
1 Manifolds
A manifold is a space which looks like Rn at small scales (i.e. “locally”),
but which may be very different from this at large scales (i.e. “globally”).
In other words, manifolds are made by gluing pieces of Rn together to
make a more complicated whole. We want to make this precise.

1.1 Topological manifolds
Definition 1.1. A real, n-dimensional topological manifold is a Hausdorff,
second countable topological space which is locally homeomorphic to Rn.

“Locally homeomorphic to Rn” simply means that each point p has
an open neighbourhood U for which we can find a homeomorphism ϕ :
U −→ V to an open subset V ⊂ Rn. Such a homeomorphism ϕ is called a
coordinate chart around p. A collection of charts which cover the manifold
is called an atlas.

We now give examples of topological manifolds. The simplest is, tech-
nically, the empty set. Then we have a countable set of points (with the
discrete topology), and Rn itself, but there are more:
Example 1.2 (open subsets). Any open subset U ⊂ M of a topological
manifold is also a topological manifold, where the charts are simply re-
strictions ϕ|U of charts ϕ for M . For instance, the real n × n matrices
Mat(n,R) form a vector space isomorphic to Rn

2
, and contain an open

subset
GL(n,R) = {A ∈ Mat(n,R) : detA 6= 0}, (1)

known as the general linear group, which is a topological manifold.
Example 1.3 (Circle). The circle is defined as the subspace of unit vec-
tors in R2:

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
Let N = (0, 1) be the north pole and let S = (0,−1) be the south pole
in Sn. Then we may write Sn as the union Sn = UN ∪ US , where UN =
Sn\{S} and US = Sn\{N} are equipped with coordinate charts ϕN , ϕS
into Rn, given by the “stereographic projections” from the points S,N
respectively

ϕN : (x, y) 7→ (1 + y)−1x, (2)
ϕS : (x, y) 7→ (1− y)−1x. (3)

By taking products of coordinate charts, we obtain charts for the
Cartesian product of manifolds. Hence the Cartesian product of mani-
folds is a manifold.
Example 1.4 (n-torus). S1 × · · · × S1 is a topological manifold (of di-
mension given by the number n of factors), with an atlas consisting of
the 2n charts given by all possible n-fold products of the charts ϕN , ϕS
defined above.

The circle is a 1-dimensional sphere; we now describe general spheres.
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Example 1.5 (Spheres). The n-sphere is defined as the subspace of unit
vectors in Rn+1:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑

x2
i = 1}.

Let N = (1, 0, . . . , 0) be the north pole and let S = (−1, 0, . . . , 0) be the
south pole in Sn. Then we may write Sn as the union Sn = UN ∪ US ,
where UN = Sn\{S} and US = Sn\{N} are equipped with coordinate
charts ϕN , ϕS into Rn, given by the “stereographic projections” from the
points S,N respectively

ϕN : (x0, ~x) 7→ (1 + x0)−1~x, (4)
ϕS : (x0, ~x) 7→ (1− x0)−1~x. (5)

Remark 1.6. We have endowed the sphere Sn with a certain topology,
but is it possible for another topological n-manifold X to be homotopy
equivalent to Sn without being homeomorphic to it? Recall that homotopy
equivalence between the topological spaces M,N means the existence of
continuous maps F : M → N and G : N →M such that both F ◦G and
G ◦ F are homotopic (i.e. continuously deformable) to identity maps.

The answer is no, and this is known as the topological Poincaré con-
jecture, and is usually stated as follows: any homotopy n-sphere is home-
omorphic to the n-sphere. It was proven for n > 4 by Smale, for n = 4 by
Freedman, and for n = 3 is equivalent to the smooth Poincaré conjecture
which was proved by Hamilton-Perelman. In dimensions n = 1, 2 it is a
consequence of the classification of topological 1- and 2-manifolds.
Remark 1.7 (The Hausdorff and second countability axioms). Without
the Hausdorff assumption, we would have examples such as the following:
take the disjoint union R1 t R2 of two copies of the real line, i.e. R1 =
R2 = R, and form the quotient by the equivalence relation

R1 \ {0} 3 x ∼ ϕ(x) ∈ R2 \ {0}, (6)

where ϕ is the obvious identification R1 → R2 (i.e. ϕ(x) = x). The
resulting quotient topological space is locally homeomorphic to R but the
points [0 ∈ R1], [0 ∈ R2] cannot be separated by open neighbourhoods.

