
2.3 The derivative
A description of the tangent bundle is not complete without defining the deriva-
tive of a general smooth map of manifolds f : M −→ N . Such a map may be
defined locally in charts (Ui, φi) for M and (Vα, ψα) for N as a collection of
vector-valued functions ψα ◦ f ◦ φ−1

i = fiα : φi(Ui) −→ ψα(Vα) which satisfy

(ψβ ◦ ψ−1
α ) ◦ fiα = fjβ ◦ (φj ◦ φ−1

i ). (38)

Differentiating, we obtain

D(ψβ ◦ ψ−1
α ) ◦Dfiα = Dfjβ ◦D(φj ◦ φ−1

i ). (39)

Equation 39 shows that Dfiα and Dfjβ glue together to define a map TM −→
TN . This map is called the derivative of f and is denoted Df : TM −→ TN .
Sometimes it is called the “push-forward” of vectors and is denoted f∗. The
map fits into the commutative diagram

TM
Df //

π

��

TN

π

��
M

f
// N

(40)

Each fiber π−1(x) = TxM ⊂ TM is a vector space, and the map Df : TxM −→
Tf(x)N is a linear map. In fact, (f,Df) defines a homomorphism of vector
bundles from TM to TN .

The usual chain rule for derivatives then implies that if f ◦ g = h as maps of
manifolds, then Df ◦Dg = Dh. As a result, we obtain the following category-
theoretic statement.

Proposition 2.5. The mapping T which assigns to a manifold M its tangent
bundle TM , and which assigns to a map f : M −→ N its derivative Df :
TM −→ TN , is a functor from the category of manifolds and smooth maps to
itself1.

For this reason, the derivative map Df is sometimes called the “tangent
mapping” Tf .

2.4 Vector fields
A vector field on an open subset U ⊂ V of a vector space V is what we usually
call a vector-valued function, i.e. a function X : U → V . If (x1, . . . , xn) is a
basis for V ∗, hence a coordinate system for V , then the constant vector fields
dual to this basis are usually denoted in the following way:(

∂

∂x1
, . . . ,

∂

∂xn

)
. (41)

1We can also say that it is a functor from manifolds to the category of smooth vector
bundles
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The reason for this notation is that we may identify a direction vector v with the
operator of directional derivative in the direction v. We will see later that vector
fields may be equivalently viewed as derivations on functions. A derivation is a
linear map D from smooth functions to R satisfying the Leibniz rule D(fg) =
fDg + gDf .

The tangent bundle allows us to make sense of the notion of vector field in
a global way. Locally, in a chart (Ui, φi), we would say that a vector field Xi

is simply a vector-valued function on Ui, i.e. a function Xi : φ(Ui) −→ Rn. Of
course if we had another vector field Xj on (Uj , φj), then the two would agree
as vector fields on the overlap Ui ∩ Uj when D(φj ◦ φ−1

i ) : Xi 7→ Xj . So, if we
specify a collection {Xi ∈ C∞(Ui,Rn)} which glue together on overlaps, defines
a global vector field.

Definition 2.6. A smooth vector field on the manifold M is a smooth map
X : M −→ TM such that π ◦X = idM . In words, it is a smooth assignment of
a unique tangent vector to each point in M .

Such maps X are also called cross-sections or simply sections of the tangent
bundle TM , and the set of all such sections is denoted C∞(M,TM) or, better,
Γ∞(M,TM), to distinguish them from all smooth maps M −→ TM .

Example 2.7. From a computational point of view, given an atlas (Ũi, φi) for
M , let Ui = φi(Ũi) ⊂ Rn and let φij = φj ◦ φ−1

i . Then a global vector field
X ∈ Γ∞(M,TM) is specified by a collection of vector-valued functions

Xi : Ui −→ Rn, (42)

such that
Dφij(Xi(x)) = Xj(φij(x)) (43)

for all x ∈ φi(Ũi ∩ Ũj). For example, if S1 = U0 ⊔ U1/ ∼, with U0 = R and
U1 = R, with x ∈ U0\{0} ∼ y ∈ U1\{0} whenever y = x−1, then φ01 : x 7→ x−1

and Dφ01(x) : v 7→ −x−2v. Then if we define (letting x be the standard
coordinate along R)

X0 = ∂

∂x

X1 = −y2 ∂

∂y
,

we see that this defines a global vector field, which does not vanish in U0 but
vanishes to order 2 at a single point in U1. Find the local expression in these
charts for the rotational vector field on S1 given in polar coordinates by ∂

∂θ .

