c) Consider
$$S^2 = \begin{cases} x = (x^1, x^2, x^3) \in \mathbb{R}^3 : |x|^2 = 1 \end{cases}$$

Then its tangent bindle may be written as follows:
 $TS^2 = \begin{cases} (x, y) \in \mathbb{R}^3 : |x|^2 = 1 \text{ and } x \cdot y = 0 \end{cases}$
We can identify TS^2 with $T^* S^2$ by using the
inner product : (x_1y) defines a linear form on
 $T_x S^2$ via $(x,y)((x, y')) = y \cdot y'$.
Now use $(q', q^2) = (x', x^2)$ as coordinates
on the sphere (away from $x^3 = 0$).
Determine the canonically conjugate homesta
 (p_1, p_2) as a function of $(x, y) \in TS^2 = T^*S^2$.

d) write the Spherical Pendulum Hamiltonian

$$H = \frac{1}{2} (y_1^2 + y_2^2 + y_3^2) + \chi_3$$
in terms of the coorda $(q_1^2, q_2^2, P_1)P_2)$

$$H = \frac{1}{2}p^2 + \frac{1}{2}x^2$$

Now modify the system by adding a perturbation

$$H(\varepsilon) = \frac{1}{2}p^{2} + \frac{1}{2}\chi^{2} + \varepsilon\chi^{3} \qquad (-\frac{1}{2})^{2}$$

for $\varepsilon > 0$ in some interval about $0 \in \mathbb{R}$.

1. For which evergies are there still bound states i.e. trajectories which remain in a bounded region in phase space? Draw a phase portrait.

2. Calculate the 1st nonsens order correction to the amplitude of the H=1 trajectory.

$$\langle u, v \rangle = \overline{u}^T v = \sum_{i=1}^{n} \overline{u}_i v_i$$

Let T be a linear operator on
$$V = C^n$$
, and let
 $W = V$ be a T-stable subspace, i.e. $TW = W$.
Show that $T^*W^\perp \subseteq W^\perp$, where
i) $W^\perp = \{u \in V : \langle u, w \rangle = 0 \forall w \in W\}$
a) T^* is defined by
 $\langle T^*u, v \rangle = \langle u, Tv \rangle$.