1 Manifolds

A manifold is a space which looks like R™ at small scales (i.e. “locally”),
but which may be very different from this at large scales (i.e. “globally”).
In other words, manifolds are made by gluing pieces of R™ together to
make a more complicated whole. We want to make this precise.

1.1 Topological manifolds

Definition 1.1. A real, n-dimensional topological manifold is a Hausdorff,
second countable topological space which is locally homeomorphic to R™.

“Locally homeomorphic to R™” simply means that each point p has
an open neighbourhood U for which we can find a homeomorphism ¢ :
U — V to an open subset V' C R". Such a homeomorphism ¢ is called a
coordinate chart around p. A collection of charts which cover the manifold
is called an atlas.

We now give examples of topological manifolds. The simplest is, tech-
nically, the empty set. Then we have a countable set of points (with the
discrete topology), and R™ itself, but there are more:

Example 1.2 (open subsets). Any open subset U C M of a topological
manifold is itself a topological manifold, where the charts are simply re-
strictions |y of charts ¢ for M. For instance, the real n x nm matrices
Mat(n,R) form a vector space isomorphic to R"2, and contain an open
subset

GL(n,R) = {A € Mat(n,R) : det A # 0}, (1)
known as the general linear group, which is a topological manifold.
Example 1.3 (Circle). The circle is defined as the subspace of unit vec-
tors in R%:

S'={(z,y) eR® : ®+4* =1}

Let N = (0,1) and S = (0,—1). Then we may write S' as the union
S' = Uy UUs, where Uy = S"\{N} and Us = S*\{S} are equipped with
coordinate charts ¢n, g into R, given by the “stereographic projections”
from the points S, N respectively

on(zy) = (1—y) 'a, (2)
ps t(z,y) — (1+y) ' (3)
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By taking products of coordinate charts, we obtain charts for the
Cartesian product of manifolds. Hence the Cartesian product of mani-
folds is a manifold.




Example 1.4 (n-torus). S x --- x S* is a topological manifold (of di-
mension given by the number n of factors), with an atlas consisting of
the 2™ charts given by all possible n-fold products of the charts pn, ¢s
defined above.

The circle is a 1-dimensional sphere; we now describe general spheres.

Example 1.5 (Spheres). The n-sphere is defined as the subspace of unit
vectors in R™H1:

S™ = {(zo,...,xn) € R* . fo =1}.

Let N = (1,0,...,0) be the north pole and let S = (—1,0,...,0) be the
south pole in S™. Then we may write S™ as the union S™ = Uy U Usg,
where Uy = S™\{N} and Us = S™\{S} are equipped with coordinate
charts pn, ps into R™, given by the “stereographic projections” from the
points S, N respectively

o'z, (4)

vs 1 (20,7) — (14 x0) ' 7. (5)
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Remark 1.6. We have endowed the sphere S™ with a certain topology,
but is it possible for another topological n-manifold X to be homotopy
equivalent to S™ without being homeomorphic to it? Recall that homotopy
equivalence between the topological spaces M, N means the existence of
continuous maps F': M — N and G : N — M such that both F o G and
G o F are homotopic (i.e. continuously deformable) to identity maps.
The answer is no, and this is known as the topological Poincaré con-
jecture, and is usually stated as follows: any homotopy n-sphere is home-
omorphic to the n-sphere. It was proven for n > 4 by Smale, for n = 4 by
Freedman, and for n = 3 is equivalent to the smooth Poincaré conjecture
which was proved by Hamilton-Perelman. In dimensions n = 1,2 it is a
consequence of the classification of topological 1- and 2-manifolds.

Remark 1.7 (The Hausdorff and second countability axioms). Without
the Hausdorff assumption, we would have examples such as the following:
take the disjoint union R; U Ra of two copies of the real line, i.e. R; =
R2 = R, and form the quotient by the equivalence relation generated by

Ri\{0} >z ~ p(z) € B2\ {0}, (6)

where ¢ : Ry \ {0} — Rz \ {0} is defined by ¢(z) = z. The resulting
quotient topological space is locally homeomorphic to R but the points
[0 € R1], [0 € R3] cannot be separated by open neighbourhoods.

Second countability is a property which holds in most applications and
is a necessary hypothesis in several useful theorems in the subject, as we
shall see in the proof of the Whitney embedding theorem.

Example 1.8 (Projective spaces). Let K =R or C. Then KP" is defined
to be the space of lines through {0} in K"*1, and is called the projective
space over K of dimension n.

More precisely, let X = K"*'\{0} and define an equivalence relation
on X via z ~ y iff 3X € K* = K\{0} such that Az =y, i.e. z,y lie on the



same line through the origin. The projective space is then the topological
quotient
KP" =X/ ~.

The projection map 7 : X — KP" is an open map, since if U C X is
open, then tU is also open V¢t € K*, implying that User+tU = 7~ *(n(U))
is open, implying 7 (U) is open. This immediately shows, by the way, that
KP™ is second countable.