Second countability is not as crucial, but will be necessary for the
proof of the Whitney embedding theorem, among other things.
Example 1.8 (Projective spaces). Let K = R or C. Then KPn is defined
to be the space of lines through {0} in Kn+1, and is called the projective
space over K of dimension n.

More precisely, let X = Kn+1\{0} and define an equivalence relation
on X via x ∼ y iff ∃λ ∈ K∗ = K\{0} such that λx = y, i.e. x, y lie on the
same line through the origin. Then

KPn = X/ ∼,

and it is equipped with the quotient topology.
The projection map π : X −→ KPn is an open map, since if U ⊂ X is

open, then tU is also open ∀t ∈ K∗, implying that ∪t∈K∗tU = π−1(π(U))
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is open, implying π(U) is open. This immediately shows, by the way, that
KPn is second countable.

To show KPn is Hausdorff (which we must do, since Hausdorff is pre-
served by subspaces and products, but not quotients), we show that the
graph of the equivalence relation is closed in X ×X. Since π, and hence
π × π are open, this implies that the diagonal is closed in KPn × KPn,
which is equivalent to the Hausdorff property. The graph in question is
by definition

Γ∼ = {(x, y) ∈ X ×X : x ∼ y},
and we notice that Γ∼ is actually the common zero set of the following
continuous functions

fij(x, y) = (xiyj − xjyi) i 6= j,

implying at once that it is a closed subset.
An atlas for KPn is given by the open sets Ui = π(Ũi), where

Ũi = {(x0, . . . , xn) ∈ X : xi 6= 0},

and these are equipped with charts to Kn given by

ϕi([x0, . . . , xn]) = x−1
i (x0, . . . , xi−1, xi+1, . . . , xn), (7)

which are indeed invertible by (y1, . . . , yn) 7→ (y1, . . . , yi, 1, yi+1, . . . , yn).
Sometimes one finds it useful to simply use the “coordinates” (x0, . . . , xn)

for KPn, with the understanding that the xi are well-defined only up to
overall rescaling. This is called using “projective coordinates” and in this
case a point in KPn is denoted by [x0 : · · · : xn].
Example 1.9 (Connected sum). Let p ∈ M and q ∈ N be points in
topological manifolds and let (U,ϕ) and (V, ψ) be charts around p, q such
that ϕ(p) = 0 and ψ(q) = 0.

Choose ε small enough so that B(0, 2ε) ⊂ ϕ(U) and B(0, 2ε) ⊂ ϕ(V ),
and define the map of annuli

B(0, 2ε)\B(0, ε)
φ // B(0, 2ε)\B(0, ε)

x
� // 2ε2

|x|2 x

(8)

This is a homeomorphism of the annulus to itself, exchanging the bound-
aries. Now we define a new topological manifold, called the connected sum
M#N , as the quotient X/ ∼, where

X = (M\ϕ−1(B(0, ε))) t (N\ψ−1(B(0, ε))),

and we define an identification x ∼ ψ−1φϕ(x) for x ∈ ϕ−1(B(0, 2ε)). If
AM and AN are atlases for M,N respectively, then a new atlas for the
connect sum is simply

AM |M\ϕ−1(B(0,ε)) ∪ AN |N\ψ−1(B(0,ε)).
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Remark 1.10. The connected sum operation as described above may be
viewed as an operation on the pair (L, {p, q}), where L = M t N is the
manifold formed by the disjoint union of M and N and {p, q} ⊂ L is a
set of two distinct points. The output of the connected sum is then the
manifold X/ ∼, where ∼ is as above and

X = L\(ϕ−1(B(0, ε)) t ψ−1(B(0, ε))).

