
Quantum Mechanics, Assignment 4 Due date: March 22, 2020

Reading: Woit Chapter 21.1, 21.3, Chapter 22.1, 22.2
The main aim of this assignment is to build on the material on Hilbert spaces from Assignment

3 to explain the kinds of operators which occur in quantum mechanics. The key idea is that of
self-adjointness.

1. Facts about Sobolev spaces
The Sobolev space of order n is a generalization of L2; it is the Hilbert space of complex-valued
functions all of whose derivatives up to and including n are in L2.

Hn(R) = {ψ ∈ L2(R) | ψ′, ψ′′, . . . , ψ(n) ∈ L2(R)}

The inner product making this into a Hilbert space is

〈ψ1, ψ2〉Hn =
n∑
k=1

〈ψ(k)
1 , ψ

(k)
2 〉.

So, although Hn is a proper linear subspace of L2, the inner product which makes it into a Hilbert
space is different from the L2 norm. In fact, Hn is not closed as a subspace of L2, but is actually
dense. The Sobolev spaces have a very nice description in terms of the Fourier transform F(ψ) = ψ̂:

ψ ∈ Hn(R)⇔
∫
R
(1 + |k|2)n|ψ̂(k)|2dk <∞.

All of this also holds for functions on S1, and we have a similar characterization in terms of the
Fourier transform F(ψ) = (ak)k∈Z ∈ `2(Z):

ψ ∈ Hn(S1)⇔
∑
k∈Z

(1 + |k|2)n|ak|2 <∞.

The remarkable lemma of Sobolev then states that if ψ ∈ Hn on a bounded interval (or on the
circle), then ψ is automatically n− 1-times continuously differentiable; furthermore the pointwise
norm of these derivatives is bounded above by the Sobolev norm of ψ. For example, if ψ ∈ H1(S1),
then it is automatically a continuous function, whose value at any point may not exceed 〈ψ, ψ〉H1 .

2. Facts about self-adjointness
An operator on the Hilbert space H is a pair (A,D(A)) (usually denoted just A) where D(A) ⊂ H
is a dense linear subspace and A : D(A)→ H is a linear map. An extension Ã of A is an operator
such that D(A) ⊂ D(Ã) and which agrees with A on D(A).

Definition 1. Let A be an operator onH. The adjoint A∗ is the operator with domain D(A∗) ⊂ H
given by

D(A∗) = {y ∈ H | there is a z ∈ H with 〈Ax, y〉 = 〈x, z〉 for all x ∈ D(A)}.

If y ∈ D(A∗), we define A∗y = z, where z is the unique element such that 〈Ax, y〉 = 〈x, z〉 for all
x ∈ D(A). Finally, We say that the operator A is self-adjoint when it coincides with A∗, meaning
that D(A) = D(A∗) and on this subspace A = A∗.
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Exercise 1. When an operator A satisfies 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ D(A) ⊂ H, we say that
it is symmetric. Show that A is symmetric if and only if A∗ is an extension of A.

Exercise 2. Let A = −i d
dθ

, the differentiation operator on H = L2(S1).

1. Apply A to the Fourier basis and, using the above facts, show that A is not defined on all of
L2 (give an example of an L2 function which must not lie in the domain of A)

2. Show that the largest possible domain of A must be H1(S1) ⊂ L2(S1), and define A on this
domain [use the Fourier transform again].

3. Compute the adjoint of A by first determining D(A∗) and then defining A∗. Conclude by
establishing that A is self-adjoint.

4. How is the above affected if we consider the differential operator A2? Is A2 also self-adjoint?

Exercise 3. Let v : S1 → R be a real-valued function and let V : ψ 7→ vψ be the operator on
H = L2(S1) defined by multiplication by v.

1. If v is a continuous function on the circle, prove that V is a bounded operator defined on
all of H, that is D(V ) = H and there exists M ∈ R positive such that for all ψ ∈ H,
||V ψ|| ≤M ||ψ||.

2. Let v = 1/ sin θ, a function with singularities at θ = 0 and θ = π. Show that V is self-adjoint
if we take D(V ) to be all functions ψ such that ψ/ sin θ ∈ L2(S1).

Exercise 4. For this exercise, we work in H = L2([0, 1]), the square-integrable complex-valued
functions on the interval [0, 1]. The Sobolev spaces Hn([0, 1]) are defined exactly as for the real
line, and we have the following useful description of them. A test function is any smooth function
on [0, 1] which vanishes outside some sub-interval [ε, 1− ε] for ε > 0. In particular, test functions
and all their derivatives vanish at the endpoints of [0, 1]. A function f in L2([0, 1]) is said to have
weak derivative g when, for all test functions φ, we have∫ 1

0

gφ dx = −
∫ 1

0

fφ′ dx.

(Certainly if f were smooth, then g = f ′ satisfies the above equation, by integration by parts.) In
fact, the Sobolev space Hn([0, 1]) consists of the functions in L2 with n weak derivatives in L2.

Now consider the operator Aψ = ψ′′, the second derivative operator.

1. First take the domain of A to be D0 = H2([0, 1]), the maximal possible domain. Prove that
for f, g ∈ D0,

〈Af, g〉 − 〈f, Ag〉 = (f ′(1)g(1)− f(1)g′(1))− (f ′(0)g(0)− f(0)g′(0))

Conclude that A is not symmetric if we take D(A) = D0.

2. Now take the domain of A to be D1 = {f ∈ H2([0, 1]) | f(0) = f(1) = 0}.
Using the above characterization of the Sobolev spaces, the fact that test functions lie in D1,
and the first part of this exercise to prove that (A,D1) is a self-adjoint operator.


