
1 Manifolds
A manifold is a space which looks like Rn at small scales (i.e. “locally”),
but which may be very different from this at large scales (i.e. “globally”).
In other words, manifolds are made by gluing pieces of Rn together to
make a more complicated whole. We want to make this precise.

1.1 Topological manifolds
Definition 1.1. A real, n-dimensional topological manifold is a Hausdorff,
second countable topological space which is locally homeomorphic to Rn.

“Locally homeomorphic to Rn” simply means that each point p has
an open neighbourhood U for which we can find a homeomorphism φ :
U −→ V to an open subset V ⊂ Rn. Such a homeomorphism φ is called a
coordinate chart around p. A collection of charts which cover the manifold
is called an atlas.

We now give examples of topological manifolds. The simplest is, tech-
nically, the empty set. Then we have a countable set of points (with the
discrete topology), and Rn itself, but there are more:
Example 1.2 (open subsets). Any open subset U ⊂ M of a topological
manifold is itself a topological manifold, where the charts are simply re-
strictions φ|U of charts φ for M . For instance, the real n × n matrices
Mat(n,R) form a vector space isomorphic to Rn

2
, and contain an open

subset
GL(n,R) = {A ∈ Mat(n,R) : detA ̸= 0}, (1)

known as the general linear group, which is a topological manifold.
Example 1.3 (Circle). The circle is defined as the subspace of unit vec-
tors in R2:

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
Let N = (0, 1) and S = (0,−1). Then we may write S1 as the union
S1 = UN ∪US , where UN = S1\{N} and US = S1\{S} are equipped with
coordinate charts φN , φS into R1, given by the “stereographic projections”
from the points S,N respectively

φN : (x, y) 7→ (1 − y)−1x, (2)
φS : (x, y) 7→ (1 + y)−1x. (3)

By taking products of coordinate charts, we obtain charts for the
Cartesian product of manifolds. Hence the Cartesian product of mani-
folds is a manifold.
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Example 1.4 (n-torus). S1 × · · · × S1 is a topological manifold (of di-
mension given by the number n of factors), with an atlas consisting of
the 2n charts given by all possible n-fold products of the charts φN , φS
defined above.

The circle is a 1-dimensional sphere; we now describe general spheres.
Example 1.5 (Spheres). The n-sphere is defined as the subspace of unit
vectors in Rn+1:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑

x2
i = 1}.

Let N = (1, 0, . . . , 0) be the north pole and let S = (−1, 0, . . . , 0) be the
south pole in Sn. Then we may write Sn as the union Sn = UN ∪ US ,
where UN = Sn\{N} and US = Sn\{S} are equipped with coordinate
charts φN , φS into Rn, given by the “stereographic projections” from the
points S,N respectively

φN : (x0, x⃗) 7→ (1 − x0)−1x⃗, (4)
φS : (x0, x⃗) 7→ (1 + x0)−1x⃗. (5)

Remark 1.6. We have endowed the sphere Sn with a certain topology,
but is it possible for another topological n-manifold X to be homotopy
equivalent to Sn without being homeomorphic to it? Recall that homotopy
equivalence between the topological spaces M,N means the existence of
continuous maps F : M → N and G : N → M such that both F ◦G and
G ◦ F are homotopic (i.e. continuously deformable) to identity maps.

The answer is no, and this is known as the topological Poincaré con-
jecture, and is usually stated as follows: any homotopy n-sphere is home-
omorphic to the n-sphere. It was proven for n > 4 by Smale, for n = 4 by
Freedman, and for n = 3 is equivalent to the smooth Poincaré conjecture
which was proved by Hamilton-Perelman. In dimensions n = 1, 2 it is a
consequence of the classification of topological 1- and 2-manifolds.
Remark 1.7 (The Hausdorff and second countability axioms). Without
the Hausdorff assumption, we would have examples such as the following:
take the disjoint union R1 ⊔ R2 of two copies of the real line, i.e. R1 =
R2 = R, and form the quotient by the equivalence relation generated by

R1 \ {0} ∋ x ∼ φ(x) ∈ R2 \ {0}, (6)

where φ : R1 \ {0} → R2 \ {0} is defined by φ(x) = x. The resulting
quotient topological space is locally homeomorphic to R but the points
[0 ∈ R1], [0 ∈ R2] cannot be separated by open neighbourhoods.

Second countability is a property which holds in most applications and
is a necessary hypothesis in several useful theorems in the subject, as we
shall see in the proof of the Whitney embedding theorem.
Example 1.8 (Projective spaces). Let K = R or C. Then KPn is defined
to be the space of lines through {0} in Kn+1, and is called the projective
space over K of dimension n.

More precisely, let X = Kn+1\{0} and define an equivalence relation
on X via x ∼ y iff ∃λ ∈ K∗ = K\{0} such that λx = y, i.e. x, y lie on the
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same line through the origin. The projective space is then the topological
quotient

KPn = X/ ∼ .

The projection map π : X −→ KPn is an open map, since if U ⊂ X is
open, then tU is also open ∀t ∈ K∗, implying that ∪t∈K∗tU = π−1(π(U))
is open, implying π(U) is open. This immediately shows, by the way, that
KPn is second countable.

