
1.5 Smooth maps
For topological manifolds M,N of dimension m,n, the natural notion of mor-
phism from M to N is that of a continuous map. A continuous map with
continuous inverse is then a homeomorphism from M to N , which is the nat-
ural notion of equivalence for topological manifolds. Since the composition of
continuous maps is continuous, we obtain a “category” of topological manifolds
and continuous maps.

A category is a class of objects C (in our case, topological manifolds) and
a class of arrows A (in our case, continuous maps). Each arrow goes from
an object (the source) to another object (the target), meaning that there are
“source” and “target” maps from A to C:
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Also, a category has an identity arrow for each object, given by a map id : C −→
A (in our case, the identity map of any manifold to itself). Furthermore, there
is an associative composition operation on arrows.

Conventionally, we write the set of arrows from X to X as Hom(X,Y ), i.e.

Hom(X,Y ) = {a ∈ A : s(a) = X and t(a) = Y }. (26)

Then the associative composition of arrows mentioned above becomes a map

Hom(X,Y ) × Hom(Y,Z) → Hom(X,Z). (27)

We have described the category of topological manifolds; we now describe the
category of smooth manifolds by defining the notion of a smooth map.

Definition 1.32. A map f : M → N is called smooth when for each chart
(U,φ) for M and each chart (V, ψ) for N , the composition ψ ◦ f ◦ φ−1 is a
smooth map, i.e. ψ ◦ f ◦ φ−1 ∈ C∞(φ(U),Rn).

The set of smooth maps (i.e. morphisms) fromM toN is denoted C∞(M,N).
A smooth map with a smooth inverse is called a diffeomorphism.

Proposition 1.33. If g : L → M and f : M → N are smooth maps, then so is
the composition f ◦ g.

Proof. If charts φ, χ, ψ for L,M,N are chosen near p ∈ L, g(p) ∈ M , and
(fg)(p) ∈ N , then ψ ◦ (f ◦ g) ◦ φ−1 = A ◦ B, for A = ψfχ−1 and B = χgφ−1

both smooth mappings Rn → Rn. By the chain rule, A ◦ B is differentiable at
p, with derivative Dp(A ◦B) = (Dg(p)A)(DpB) (matrix multiplication).

Now we have a new category, the category of smooth manifolds and smooth
maps; two manifolds are considered isomorphic when they are diffeomorphic. In
fact, the definitions above carry over, word for word, to the setting of manifolds
with boundary. Hence we have defined another category, the category of smooth
manifolds with boundary.
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In defining the arrows for the category of manifolds with boundary, we may
choose to consider all smooth maps, or only those smooth maps which send the
boundary to the boundary, i.e. boundary-preserving maps.

The operation ∂ of “taking the boundary” sends a manifold with boundary to
a usual manifold. Furthermore, if ψ : M → N is a boundary-preserving smooth
map, then we can “take its boundary” by restricting it to the boundary, i.e.
∂ψ = ψ|∂M . Since ∂ takes objects to objects and arrows to arrows in a manner
which respects compositions and identity maps, it is called a “functor” from the
category of manifolds with boundary (and boundary-preserving smooth maps)
to the category of smooth manifolds.

Example 1.34. Let φz be a chart for S1, and let j : S1 → C be the inclusion
map of S1. We see that j is smooth since j ◦ φ−1 is the map

t 7→ e2πit = (cos(2πt), sin(2πt)), (28)

which is a smooth map from Ic ⊂ R to R2.

Example 1.35. The complex projective line CP 1 is diffeomorphic to the 2-
sphere S2: consider the maps f+(x0, x1, x2) = [1+x0 : x1+ix2] and f−(x0, x1, x2) =
[x1 − ix2 : 1 − x0]. Since f± is continuous on x0 ̸= ±1, and since f− = f+ on
|x0| < 1, the pair (f−, f+) defines a continuous map f : S2 −→ CP 1. To check
smoothness, we compute the compositions

φ0 ◦ f+ ◦ φ−1
N : (y1, y2) 7→ y1 + iy2, (29)

φ1 ◦ f− ◦ φ−1
S : (y1, y2) 7→ y1 − iy2, (30)

both of which are obviously smooth maps.

