
1.2 Smooth manifolds
Given coordinate charts (Ui, φi) and (Uj , φj) on a topological manifold,
we can compare them along the intersection Uij = Ui ∩ Uj , by forming
the “gluing map”

φj ◦ φ−1
i |φi(Uij ) : φi(Uij) −→ φj(Uij). (12)

This is a homeomorphism, since it is a composition of homeomorphisms.
In this sense, topological manifolds are glued together by homeomor-
phisms.

This means that a given function on the manifold may happen to be
differentiable in one chart but not in another, if the gluing map between
the charts is not smooth – there is no way to make sense of calculus on
topological manifolds. This is why we introduce smooth manifolds, where
the gluing maps are smooth.
Remark 1.17 (Aside on smooth maps of vector spaces). Let U ⊂ V be
an open set in a finite-dimensional vector space, and let f : U −→ W be a
function with values in another vector space W . We say f is differentiable
at p ∈ U if there is a linear map Df(p) : V −→ W which approximates f
near p, meaning that

lim
x→0
x ̸=0

|f(p+ x) − f(p) −Df(p)(x)|
|x| = 0. (13)

Notice that Df(p) is uniquely characterized by the above property.
We have implicitly chosen inner products, and hence norms, on V and

W in the above definition, though the differentiability of f is independent
of this choice, since all norms are equivalent in finite dimensions. This is
no longer true for infinite-dimensional vector spaces, where the norm or
topology must be clearly specified andDf(p) is required to be a continuous
linear map. Most of what we do in this course can be developed in the
setting of Banach spaces, i.e. complete normed vector spaces.

A basis for V has a corresponding dual basis (x1, . . . , xn) of linear
functions on V , and we call these “coordinates”. Similarly, let (y1, . . . , ym)
be coordinates on W . Then the vector-valued function f has m scalar
components fj = yj ◦ f , and then the linear map Df(p) may be written,
relative to the chosen bases for V,W , as an m × n matrix, called the
Jacobian matrix of f at p.

Df(p) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 (14)

We say that f is differentiable in U when it is differentiable at all p ∈ U ,
and we say it is continuously differentiable when

Df : U −→ Hom(V,W ) (15)

is continuous. The vector space of continuously differentiable functions
on U with values in W is called C1(U,W ).

8



Notice that the first derivative Df is itself a map from U to a vector
space Hom(V,W ), so if its derivative exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )), (16)

and so on. The vector space of k times continuously differentiable func-
tions on U with values in W is called Ck(U,W ). We are most interested
in C∞ or “smooth” maps, all of whose derivatives exist; the space of these
is denoted C∞(U,W ), and so we have

C∞(U,W ) =
⋂

k

Ck(U,W ). (17)

Note: for a C2 function, D2f actually has values in a smaller subspace
of V ∗⊗V ∗⊗W , namely in Sym2(V ∗)⊗W , since “mixed partials are equal”.
Definition 1.18. A smooth manifold is a topological manifold equipped
with an equivalence class of smooth atlases, as explained next.
Definition 1.19. An atlas A = {(Ui, φi)} for a topological manifold is
called smooth when all gluing maps

φj ◦ φ−1
i |φi(Uij ) : φi(Uij) −→ φj(Uij) (18)

are smooth maps, i.e. lie in C∞(φi(Uij),Rn). Two atlases A,A′ are
equivalent if A ∪ A′ is itself a smooth atlas.
Remark 1.20. Note that the gluing maps φj ◦ φ−1

i are not necessarily
defined on all of Rn. They only need be smooth on the open subset
φi(Ui ∩ Uj) ⊂ Rn.
Remark 1.21. Instead of requiring an atlas to be smooth, we could ask
for it to be Ck, or real-analytic, or even holomorphic (this makes sense for
a 2n-dimensional topological manifold when we identify R2n ∼= Cn). This
is how we define Ck, real-analytic, and complex manifolds, respectively.

We may now verify that all the examples from §1.1 are actually smooth
manifolds:
Example 1.22 (Spheres). The charts for the n-sphere given in Exam-
ple 1.5 form a smooth atlas, since

φN ◦ φ−1
S : z⃗ 7→ 1−x0

1+x0
z⃗ = (1−x0)2

|x⃗|2 z⃗ = |z⃗|−2z⃗ (19)

is a smooth map Rn \ {0} → Rn \ {0}, as required.
The Cartesian product of smooth manifolds inherits a natural smooth

structure from taking the Cartesian product of smooth atlases. Hence the
n-torus, for example, equipped with the atlas we described in Example 1.4,
is smooth. Example 1.2 is clearly defining a smooth manifold, since the
restriction of a smooth map to an open set is always smooth.
Example 1.23 (Projective spaces). The charts for projective spaces given
in Example 1.8 form a smooth atlas, since

φ1 ◦ φ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (20)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all φi, φj .
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The two remaining examples were constructed by gluing: the con-
nected sum in Example 1.9 is clearly smooth since ϕ is a smooth map,
and any topological manifold from Example 1.14 will be endowed with a
natural smooth atlas as long as the gluing maps φij are chosen to be C∞.

