
2 The derivative
The derivative of a smooth map is an absolutely central concept in dif-
ferential geometry. To make sense of the derivative, however, we must
introduce the notion of tangent vector and, further, the space of all tan-
gent vectors, known as the tangent bundle. In this section, we describe
the tangent bundle intrinsically, without reference to any embedding of
the manifold in a vector space. The definition of the tangent bundle is
simplest for an open subset U ⊂ Rn. In this case, a tangent vector to a
point p ∈ U is simply a vector in Rn, and so the tangent bundle, which
consists of all tangent vectors to all points in U , is simply given by

TU = U × Rn. (25)

We now investigate the problem of generalizing the tangent bundle to
other manifolds, where the convenience of being an open set in a vector
space is not available.

2.1 The tangent bundle
The tangent bundle of an n-manifold M is a 2n-manifold, called TM ,
naturally constructed in terms of M . As a set, it is fairly easy to describe,
as simply the disjoint union of all tangent spaces. However we must
explain precisely what we mean by the tangent space TpM to p ∈ M .

We may define a tangent vector v is as an equivalence class of smooth
curves. Let a smooth curve through p be a smooth map γ : I → M
from an open interval around zero I ⊂ R to the manifold M , such that
γ(0) = p. Then we say two such curves γ1, γ2 are equivalent when they
have the same velocity at p, which we take to mean the following: in a
chart (U,φ) containing p, we have

d
dt

∣∣
t=0

(φ ◦ γ1) = d
dt

∣∣
t=0

(φ ◦ γ2).

Note that the above differentiation makes sense since φ ◦ γi are maps
between Euclidean spaces, which we know how to differentiate. Also note
that if this condition holds in one chart, then it clearly holds in any other
chart, by the chain rule.

Inspired by the above definition, which uses charts to make sense of
the derivative of a curve, we now present an alternative definition which
emphasizes the importance of the charts and makes it more clear how
tangent spaces at different points may be unified to obtain a single tangent
bundle. We use as main ingredient the definition (25) of the tangent
bundle of an open set in Euclidean space.
Definition 2.1. Let (U,φ), (V, ψ) be coordinate charts around p ∈ M .
Let u ∈ Tφ(p)φ(U) and v ∈ Tψ(p)ψ(V ). Then the triples (U,φ, u), (V, ψ, v)
are called equivalent when D(ψ ◦ φ−1)(φ(p)) : u 7→ v. The chain rule
for derivatives Rn −→ Rn guarantees that this is indeed an equivalence
relation.

The set of equivalence classes of such triples is called the tangent space
to p of M , denoted TpM . It is a real vector space of dimension dimM ,
since both Tφ(p)φ(U) and Tψ(p)ψ(V ) are, and D(ψ ◦ φ−1) is a linear iso-
morphism.
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As a set, the tangent bundle is defined by

TM =
⊔
p∈M

TpM, (26)

and it is equipped with a natural surjective map π : TM −→ M , which is
simply π(X) = x for X ∈ TxM .

We now give it a manifold structure in a natural way.
Proposition 2.2. For an n-manifold M , the set TM has a natural
topology and smooth structure which make it a 2n-manifold, and make
π : TM −→ M a smooth map.

Proof. Any chart (U,φ) for M defines a bijection

Tφ(U) ∼= U × Rn −→ π−1(U) (27)

via (p, v) 7→ (U,φ, v). Using this, we induce a smooth manifold structure
on π−1(U), and view the inverse of this map as a chart (π−1(U),Φ) to
φ(U) × Rn.

given another chart (V, ψ), we obtain another chart (π−1(V ),Ψ) and
we may compare them via

Ψ ◦ Φ−1 : φ(U ∩ V ) × Rn −→ ψ(U ∩ V ) × Rn, (28)

which is given by (p, u) 7→ ((ψ ◦φ−1)(p), D(ψ ◦φ−1)pu), which is smooth.
Therefore we obtain a topology and smooth structure on all of TM (by
defining W to be open when W ∩ π−1(U) is open for every U in an atlas
for M ; all that remains is to verify the Hausdorff property, which holds
since points x, y are either in the same chart (in which case it is obvious)
or they can be separated by the given type of charts.

Remark 2.3. This is a more constructive way of looking at the tangent
bundle: We choose a countable, locally finite atlas {(Ui, φi)} for M and
glue together Ui × Rn to Uj × Rn via an equivalence

(x, u) ∼ (y, v) ⇔ y = φj ◦ φ−1
i (x) and v = D(φj ◦ φ−1

i )xu, (29)

and verify the conditions of the general gluing construction 1.14. The
choice of a different atlas yields a canonically diffeomorphic manifold.