The advantage of this formulation is that p, q need not be in the same
connected component: indeed we may perform the connected sum of any
manifold L with itself along a pair of points.
Remark 1.11. The homeomorphism type of the connected sum of con-
nected manifolds M,N is independent of the choices of p, q and ϕ,ψ,
except that it may depend on the two possible orientations of the gluing
map ψ−1φϕ. To prove this, one must appeal to the so-called annulus
theorem.
Remark 1.12. By iterated connect sum of S2 with T 2 and RP 2, we can
obtain all compact 2-dimensional manifolds.
Example 1.13. Let F be a topological space. A fiber bundle with fiber
F is a triple (E, p,B), where E,B are topological spaces called the “total
space” and “base”, respectively, and p : E −→ B is a continuous surjective
map called the “projection map”, such that, for each point b ∈ B, there
is a neighbourhood U of b and a homeomorphism

Φ : p−1U −→ U × F,

such that pU ◦ Φ = p, where pU : U × F −→ U is the usual projection.
The submanifold p−1(b) ∼= F is called the “fiber over b”.

When B,F are topological manifolds, then clearly E becomes one as
well. We will often encounter such manifolds.
Example 1.14 (General gluing construction). To construct a topologi-
cal manifold “from scratch”, we glue open subsets of Rn together using
homeomorphisms, as follows.

Begin with a countable collection of open subsets of Rn: A = {Ui}.
Then for each i, we choose finitely many open subsets Uij ⊂ Ui and gluing
maps

Uij
ϕij // Uji , (9)

which we require to satisfy ϕijϕji = IdUji , and such that ϕij(Uij ∩Uik) =
Uji ∩ Ujk for all k, and most important of all, ϕij must be homeomor-
phisms.

Next, we want the pairwise gluings to be consistent (transitive) and
so we require that ϕkiϕjkϕij = IdUij∩Ujk for all i, j, k. This will ensure
that the equivalence relation in (11) is well-defined.

Second countability of the glued manifold is guaranteed since we started
with a countable collection of opens, but the Hausdorff property is not
necessarily satisfied without a further assumption: we require that the
graph of ϕij , namely

{(x, ϕij(x)) : x ∈ Uij} (10)
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is a closed subset of Ui × Uj .
The final glued topological manifold is then

M =
⊔
Ui

∼ , (11)

for the equivalence relation x ∼ ϕij(x) for x ∈ Uij , for all i, j. This space
has a distinguished atlas A, whose charts are simply the inclusions of the
Ui in Rn.
Example 1.15 (Quotient construction). Let Γ be a group, and give it
the discrete topology. Suppose Γ acts continuously on the topological
n-manifold M , meaning that the action map

Γ×M
ρ // M

(h, x) � // h · x

is continuous. Suppose also that the action is free, i.e. the stabilizer of
each point is trivial. Suppose the action is properly discontinuous, meaning
that each x ∈ M has a neighbourhood U such that h · U is disjoint from
U for all nontrivial h ∈ Γ, that is, for all h 6= 1. Finally, assume that the
following subset is closed:

{(x, y) ∈M ×M : y = h · x for some h ∈ Γ}

Then M/Γ is a topological manifold and π : M →M/Γ is a local homeo-
morphism.
Example 1.16 (Mapping torus). Let M be a topological manifold and
φ : M →M a homeomorphism. Then

Mφ = (M × R) /Z

is a manifold, where k ∈ Z acts via k · (p, t) = (φk(p), t+k). This is called
the mapping torus of φ and is a fibre bundle over R/Z ∼= S1 with fibre M .
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1.2 Smooth manifolds
Given coordinate charts (Ui, ϕi) and (Uj , ϕj) on a topological manifold,
we can compare them along the intersection Uij = Ui ∩ Uj , by forming
the “gluing map”

ϕj ◦ ϕ−1
i |ϕi(Uij ) : ϕi(Uij) −→ ϕj(Uij). (12)

This is a homeomorphism, since it is a composition of homeomorphisms.
In this sense, topological manifolds are glued together by homeomor-
phisms.