Example 1.36. The smooth inclusion j : S1 → C induces a smooth inclusion
j × j of the 2-torus T 2 = S1 × S1 into C2. The image of j × j does not include
zero, so we may compose with the projection π : C2 \ {0} → CP 1 and the
diffeomorphism CP 1 → S2, to obtain a smooth map

π ◦ (j × j) : T 2 → S2. (31)

Remark 1.37 (Exotic smooth structures). The topological Poincaré conjec-
ture, now proven, states that any topological manifold homotopic to the n-
sphere is in fact homeomorphic to it. We have now seen how to put a differ-
entiable structure on this n-sphere. Remarkably, there are other differentiable
structures on the n-sphere which are not diffeomorphic to the standard one we
gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and since
the connected sum operation is well-defined as a smooth manifold, it follows that
the connected sum defines a monoid structure on the set of smooth n-spheres.
In fact, Kervaire and Milnor showed that for n ̸= 4, the set of (oriented) dif-
feomorphism classes of smooth n-spheres forms a finite abelian group under the
connected sum operation. This is not known to be the case in four dimensions.
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Kervaire and Milnor also compute the order of this group, and the first dimen-
sion where there is more than one smooth sphere is n = 7, in which case they
show there are 28 smooth spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Euclidean
spaces: any differentiable manifold homeomorphic to Rn for n ̸= 4 must be
diffeomorphic to it. On the other hand, by results of Donaldson, Freedman,
Taubes, and Kirby, we know that there are uncountably many non-diffeomorphic
smooth structures on the topological manifold R4; these are called fake R4s.

Remark 1.38. The maps α : x 7→ x and β : x 7→ x3 are both homeomorphisms
from R to R. Each one defines, by itself, a smooth atlas on R. These two smooth
atlases are not compatible (why?), so they do not define the same smooth struc-
ture on R. Nevertheless, the smooth structures are equivalent, since there is a
diffeomorphism taking one to the other. What is it?

Example 1.39 (Lie groups). A group is a set G with an associative multi-
plication G×G

m // G , an identity element e ∈ G, and an inversion map
ι : G −→ G, usually written ι(g) = g−1.

If we endow G with a topology for which G is a topological manifold and m, ι
are continuous maps, then the resulting structure is called a topological group.
If G is a given a smooth structure and m, ι are smooth maps, the result is a Lie
group.

The real line (where m is given by addition), the circle (where m is given by
complex multiplication), and their Cartesian products give simple but important
examples of Lie groups. We have also seen the general linear group GL(n,R),
which is a Lie group since matrix multiplication and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and define
smooth maps Lg : G −→ G and Rg : G −→ G via Lg(h) = gh and Rg(h) = hg.
These are called left multiplication and right multiplication. Note that the group
axioms imply that RgLh = LhRg.

2 The tangent bundle
The tangent bundle of a manifold is an absolutely central topic in differential
geometry. In this section, we describe the tangent bundle intrinsically, with-
out reference to any embedding of the manifold in a vector space. By way of
motivation, however, we briefly discuss this case.

The definition of the tangent bundle is simplest for an open subset U ⊂ V
of a finite-dimensional vector space V . In this case, a tangent vector to a point
p ∈ U is simply a vector in V , and so the tangent bundle, which consists of all
tangent vectors to all points in U , is simply given by

TU = U × V. (32)

The tangent bundle TU of U is then equipped with a projection map π : TU →
U , and a vector field on U is nothing but a section of this projection, i.e.
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a smooth map X : U → TU such that π ◦ X = idU . We now investigate
the problem of generalizing the tangent bundle to other manifolds, where the
convenience of being an open set in a vector space is not available.