1.3 Smooth maps
For topological manifolds M,N of dimension m,n, the natural notion of
morphism from M to N is that of a continuous map. A continuous map
with continuous inverse is then a homeomorphism from M to N , which
is the natural notion of equivalence for topological manifolds. Since the
composition of continuous maps is continuous, we obtain a “category” of
topological manifolds and continuous maps.

A category is a collection of objects C (in our case, topological mani-
folds) and a collection of arrows A (in our case, continuous maps). Each
arrow goes from an object (the source) to another object (the target),
meaning that there are “source” and “target” maps from A to C:

A
s
((

t

66 C (21)

Also, a category has an identity arrow for each object, given by a map
id : C −→ A (in our case, the identity map of any manifold to itself).
Furthermore, there is an associative composition operation on arrows.

Conventionally, we write the set of arrows from X to X as Hom(X,Y ),
i.e.

Hom(X,Y ) = {a ∈ A : s(a) = X and t(a) = Y }. (22)
Then the associative composition of arrows mentioned above becomes a
map

Hom(X,Y ) × Hom(Y,Z) → Hom(X,Z). (23)
We have described the category of topological manifolds; we now describe
the category of smooth manifolds by defining the notion of a smooth map.
Definition 1.24. A continuous map f : M → N is called smooth when
for each chart (U,φ) for M and each chart (V, ψ) for N , the composition
ψ ◦ f ◦ φ−1 is a smooth map where it is defined, i.e. from the open set
φ(f−1(V )) to Rn:

The set of smooth maps (i.e. morphisms) from M to N is denoted
C∞(M,N). A smooth map with a smooth inverse is called a diffeomor-
phism.
Proposition 1.25. If g : L → M and f : M → N are smooth maps, then
so is the composition f ◦ g.

Proof. If charts φ, χ, ψ for L,M,N are chosen near p ∈ L, g(p) ∈ M ,
and (fg)(p) ∈ N , then ψ ◦ (f ◦ g) ◦ φ−1 = A ◦ B, for A = ψfχ−1 and
B = χgφ−1 both smooth mappings Rn → Rn. By the chain rule, A ◦ B
is differentiable at p, with derivative Dϕ(p)(A ◦B) = (Dχ(g(p))A)(Dϕ(p)B)
(matrix multiplication).
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Now we have a new category, the category of smooth manifolds and
smooth maps; two manifolds are considered isomorphic when they are
diffeomorphic.
Example 1.26. The smooth inclusion j : S1 → C induces a smooth
inclusion j×j of the 2-torus T 2 = S1 ×S1 into C2. The image of j×j does
not include zero, so we may compose with the projection π : C2 \ {0} →
CP 1 and the diffeomorphism CP 1 → S2, to obtain a smooth map

π ◦ (j × j) : T 2 → S2. (24)

Remark 1.27 (Exotic smooth structures). The topological Poincaré con-
jecture, now proven, states that any topological manifold homotopic to
the n-sphere is in fact homeomorphic to it. We have now seen how to put
a differentiable structure on this n-sphere. Remarkably, there are other
differentiable structures on the n-sphere which are not diffeomorphic to
the standard one we gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and
since the connected sum operation is well-defined as a smooth manifold,
it follows that the connected sum defines a monoid structure on the set of
smooth n-spheres. In fact, Kervaire and Milnor showed that for n ̸= 4, the
set of (oriented) diffeomorphism classes of smooth n-spheres forms a finite
abelian group under the connected sum operation. This is not known to
be the case in four dimensions. Kervaire and Milnor also compute the
order of this group, and the first dimension where there is more than one
smooth sphere is n = 7, in which case they show there are 28 smooth
spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Eu-
clidean spaces: any differentiable manifold homeomorphic to Rn for n ̸= 4
must be diffeomorphic to it. On the other hand, by results of Donaldson,
Freedman, Taubes, and Kirby, we know that there are uncountably many
non-diffeomorphic smooth structures on the topological manifold R4; these
are called fake R4s.
Remark 1.28. The maps α : x 7→ x and β : x 7→ x3 are both homeo-
morphisms from R to R. Each one defines, by itself, a smooth atlas on R.
These two smooth atlases are not compatible (why?), so they do not de-
fine the same smooth structure on R. Nevertheless, the smooth structures
are equivalent, since there is a diffeomorphism taking one to the other.
What is it?
Example 1.29 (Lie groups). A group is a set G with an associative mul-
tiplication G×G

m // G , an identity element e ∈ G, and an inversion
map ι : G −→ G, usually written ι(g) = g−1.

If we endow G with a topology for which G is a topological manifold
and m, ι are continuous maps, then the resulting structure is called a
topological group. If G is a given a smooth structure and m, ι are smooth
maps, the result is a Lie group.

The real line (where m is given by addition), the circle (where m is
given by complex multiplication), and their Cartesian products give simple
but important examples of Lie groups. We have also seen the general
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linear group GL(n,R), which is a Lie group since matrix multiplication
and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and
define smooth maps Lg : G −→ G and Rg : G −→ G via Lg(h) = gh and
Rg(h) = hg. These are called left multiplication and right multiplication.
Note that the group axioms imply that RgLh = LhRg.
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