This means that a given function on the manifold may happen to be
differentiable in one chart but not in another, if the gluing map between
the charts is not smooth – there is no way to make sense of calculus on
topological manifolds. This is why we introduce smooth manifolds, where
the gluing maps are smooth.
Remark 1.17 (Aside on smooth maps of vector spaces). Let U ⊂ V be
an open set in a finite-dimensional vector space, and let f : U −→W be a
function with values in another vector spaceW . We say f is differentiable
at p ∈ U if there is a linear map Df(p) : V −→W which approximates f
near p, meaning that

lim
x→0
x 6=0

|f(p+ x)− f(p)−Df(p)(x)|
|x| = 0. (13)

Notice that Df(p) is uniquely characterized by the above property.
We have implicitly chosen inner products, and hence norms, on V and

W in the above definition, though the differentiability of f is independent
of this choice, since all norms are equivalent in finite dimensions. This is
no longer true for infinite-dimensional vector spaces, where the norm or
topology must be clearly specified andDf(p) is required to be a continuous
linear map. Most of what we do in this course can be developed in the
setting of Banach spaces, i.e. complete normed vector spaces.

A basis for V has a corresponding dual basis (x1, . . . , xn) of linear
functions on V , and we call these “coordinates”. Similarly, let (y1, . . . , ym)
be coordinates on W . Then the vector-valued function f has m scalar
components fj = yj ◦ f , and then the linear map Df(p) may be written,
relative to the chosen bases for V,W , as an m × n matrix, called the
Jacobian matrix of f at p.

Df(p) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 (14)

We say that f is differentiable in U when it is differentiable at all p ∈ U ,
and we say it is continuously differentiable when

Df : U −→ Hom(V,W ) (15)

is continuous. The vector space of continuously differentiable functions
on U with values in W is called C1(U,W ).
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Notice that the first derivative Df is itself a map from U to a vector
space Hom(V,W ), so if its derivative exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )), (16)

and so on. The vector space of k times continuously differentiable func-
tions on U with values in W is called Ck(U,W ). We are most interested
in C∞ or “smooth” maps, all of whose derivatives exist; the space of these
is denoted C∞(U,W ), and so we have

C∞(U,W ) =
⋂
k

Ck(U,W ). (17)

Note: for a C2 function, D2f actually has values in a smaller subspace
of V ∗⊗V ∗⊗W , namely in Sym2(V ∗)⊗W , since “mixed partials are equal”.
Definition 1.18. A smooth manifold is a topological manifold equipped
with an equivalence class of smooth atlases, as explained next.
Definition 1.19. An atlas A = {(Ui, ϕi)} for a topological manifold is
called smooth when all gluing maps

ϕj ◦ ϕ−1
i |ϕi(Uij ) : ϕi(Uij) −→ ϕj(Uij) (18)

are smooth maps, i.e. lie in C∞(ϕi(Uij),Rn). Two atlases A,A′ are
equivalent if A ∪A′ is itself a smooth atlas.
Remark 1.20. Note that the gluing maps ϕj ◦ ϕ−1

i are not necessarily
defined on all of Rn. They only need be smooth on the open subset
ϕi(Ui ∩ Uj) ⊂ Rn.
Remark 1.21. Instead of requiring an atlas to be smooth, we could ask
for it to be Ck, or real-analytic, or even holomorphic (this makes sense for
a 2n-dimensional topological manifold when we identify R2n ∼= Cn). This
is how we define Ck, real-analytic, and complex manifolds, respectively.