2.2 The derivative
A description of the tangent bundle is not complete without defining the
derivative of a general smooth map of manifolds f : M −→ N . Such a
map may be defined locally in charts (Ui, φi) for M and (Vα, ψα) for N as
a collection of vector-valued functions ψα ◦ f ◦ φ−1

i = fiα (defined where
the composition makes sense) which satisfy (again, at all points where the
composition is defined)

(ψβ ◦ ψ−1
α ) ◦ fiα = fjβ ◦ (φj ◦ φ−1

i ). (30)

Differentiating, we obtain

D(ψβ ◦ ψ−1
α ) ◦Dfiα = Dfjβ ◦D(φj ◦ φ−1

i ). (31)
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Equation 31 shows that Dfiα and Dfjβ glue together to define a map
TM −→ TN . This map is called the derivative of f and is denoted
Df : TM −→ TN . Sometimes it is called the “push-forward” of vectors
and is denoted f∗. The map fits into the commutative diagram

TM
Df //

π

��

TN

π

��
M

f
// N

(32)

Each fiber π−1(x) = TxM ⊂ TM is a vector space, and the map Df :
TxM −→ Tf(x)N is a linear map. In fact, (f,Df) defines a homomorphism
of vector bundles from TM to TN .

The usual chain rule for derivatives then implies that if f ◦ g = h
as maps of manifolds, then Df ◦ Dg = Dh. As a result, we obtain the
following category-theoretic statement.
Proposition 2.4. The mapping T which assigns to a manifold M its
tangent bundle TM , and which assigns to a map f : M −→ N its deriva-
tive Df : TM −→ TN , is a functor from the category of manifolds and
smooth maps to itself1.

For this reason, the derivative map Df is sometimes called the “tan-
gent mapping” Tf .

2.3 Local structure of smooth maps
In some ways, smooth manifolds are easier to produce or find than general
topological manifolds, because of the fact that smooth maps have linear
approximations. Therefore smooth maps often behave like linear maps of
vector spaces, and we may gain inspiration from vector space construc-
tions (e.g. subspace, kernel, image, cokernel) to produce new examples of
manifolds.

In charts (U,φ), (V, ψ) for the smooth manifolds M,N , a smooth map
f : M −→ N is represented by a smooth map ψ◦f ◦φ−1 ∈ C∞(φ(U),Rn).
We shall give a general local classification of such maps, based on the
behaviour of the derivative. The fundamental result which provides in-
formation about the map based on its derivative is the inverse function
theorem.
Theorem 2.5 (Inverse function theorem). Let f : (M,p) → (N, q) be a
smooth map of n-dimensional manifolds and suppose that Df(p) : TpM →
TqN is invertible. Then f has a local smooth inverse. That is, there are
neighbourhoods U, V of p, q and a smooth map g : V → U such that
f ◦ g = idV and g ◦ f = idU .

This theorem provides us with a local normal form for a smooth map
with Df(p) invertible: we may choose coordinates on sufficiently small

1We can also say that it is a functor from manifolds to the category of smooth vector
bundles.
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neighbourhoods of p, f(p) so that f is represented by the identity map
Rn −→ Rn.

In fact, the inverse function theorem leads to a normal form theorem
for a more general class of maps:
Theorem 2.6 (Constant rank theorem). Let f : Mm → Nn be a smooth
map such that Df has constant rank k in a neighbourhood of p ∈ M . Then
there are charts (U,φ) and (V, ψ) containing p, f(p) such that

ψ ◦ f ◦ φ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0). (33)

Proof. Begin by choosing charts so that without loss of generality M is
an open set in Rm and N is Rn.

Since rk Df = k at p, there is a k × k minor of Df(p) with nonzero
determinant. Reorder the coordinates on Rm and Rn so that this minor is
top left, and translate coordinates so that f(0) = 0. label the coordinates
(x1, . . . , xk, y1, . . . ym−k) on the domain and (u1, . . . uk, v1, . . . , vn−k) on
the codomain.

Then we may write f(x, y) = (Q(x, y), R(x, y)), where Q is the pro-
jection to u = (u1, . . . , uk) and R is the projection to v. with ∂Q

∂x
non-

singular. First we wish to put Q into normal form. Consider the map
ϕ(x, y) = (Q(x, y), y), which has derivative

Dϕ =
(

∂Q
∂x

∂Q
∂y

0 1

)
(34)

As a result we see Dϕ(0) is nonsingular and hence there exists a local
inverse ϕ−1(x, y) = (A(x, y), B(x, y)). Since it’s an inverse this means
(x, y) = ϕ(ϕ−1(x, y)) = (Q(A,B), B), which implies that B(x, y) = y.

