
Quantum Mechanics, Assignment 5 Due date: April 6, 2020

Reading: Woit Chapter 22

Exercise 1. Recall that the 1-dimensional harmonic oscillator is the quantum system where H =
L2(R) and H = 1

2
(P 2 + Q2). We saw that H has a 1-dimensional space of ground states (lowest-

eigenvalue states) generated by the eigenvector

|0〉 = π−1/4e−q
2/2

with eigenvalue 1/2, and that by applying the raising operator a∗ = 2−1/2(Q − iP ) we produce a
sequence of states

|n+ 1〉 = (n+ 1)−1/2a∗ |n〉 , n = 0, 1, 2, . . .

such that |n〉 has eigenvalue En = n+ 1/2.
Prove that any eigenstate of H must lie in one of the eigenspaces listed above.

Exercise 2. Consider the 3-d harmonic oscillator, with H = L2(R3) and Hamiltonian

H = 1
2
(P 2

1 + P 2
2 + P 2

3 ) + 1
2
(Q2

1 +Q2
2 +Q2

3).

1. What are the eigenvalues of H?

2. Describe an explicit basis of eigenvectors for the eigenspaces corresponding to the three lowest
eigenvalues.

3. The rotation group SO(3) acts on L2(R3) and the Lie algebra generators l1, l2, l3 are sent by
this representation to
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∂

∂q3

− q3
∂

∂q2
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∂

∂q1

− q1
∂
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∂
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∂
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)

As a result, we may express the corresponding self-adjoint operators, known as the angular
momentum operators, Li = iπ′(li) in terms of the linear momenta and position operators,
that is,

L1 = Q2P3 −Q3P2 L2 = Q3P1 −Q1P3 L3 = Q1P2 −Q2P1

Determine whether the angular momentum obserables are conserved in this system.

4. What does the previous result imply about the action of SO(3) on the states found in question
2. Which irreducible representations occur?

Exercise 3. The perturbative series F̂ ∈ C[[ε]] which describes the function

F (ε) =

∫
exp(−1

2
ax2 + εx3/3!)∫

exp(−1
2
ax2)

may be described as follows:

F̂ (ε) =
∑

Γ

1

|Aut(Γ)|
a−eεv,
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where the sum is over all possible trivalent graphs Γ with e edges and v vertices, and Aut(Γ) is
the symmetry group of the graph. Also, the empty graph is assigned 1.

To be precise: divide each edge of the graph into two half-edges. Then the graph may be
viewed (in fact is defined) as a collection of half-edges together with two partitions: the partition
into sets of size 2 called edges, and the partition into sets of size 3 called vertices. A symmetry of
the graph is a bijection from the half-edges to themselves which preserves the two partitions.

Note that there are no trivalent graphs with only 1 vertex. So the power series must begin with
1 + cε2 + · · · for some constant c. We saw in class that there are two trivalent graphs with two
vertices: the theta-graph (shaped like the letter θ) and the dumbbell graph (shaped like O—O).
These graphs have symmetry group of size 12 (permute 3 edges or 2 vertices) and 8 (flip each of
the 3 edges independently), respectively. So we see that up to the ε2 term we have

F̂ (ε) = 1 + 1
12
a−3ε2 + 1

8
a−3ε2 + · · · .

Compute F̂ (ε) to the next order in perturbation theory – the coefficient of ε3 is zero, so
determine the coefficient of ε4. In particular, you must find all trivalent graphs with exactly four
vertices and study their automorphisms.

Mega Bonus: make a numerical comparison between F (ε) and its asymptotic expansion (for
a = 1, say): you can define F (ε) (for ε chosen generically, not necessarily on the real axis) by
integrating along the path of steepest descent of Re(−x2/2 + εx3/3!), or in other words along the
path given by Im(−x2/2 + εx3/3!) = 0.