We may now verify that all the examples from §1.1 are actually smooth
manifolds:
Example 1.22 (Spheres). The charts for the n-sphere given in Exam-
ple 1.5 form a smooth atlas, since

ϕN ◦ ϕ−1
S : ~z 7→ 1−x0

1+x0
~z = (1−x0)2

|~x|2 ~z = |~z|−2~z (19)

is a smooth map Rn \ {0} → Rn \ {0}, as required.
The Cartesian product of smooth manifolds inherits a natural smooth

structure from taking the Cartesian product of smooth atlases. Hence the
n-torus, for example, equipped with the atlas we described in Example 1.4,
is smooth. Example 1.2 is clearly defining a smooth manifold, since the
restriction of a smooth map to an open set is always smooth.
Example 1.23 (Projective spaces). The charts for projective spaces given
in Example 1.8 form a smooth atlas, since

ϕ1 ◦ ϕ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (20)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all ϕi, ϕj .
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The two remaining examples were constructed by gluing: the con-
nected sum in Example 1.9 is clearly smooth since φ is a smooth map,
and any topological manifold from Example 1.14 will be endowed with a
natural smooth atlas as long as the gluing maps ϕij are chosen to be C∞.

1.3 Manifolds with boundary
Manifolds with boundary relate manifolds of different dimension. Since
manifolds are not defined as subsets of another topological space, the
notion of boundary is not the usual one from point set topology. To
introduce boundaries, we change the local model for manifolds to

Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, (21)

with the induced topology from Rn.
Definition 1.24. A topological manifold with boundary M is a second
countable Hausdorff topological space which is locally homeomorphic to
Hn. Its boundary ∂M is the (n − 1) manifold consisting of all points
mapped to xn = 0 by a chart, and its interior IntM is the set of points
mapped to xn > 0 by some chart. It follows that M = ∂M t IntM .

A smooth structure on such a manifold with boundary is an equivalence
class of smooth atlases, with smoothness as defined below.
Definition 1.25. Let V,W be finite-dimensional vector spaces, as before.
A function f : A −→W from an arbitrary subset A ⊂ V is smooth when
it admits a smooth extension to an open neighbourhood Up ⊂W of every
point p ∈ A.
Example 1.26. The function f(x, y) = y is smooth on H2 but f(x, y) =√
y is not, since its derivatives do not extend to y ≤ 0.

Remark 1.27. If M is an n-manifold with boundary, then IntM is a
usual n-manifold (without boundary). Also, ∂M is an n − 1-manifold
without boundary. This is sometimes phrased as the equation

∂2 = 0. (22)

Example 1.28 (Möbius strip). Consider the quotient of R × [0, 1] by
the identification (x, y) ∼ (x+ 1, 1− y). The result E is a manifold with
boundary. It is also a fiber bundle over S1, via the map π : [(x, y)] 7→ e2πix.
The boundary, ∂E, is isomorphic to S1, so this provides us with our
first example of a non-trivial fiber bundle, since the trivial fiber bundle
S1 × [0, 1] has disconnected boundary.

1.4 Cobordism
Compact (n+1)-Manifolds with boundary provide us with a natural equiv-
alence relation on compact n-manifolds, called cobordism.
Definition 1.29. Compact n-manifoldsM1,M2 are cobordant when there
existsN , a compact n+1-manifold with boundary, such that ∂N is isomor-
phic to the disjoint union M1 tM2. All manifolds cobordant to M form
the cobordism class of M . We say that M is null-cobordant if M = ∂N
for N a compact n+ 1–manifold with boundary.
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Remark 1.30. It is important to assume compactness, otherwise all man-
ifolds are null-cobordant, by taking Cartesian product with the noncom-
pact manifold with boundary [0, 1).

Let Ωn be the set of cobordism classes of compact n-manifolds, includ-
ing the empty set ∅ as a compact n-manifold. Using the disjoint union
operation [M1] + [M2] = [M1 tM2], we see that Ωn is an abelian group
with identity [∅]. The additive inverse of [M ] is actually [M ] itself:
Proposition 1.31. The cobordism ring is 2-torsion, i.e. x+ x = 0 ∀x.