Then f ◦ ϕ−1 : (x, y) 7→ (x, S = R(A, y)), and must still be of rank k.
Since its derivative is

D(f ◦ ϕ−1) =
(

Ik×k 0
∂S
∂x

∂S
∂y

)
(35)

we conclude that ∂S
∂y

= 0, meaning that we have eliminated the y-dependence:

f ◦ ϕ−1 : (x, y) 7→ (x, S(x)). (36)

We now postcompose by the diffeomorphism σ : (u, v) 7→ (u, v−S(u)), to
obtain

σ ◦ f ◦ ϕ−1 : (x, y) 7→ (x, 0), (37)
as required.

As we shall see, these theorems have many uses. One of the most
straightforward uses is for defining submanifolds.

There are several ways to define the notion of submanifold. We will
use a definition which works for topological and smooth manifolds, based
on the local model of inclusion of a vector subspace. These are sometimes
called regular or embedded submanifolds.
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Definition 2.7. A subspace L ⊂ M of an m-manifold is called a sub-
manifold of codimension k when each point x ∈ L is contained in a chart
(U,φ) for M such that

L ∩ U = f−1(0), (38)
where f is the composition of φ with the projection Rm → Rk to the
last k coordinates (xm−k+1, . . . , xm). A submanifold of codimension 1 is
usually called a hypersurface.
Proposition 2.8. If f : M −→ N is a smooth map of manifolds, and if
Df(p) has constant rank on M , then for any q ∈ f(M), the inverse image
f−1(q) ⊂ M is a regular submanifold.

Proof. Let x ∈ f−1(q). Then there exist charts ψ,φ such that ψ◦f ◦φ−1 :
(x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0) and f−1(q) ∩ U = {x1 = · · · = xk =
0}. Hence we obtain that f−1(q) is a codimension k submanifold.

Example 2.9. Let f : Rn −→ R be given by (x1, . . . , xn) 7→
∑

x2
i .

Then Df(x) = (2x1, . . . , 2xn), which has rank 1 at all points in Rn\{0}.
Hence since f−1(q) contains {0} iff q = 0, we see that f−1(q) is a regular
submanifold for all q ̸= 0. Exercise: show that this manifold structure is
compatible with that obtained in Example 1.22.

The previous example leads to the following special case.
Proposition 2.10. If f : M −→ N is a smooth map of manifolds and
Df(p) has rank equal to dimN along f−1(q), then this subset f−1(q) is
an embedded submanifold of M .

Proof. Since the rank is maximal along f−1(q), it must be maximal in an
open neighbourhood U ⊂ M containing f−1(q), and hence f : U −→ N
is of constant rank.

Definition 2.11. If f : M −→ N is a smooth map such that Df(p) is
surjective, then p is called a regular point. Otherwise p is called a critical
point. If all points in the level set f−1(q) are regular points, then q is
called a regular value, otherwise q is called a critical value. In particular,
if f−1(q) = ∅, then q is regular.

It is often useful to highlight two classes of smooth maps; those for
which Df is everywhere injective, or, on the other hand surjective.
Definition 2.12. A smooth map f : M −→ N is called a submersion
when Df(p) is surjective at all points p ∈ M , and is called an immersion
when Df(p) is injective at all points p ∈ M . If f is an injective immersion
which is a homeomorphism onto its image (when the image is equipped
with subspace topology), then we call f an embedding.
Proposition 2.13. If f : M −→ N is an embedding, then f(M) is a
regular submanifold.

Proof. Let f : M −→ N be an embedding. Then for all m ∈ M , we have
charts (U,φ), (V, ψ) where ψ◦f◦φ−1 : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).
If f(U) = f(M)∩V , we’re done. To make sure that some other piece of M
doesn’t get sent into the neighbourhood, use the fact that f(U) is open in
the subspace topology. This means we can find a smaller open set V ′ ⊂ V
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such that V ′ ∩ f(M) = f(U). Restricting the coordinates to V ′, we see
that f(M) is cut out by (xm+1, . . . , xn), where n = dimN .

Example 2.14. If ι : M −→ N is an embedding of M into N , then Dι :
TM −→ TN is also an embedding (hence so are Dkι : T kM −→ T kN),
showing that TM is a submanifold of TN .
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