To show KPn is Hausdorff (which we must do, since Hausdorff is pre-
served by subspaces and products, but not quotients), we show that the
graph of the equivalence relation is closed in X ×X. Since π, and hence
π × π are open, this implies that the diagonal is closed in KPn × KPn,
which is equivalent to the Hausdorff property. The graph in question is
by definition

Γ∼ = {(x, y) ∈ X ×X : x ∼ y},
and we notice that Γ∼ is actually the common zero set of the following
continuous functions

fij(x, y) = (xiyj − xjyi) i ̸= j,

implying at once that it is a closed subset.
An atlas for KPn is given by the open sets Ui = π(Ũi), where

Ũi = {(x0, . . . , xn) ∈ X : xi ̸= 0},

and these are equipped with charts to Kn given by

φi([x0, . . . , xn]) = x−1
i (x0, . . . , xi−1, xi+1, . . . , xn), (7)

which are indeed invertible by (y1, . . . , yn) 7→ (y1, . . . , yi, 1, yi+1, . . . , yn).
Sometimes one finds it useful to simply use the “coordinates” (x0, . . . , xn)

for KPn, with the understanding that the xi are well-defined only up to
overall rescaling. This is called using “projective coordinates” and in this
case a point in KPn is denoted by [x0 : · · · : xn].
Example 1.9 (Connected sum). Let p ∈ M and q ∈ N be points in
topological manifolds and let (U,φ) and (V, ψ) be charts around p, q such
that φ(p) = 0 and ψ(q) = 0.

Choose ϵ small enough so that B(0, 2ϵ) ⊂ φ(U) and B(0, 2ϵ) ⊂ φ(V ),
and define the map of annuli

B(0, 2ϵ)\B(0, ϵ)
ϕ // B(0, 2ϵ)\B(0, ϵ)

x
� // 2ϵ2

|x|2 x

(8)

This is a homeomorphism of the annulus to itself, exchanging the bound-
aries. Now we define a new topological manifold, called the connected sum
M#N , as the quotient X/ ∼, where

X = (M\φ−1(B(0, ϵ))) ⊔ (N\ψ−1(B(0, ϵ))),

and we define an identification x ∼ ψ−1ϕφ(x) for x ∈ φ−1(B(0, 2ϵ)). If
AM and AN are atlases for M,N respectively, then a new atlas for the
connect sum is simply

AM |
M\φ−1(B(0,ϵ)) ∪ AN |

N\ψ−1(B(0,ϵ)).
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Remark 1.10. The connected sum operation as described above may be
viewed as an operation on the pair (L, {p, q}), where L = M ⊔ N is the
manifold formed by the disjoint union of M and N and {p, q} ⊂ L is a
set of two distinct points. The output of the connected sum is then the
manifold X/ ∼, where ∼ is as above and

X = L\(φ−1(B(0, ϵ)) ⊔ ψ−1(B(0, ϵ))).

The advantage of this formulation is that p, q need not be in the same
connected component: indeed we may perform the connected sum of any
manifold L with itself along a pair of points.
Remark 1.11. The homeomorphism type of the connected sum of con-
nected manifolds M,N is independent of the choices of p, q and φ,ψ,
except that it may depend on the two possible orientations of the gluing
map ψ−1ϕφ. To prove this, one must appeal to the so-called annulus
theorem.
Remark 1.12. By iterated connect sum of S2 with T 2 and RP 2, we can
obtain all compact 2-dimensional manifolds.
Example 1.13. Let F be a topological space. A fiber bundle with fiber
F is a triple (E, p,B), where E,B are topological spaces called the “total
space” and “base”, respectively, and p : E −→ B is a continuous surjective
map called the “projection map”, such that, for each point b ∈ B, there
is a neighbourhood U of b and a homeomorphism

Φ : p−1U −→ U × F,

such that pU ◦ Φ = p, where pU : U × F −→ U is the usual projection.
The submanifold p−1(b) ∼= F is called the “fiber over b”.

When B,F are topological manifolds, then clearly E becomes one as
well. We will often encounter such manifolds.
Example 1.14 (General gluing construction). To construct a topologi-
cal manifold “from scratch”, we glue open subsets of Rn together using
homeomorphisms, as follows.
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Begin with a countable collection of open subsets of Rn: A = {Ui}.
Then for each i, we choose finitely many open subsets Uij ⊂ Ui and gluing
maps

Uij
φij // Uji , (9)

which we require to satisfy φijφji = IdUji , as well as φij(Uij∩Uik) = Uji∩
Ujk for all k, and most important of all, φij must be homeomorphisms.

Next, we want the pairwise gluings to be consistent (transitive) and so we
require that φkiφjkφij = IdUij ∩Ujk for all i, j, k. This will ensure that the
equivalence relation in (11) is well-defined.

Second countability of the glued manifold is guaranteed since we started
with a countable collection of opens, but the Hausdorff property is not
necessarily satisfied without a further assumption: we require that the
graph of φij , namely

{(x, φij(x)) : x ∈ Uij} (10)

is a closed subset of Ui × Uj .
The final glued topological manifold is then

M =
⊔
Ui

∼ , (11)

for the equivalence relation generated by x ∼ φij(x) for x ∈ Uij , for all
i, j. This space has a distinguished atlas A, whose charts are simply the
inclusions of the Ui in Rn.
Example 1.15 (Quotient construction). Let Γ be a group, and give it
the discrete topology. Suppose Γ acts continuously on the topological
n-manifold M , meaning that the action map

Γ ×M
ρ // M

(h, x) � // h · x

is continuous. Suppose also that the action is free, i.e. the stabilizer of
each point is trivial. Suppose the action is properly discontinuous, meaning
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that each x ∈ M has a neighbourhood U such that h · U is disjoint from
U for all h ̸= 1. Finally, assume that the following subset is closed:

{(x, y) ∈ M ×M : y = h · x for some h ∈ Γ}

Then M/Γ is a topological manifold and π : M → M/Γ is a local homeo-
morphism.
Example 1.16 (Mapping torus). Let M be a topological manifold and
ϕ : M → M a homeomorphism. Then

Mϕ = (M × R) /Z

is a manifold, where k ∈ Z acts via k · (p, t) = (ϕk(p), t+k). This is called
the mapping torus of ϕ and is a fibre bundle over R/Z ∼= S1 with fibre M .
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