Proof. For any manifold M , the manifold with boundary M × [0, 1] has
boundary M tM . Hence [M ] + [M ] = [∅] = 0, as required.

The direct sum Ω• = ⊕n≥0Ωn is then endowed with another operation,

[M1] · [M2] = [M1 ×M2], (23)

rendering Ω• into a commutative ring, called the cobordism ring. It has
a multiplicative unit [∗], the class of the 0-manifold consisting of a single
point. It is also graded by dimension.
Example 1.32. The n-sphere Sn is null-cobordant (i.e. cobordant to ∅),
since ∂Bn+1(0, 1) ∼= Sn, where Bn+1(0, 1) denotes the unit ball in Rn+1.
Example 1.33. Any oriented compact 2-manifold is null-cobordant: we
may embed it in R3 and the “inside” is a 3-manifold with boundary.

We now state an amazing theorem of Thom, which is a complete de-
scription of the cobordism ring of smooth compact n-manifolds.
Theorem 1.34. The cobordism ring is a (countably generated) polynomial
ring over F2 with generators in every dimension n 6= 2k − 1, i.e.

Ω• = F2[x2, x4, x5, x6, x8, . . .]. (24)

This theorem implies that there are 3 cobordism classes in dimension
4, namely x2

2, x4, and x2
2 + x4. Can you find 4-manifolds representing

these classes? Can you find connected representatives?
Remark 1.35. Thom showed that for k even we can take xk = [RP k].
Dold showed that the family of manifolds

P (m,n) = (Sm × CPn)/((x, y) ∼ (−x, ȳ)),

and showed that for k = 2r(2s+ 1)− 1, we can take xk = [P (2r − 1, s2r)].
Remark 1.36. Two manifolds are cobordant if and only if their Stiefel-
Whitney characteristic numbers are the same. These numbers are built
out of the Stiefel-Whitney classes, which are topological invariants asso-
ciated to the tangent bundle of a manifold.
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1.5 Smooth maps
For topological manifolds M,N of dimension m,n, the natural notion of
morphism from M to N is that of a continuous map. A continuous map
with continuous inverse is then a homeomorphism from M to N , which
is the natural notion of equivalence for topological manifolds. Since the
composition of continuous maps is continuous, we obtain a “category” of
topological manifolds and continuous maps.

A category is a collection of objects C (in our case, topological mani-
folds) and a collection of arrows A (in our case, continuous maps). Each
arrow goes from an object (the source) to another object (the target),
meaning that there are “source” and “target” maps from A to C:

A
s
((

t

66 C (25)

Also, a category has an identity arrow for each object, given by a map
id : C −→ A (in our case, the identity map of any manifold to itself).
Furthermore, there is an associative composition operation on arrows.

Conventionally, we write the set of arrows from X to X as Hom(X,Y ),
i.e.

Hom(X,Y ) = {a ∈ A : s(a) = X and t(a) = Y }. (26)
Then the associative composition of arrows mentioned above becomes a
map

Hom(X,Y )×Hom(Y,Z)→ Hom(X,Z). (27)
We have described the category of topological manifolds; we now describe
the category of smooth manifolds by defining the notion of a smooth map.
Definition 1.37. A continuous map f : M → N is called smooth when
for each chart (U,ϕ) for M and each chart (V, ψ) for N , the composition
ψ ◦ f ◦ ϕ−1 is a smooth map where it is defined, i.e. from the open set
ϕ(f−1(V )) to Rn:

The set of smooth maps (i.e. morphisms) from M to N is denoted
C∞(M,N). A smooth map with a smooth inverse is called a diffeomor-
phism.
Proposition 1.38. If g : L→M and f : M → N are smooth maps, then
so is the composition f ◦ g.

Proof. If charts ϕ, χ, ψ for L,M,N are chosen near p ∈ L, g(p) ∈ M ,
and (fg)(p) ∈ N , then ψ ◦ (f ◦ g) ◦ ϕ−1 = A ◦ B, for A = ψfχ−1 and
B = χgϕ−1 both smooth mappings Rn → Rn. By the chain rule, A ◦ B
is differentiable at p, with derivative Dφ(p)(A ◦B) = (Dχ(g(p))A)(Dφ(p)B)
(matrix multiplication).

