
Quantum Mechanics, Assignment 3 Due date: November 6, 2015

Reading: Woit Chapter 9, 10, and a brief introduction to Hilbert spaces, I recommend:
https://www.math.ucdavis.edu/~hunter/book/ch6.pdf

Exercise 1. Let V ∼= C2 be the standard spin-1
2

representation of SU(2), with standard basis
vectors (e0, e1). The representation S2V ⊗ S2V decomposes into three irreducible representations;
determine which ones. Give an argument using highest weight vectors. Then give explicit bases
spanning the three summands, with each basis element expressed in terms of the elements

`1 = i√
2
(e0 ⊗ e0 − e1 ⊗ e1), `2 = 1√

2
(e0 ⊗ e0 + e1 ⊗ e1), `3 = −i√

2
(e0 ⊗ e1 + e1 ⊗ e0).

Recall that this basis for S2V may be identified with the basis (Xk = − i
2
σk)k=1,2,3 for su(2),

defining an isomorphism between S2V and the (complexified) adjoint representation.

Exercise 2. The Casimir operator in a representation π of su(2) on V is given by the operator
(the superscript on L does not mean that it is a square).

L2
π = (π(X1))

2 + (π(X2))
2 + (π(X3))

2,

where Xk = − i
2
σk as before.

1. Prove that if we change the basis (X1, X2, X3) for su(2) using conjugation by a matrix in
SU(2), then the operator L2

π remains unchanged. Hint: Show that L2
π remains constant if

we apply 1-parameter subgroups etXk to the basis.

2. Compute the Casimir operator for the action of SU(2) on polynomial functions of (z1, z2) ∈
C2; verify that the homogeneous polynomials are eigenvectors and determine their eigenval-
ues.

3. Let L2
π and L2

ρ be the Casimir operators for two SU(2) representations π, ρ on vector spaces
U, V , and let L2

π⊗ρ be the Casimir for the tensor product representation on U ⊗ V . Describe
explicitly the operator 1

2
(L2

π⊗ρ − L2
π − L2

ρ) using the basis (X1, X2, X3). This is the famous
Spin-Orbit coupling operator.

Exercise 3. (Vector subspaces of a Hilbert space H) Let `2 be the Hilbert space of square-
summable sequences of complex numbers.

1. Give examples of subspaces of `2 which a) have infinite dimension and codimension, b) which
have finite dimension, and c) which have finite codimension.

2. Give an example of a proper subspace of `2 which is closed.

3. Give an example of a proper subspace of `2 which is dense.

4. if W ⊂ H is a subspace, show the closure W is a subspace, show

W⊥ = (W )⊥,

and show that W ∩W⊥ = {0}.
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5. Show that if W ⊂ H is a closed subspace, then W and H/W naturally inherit a Hilbert
space structure.

6. Is it possible that W/W be nonzero but finite-dimensional?

Exercise 4. (The unit sphere in Hilbert space). Let S(H) ⊂ H be the unit sphere in H.

1. Show that S(H) is closed.

2. Show that a linear map of Hilbert spaces F : H1 → H2 is continuous if and only if F (S(H1))
is bounded. (This is why such maps are sometimes called “bounded operators”) Show this
is equivalent to the inequality

||Fv||H2 ≤ C||v||H1 ∀v ∈ H1, (1)

for some constant C independent of v.

3. Suppose that D ⊂ H1 is a dense linear subspace and F : D → H2 is a continuous linear
map. Show that F has a unique extension to a continuous linear map F : H1 → H2.

4. The operator d
dx

is defined on a dense subspace D ⊂ L2(R) containing the smooth functions
with compact support (meaning that the function vanishes outside some finite interval in R).
Show that d

dx
is not bounded, that is, that d

dx
: D → L2(R) is not continuous.

Despite the fact that d
dx

is not defined on all of L2(R), we refer to it as an operator on L2(R),
keeping in mind that it is defined only on a dense subspace called its domain.

Exercise 5. (The continuous dual) The operator norm of a continuous linear map F : H1 → H2

is defined as
||F || := sup

v∈S(H1)

||Fv||H2 .

Show that the composition of continuous linear operators is a continuous operation in the operator
norm, i.e. for A,B continous linear operators, show

||A ◦B|| ≤ ||A||||B||.

Let H′ denote the continuous dual of H, i.e. the space of continuous linear maps L : H → R,
equipped with operator norm, viewing R as a Hilbert space.

1. Show that the “dualization map” v 7→ v∗ = 〈v, ·〉 is an injective, norm-preserving continuous
linear map H → H′.
The Riesz representation theorem states that the dualization map is an isomorphism of
Hilbert spaces.

2. Show that if F : H1 → H2 is a continous linear operator, then F ∗ : H′2 → H′1 defined by

F ∗µ = µ ◦ F

is a continuous linear map. If F is injective, under what conditions is F ∗ surjective? Show
that if F is injective and Im(F ) is dense, then F ∗ is injective.