To show KP" is Hausdorff (which we must do, since Hausdorff is pre-
served by subspaces and products, but not quotients), we show that the
graph of the equivalence relation is closed in X x X. Since 7, and hence
7 X 7 are open, this implies that the diagonal is closed in KP™ x KP",
which is equivalent to the Hausdorff property. The graph in question is
by definition

e ={(z,y) e X xX : z~y},
and we notice that '~ is actually the common zero set of the following
continuous functions

fij(@,y) = (wayy — 25y:) @ # J,

implying at once that it is a closed subset. B
An atlas for KP™ is given by the open sets U; = 7(U;), where

U; ={(zo,...,zn) € X : x; #0},
and these are equipped with charts to K™ given by
Lpi([m()? s ,an = x;l(xov cee sy Li—1, Titly .o ,xn), (7)

which are indeed invertible by (y1,...,yn) = (Y1, ¥i, L, Yit1,- -+, Yn).
Sometimes one finds it useful to simply use the “coordinates” (zo, ..., Tn)
for KP", with the understanding that the z; are well-defined only up to
overall rescaling. This is called using “projective coordinates” and in this
case a point in KP™ is denoted by [zo : « -+ : xx].
Example 1.9 (Connected sum). Let p € M and ¢ € N be points in
topological manifolds and let (U, ¢) and (V, ) be charts around p, g such
that ¢(p) = 0 and 9(q) = 0.
Choose € small enough so that B(0,2¢) C ¢(U) and B(0,2¢) C ¢(V),
and define the map of annuli

B(0,20)\B(0, ¢) —>> B(0,2¢)\B(0, ¢) (8)
T |2;|22m

This is a homeomorphism of the annulus to itself, exchanging the bound-
aries. Now we define a new topological manifold, called the connected sum
M+#N, as the quotient X/ ~, where

X = (M\e="(B(0,€))) U (N\~1(B(0,¢€))),

and we define an identification z ~ 1~ *¢p(z) for = € ¢ 1(B(0,2¢)). If
An and Apn are atlases for M, N respectively, then a new atlas for the
connect sum is simply

Av |y o= B o) Y AN s T B
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Remark 1.10. The connected sum operation as described above may be
viewed as an operation on the pair (L, {p, ¢}), where L = M U N is the
manifold formed by the disjoint union of M and N and {p,q} C L is a
set of two distinct points. The output of the connected sum is then the
manifold X/ ~, where ~ is as above and

X = L\(¢~1(B(0,€)) U= (B(0, €)))-

The advantage of this formulation is that p,q need not be in the same
connected component: indeed we may perform the connected sum of any
manifold L with itself along a pair of points.

Remark 1.11. The homeomorphism type of the connected sum of con-
nected manifolds M, N is independent of the choices of p,q and ¢, 1,
except that it may depend on the two possible orientations of the gluing
map 1 ¢p. To prove this, one must appeal to the so-called annulus
theorem.

Remark 1.12. By iterated connect sum of S? with 72 and RP?, we can
obtain all compact 2-dimensional manifolds.

Example 1.13. Let I be a topological space. A fiber bundle with fiber
F is a triple (E, p, B), where E, B are topological spaces called the “total
space” and “base”, respectively, and p : E — B is a continuous surjective
map called the “projection map”, such that, for each point b € B, there
is a neighbourhood U of b and a homeomorphism

®:p'U—UXF,

such that py o ® = p, where py : U X F — U is the usual projection.
The submanifold p~!(b) 2 F is called the “fiber over b”.

When B, F are topological manifolds, then clearly F becomes one as
well. We will often encounter such manifolds.

Example 1.14 (General gluing construction). To construct a topologi-
cal manifold “from scratch”, we glue open subsets of R™ together using
homeomorphisms, as follows.



Begin with a countable collection of open subsets of R"™: A = {U;}.
Then for each i, we choose finitely many open subsets U;; C U; and gluing
maps

Uy —2> Uy 9)
which we require to satisfy ;05 = Idu,,, as well as ¢;; (U;; NUsx) = UjiN
Uji, for all k, and most important of all, p;; must be homeomorphisms.

Next, we want the pairwise gluings to be consistent (transitive) and so we
require that oripkpi; = IdUiJntk for all 4, 7, k. This will ensure that the
equivalence relation in (11) is well-defined.

Second countability of the glued manifold is guaranteed since we started
with a countable collection of opens, but the Hausdorff property is not
necessarily satisfied without a further assumption: we require that the
graph of ¢;;, namely

{(z,pij(x)) 2 € Uy} (10)

is a closed subset of U; x Uj.
The final glued topological manifold is then

M= UTU (11)

for the equivalence relation generated by = ~ ¢;;(z) for = € U;j, for all
i,j. This space has a distinguished atlas A, whose charts are simply the
inclusions of the U; in R™.

Example 1.15 (Quotient construction). Let I" be a group, and give it
the discrete topology. Suppose I' acts continuously on the topological
n-manifold M, meaning that the action map

IxM—2sM
(h,2)——=h -z

is continuous. Suppose also that the action is free, i.e. the stabilizer of
each point is trivial. Suppose the action is properly discontinuous, meaning



that each x € M has a neighbourhood U such that h - U is disjoint from
U for all h # 1. Finally, assume that the following subset is closed:

{(z,y) e M x M : y=h-x for some h € '}

Then M/T is a topological manifold and 7 : M — M /T is a local homeo-
morphism.
Example 1.16 (Mapping torus). Let M be a topological manifold and
¢ : M — M a homeomorphism. Then

My = (M xR)/Z

is a manifold, where k € Z acts via k- (p,t) = (¢*(p),t + k). This is called
the mapping torus of ¢ and is a fibre bundle over R/Z = S* with fibre M.