Now we have a new category, the category of smooth manifolds and
smooth maps; two manifolds are considered isomorphic when they are
diffeomorphic. In fact, the definitions above carry over, word for word, to
the setting of manifolds with boundary. Hence we have defined another
category, the category of smooth manifolds with boundary.
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In defining the arrows for the category of manifolds with boundary,
we may choose to consider all smooth maps, or only those smooth maps
which send the boundary to the boundary, i.e. boundary-preserving maps.

The operation ∂ of “taking the boundary” sends a manifold with
boundary to a usual manifold. Furthermore, if ψ : M → N is a boundary-
preserving smooth map, then we can “take its boundary” by restricting
it to the boundary, i.e. ∂ψ = ψ|∂M . Since ∂ takes objects to objects and
arrows to arrows in a manner which respects compositions and identity
maps, it is called a “functor” from the category of manifolds with bound-
ary (and boundary-preserving smooth maps) to the category of smooth
manifolds.
Example 1.39. The smooth inclusion j : S1 → C induces a smooth
inclusion j×j of the 2-torus T 2 = S1×S1 into C2. The image of j×j does
not include zero, so we may compose with the projection π : C2 \ {0} →
CP 1 and the diffeomorphism CP 1 → S2, to obtain a smooth map

π ◦ (j × j) : T 2 → S2. (28)

Remark 1.40 (Exotic smooth structures). The topological Poincaré con-
jecture, now proven, states that any topological manifold homotopic to
the n-sphere is in fact homeomorphic to it. We have now seen how to put
a differentiable structure on this n-sphere. Remarkably, there are other
differentiable structures on the n-sphere which are not diffeomorphic to
the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and
since the connected sum operation is well-defined as a smooth manifold,
it follows that the connected sum defines a monoid structure on the set of
smooth n-spheres. In fact, Kervaire and Milnor showed that for n 6= 4, the
set of (oriented) diffeomorphism classes of smooth n-spheres forms a finite
abelian group under the connected sum operation. This is not known to
be the case in four dimensions. Kervaire and Milnor also compute the
order of this group, and the first dimension where there is more than one
smooth sphere is n = 7, in which case they show there are 28 smooth
spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Eu-
clidean spaces: any differentiable manifold homeomorphic to Rn for n 6= 4
must be diffeomorphic to it. On the other hand, by results of Donaldson,
Freedman, Taubes, and Kirby, we know that there are uncountably many
non-diffeomorphic smooth structures on the topological manifold R4; these
are called fake R4s.
Remark 1.41. The maps α : x 7→ x and β : x 7→ x3 are both homeo-
morphisms from R to R. Each one defines, by itself, a smooth atlas on R.
These two smooth atlases are not compatible (why?), so they do not de-
fine the same smooth structure on R. Nevertheless, the smooth structures
are equivalent, since there is a diffeomorphism taking one to the other.
What is it?
Example 1.42 (Lie groups). A group is a set G with an associative mul-
tiplication G×G m // G , an identity element e ∈ G, and an inversion
map ι : G −→ G, usually written ι(g) = g−1.
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If we endow G with a topology for which G is a topological manifold
and m, ι are continuous maps, then the resulting structure is called a
topological group. If G is a given a smooth structure and m, ι are smooth
maps, the result is a Lie group.

The real line (where m is given by addition), the circle (where m is
given by complex multiplication), and their Cartesian products give simple
but important examples of Lie groups. We have also seen the general
linear group GL(n,R), which is a Lie group since matrix multiplication
and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and
define smooth maps Lg : G −→ G and Rg : G −→ G via Lg(h) = gh and
Rg(h) = hg. These are called left multiplication and right multiplication.
Note that the group axioms imply that RgLh = LhRg.
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