2.1 Submanifolds of Euclidean space
There are several ways to define the notion of submanifold. We will use a very
basic definition which works for topological and smooth manifolds and which is
based on the local model of inclusion of a vector subspace. These are sometimes
called regular or embedded submanifolds.

Definition 2.1. A subspace L ⊂ M of an m-manifold is called a submanifold
of codimension k when each point x ∈ L is contained in a chart (U,φ) for M
such that

L ∩ U = f−1(0), (33)

where f is the composition of φ with the projection Rm → Rk to the last
k coordinates (xm−k+1, . . . , xm). A submanifold of codimension 1 is usually
called a hypersurface.

Now suppose that L ⊂ Rm is a submanifold of codimension k, and let φ be
a diffeomorphism which “rectifies” a neighbourhood U ⊂ Rn of a point p ∈ L,
sending U to an open set in Rm in which the image of L∩U is a linear subspace,
given by xm−k+1 = · · · = xm = 0. Then we say that u ∈ Rm is tangent to L at
p when the derivative Dφ(p) takes u to that same linear subspace.

The tangent bundle TL of L is the set of all pairs (p, u), where p ∈ L and
u ∈ Rm is tangent to L at p. It is a subset of TRm = Rm × Rm, and one can
prove that it is a submanifold of R2m of codimension 2k.

2.2 General construction
The tangent bundle of an n-manifold M is a 2n-manifold, called TM , naturally
constructed in terms of M . As a set, it is fairly easy to describe, as simply the
disjoint union of all tangent spaces. However we must explain precisely what
we mean by the tangent space TpM to p ∈ M .

Definition 2.2. Let (U,φ), (V, ψ) be coordinate charts around p ∈ M . Let
u ∈ Tφ(p)φ(U) and v ∈ Tψ(p)ψ(V ). Then the triples (U,φ, u), (V, ψ, v) are
called equivalent when D(ψ ◦φ−1)(φ(p)) : u 7→ v. The chain rule for derivatives
Rn −→ Rn guarantees that this is indeed an equivalence relation.

The set of equivalence classes of such triples is called the tangent space to p
of M , denoted TpM , and forms a real vector space of dimension dimM .

As a set, the tangent bundle is defined by

TM =
⊔
p∈M

TpM,
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and it is equipped with a natural surjective map π : TM −→ M , which is simply
π(X) = x for X ∈ TxM .

We now give it a manifold structure in a natural way.

Proposition 2.3. For an n-manifold M , the set TM has a natural topology
and smooth structure which make it a 2n-manifold, and make π : TM −→ M a
smooth map.

Proof. Any chart (U,φ) for M defines a bijection

Tφ(U) ∼= U × Rn −→ π−1(U) (34)

via (p, v) 7→ (U,φ, v). Using this, we induce a smooth manifold structure on
π−1(U), and view the inverse of this map as a chart (π−1(U),Φ) to φ(U) ×Rn.

given another chart (V, ψ), we obtain another chart (π−1(V ),Ψ) and we may
compare them via

Ψ ◦ Φ−1 : φ(U ∩ V ) × Rn −→ ψ(U ∩ V ) × Rn, (35)

which is given by (p, u) 7→ ((ψ ◦ φ−1)(p), D(ψ ◦ φ−1)pu), which is smooth.
Therefore we obtain a topology and smooth structure on all of TM (by defining
W to be open when W ∩ π−1(U) is open for every U in an atlas for M ; all that
remains is to verify the Hausdorff property, which holds since points x, y are
either in the same chart (in which case it is obvious) or they can be separated
by the given type of charts.

Remark 2.4. This is a more constructive way of looking at the tangent bundle:
We choose a countable, locally finite atlas {(Ui, φi)} for M and glue together
Ui × Rn to Uj × Rn via an equivalence

(x, u) ∼ (y, v) ⇔ y = φj ◦ φ−1
i (x) and v = D(φj ◦ φ−1

i )xu, (36)

and verify the conditions of the general gluing construction 1.13. Then show
that a different atlas gives a canonically diffeomorphic manifold, i.e. that the
result is independent of atlas.

13


