2 /2 (1234) ن<u>ب</u> بر ج (23) (23) 3 × 3 × 4