Remark 2.8. While a vector v ∈ TpM is mapped to a vector (Df)p(v) ∈
Tf(p)N by the derivative of a map f ∈ C∞(M,N), there is no way, in general,
to transport a vector field X on M to a vector field on N . If f is invertible,
then of course Df ◦X ◦ f−1 : N → TN defines a vector field on N , which can
be called f∗X, but if f is not invertible this approach fails.
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Definition 2.9. We say that X ∈ Γ∞(M,TM) and Y ∈ Γ∞(N,TN) are f–
related, for f ∈ C∞(M,N), when the following diagram commutes

TM
Df // TN

M

X

OO

f
// N

Y

OO .

(44)

2.5 Local structure of smooth maps
In some ways, smooth manifolds are easier to produce or find than general topo-
logical manifolds, because of the fact that smooth maps have linear approxima-
tions. Therefore smooth maps often behave like linear maps of vector spaces,
and we may gain inspiration from vector space constructions (e.g. subspace,
kernel, image, cokernel) to produce new examples of manifolds.

In charts (U,φ), (V, ψ) for the smooth manifolds M,N , a smooth map f :
M −→ N is represented by a smooth map ψ ◦ f ◦ φ−1 ∈ C∞(φ(U),Rn). We
shall give a general local classification of such maps, based on the behaviour of
the derivative. The fundamental result which provides information about the
map based on its derivative is the inverse function theorem.

Theorem 2.10 (Inverse function theorem). Let U ⊂ Rm an open set and f :
U −→ Rm a smooth map such that Df(p) is an invertible linear operator. Then
there is a neighbourhood V ⊂ U of p such that f(V ) is open and f : V −→ f(V )
is a diffeomorphism. furthermore, D(f−1)(f(p)) = (Df(p))−1.

Proof. Without loss of generality, assume that U contains the origin, that f(0) =
0 and that Df(p) = Id (for this, replace f by (Df(0))−1 ◦ f . We are trying
to invert f , so solve the equation y = f(x) uniquely for x. Define g so that
f(x) = x+ g(x). Hence g(x) is the nonlinear part of f .

The claim is that if y is in a sufficiently small neighbourhood of the origin,
then the map hy : x 7→ y − g(x) is a contraction mapping on some closed ball;
it then has a unique fixed point ϕ(y), and so y − g(ϕ(y)) = ϕ(y), i.e. ϕ is an
inverse for f .

Why is hy a contraction mapping? Note that Dhy(0) = 0 and hence there is
a ball B(0, r) where ||Dhy|| ≤ 1

2 . This then implies (mean value theorem) that
for x, x′ ∈ B(0, r),

||hy(x) − hy(x′)|| ≤ 1
2 ||x− x′||.

Therefore hy does look like a contraction, we just have to make sure it’s oper-
ating on a complete metric space. Let’s estimate the size of hy(x):

||hy(x)|| ≤ ||hy(x) − hy(0)|| + ||hy(0)|| ≤ 1
2 ||x|| + ||y||.

Therefore by taking y ∈ B(0, r
2 ), the map hy is a contraction mapping on B(0, r).

Let ϕ(y) be the unique fixed point of hy guaranteed by the contraction mapping
theorem.
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To see that ϕ is continuous (and hence f is a homeomorphism), we compute

||ϕ(y) − ϕ(y′)|| = ||hy(ϕ(y)) − hy′(ϕ(y′))||
≤ ||g(ϕ(y)) − g(ϕ(y′))|| + ||y − y′||
≤ 1

2 ||ϕ(y) − ϕ(y′)|| + ||y − y′||,

so that we have ||ϕ(y) − ϕ(y′)|| ≤ 2||y − y′||, as required.
To see that ϕ is differentiable, we guess the derivative (Df)−1 and compute.

Let x = ϕ(y) and x′ = ϕ(y′). For this to make sense we must have chosen r
small enough so that Df is nonsingular on B(0, r), which is not a problem.

||ϕ(y) − ϕ(y′) − (Df(x))−1(y − y′)|| = ||x− x′ − (Df(x))−1(f(x) − f(x′))||
≤ ||(Df(x))−1||||(Df(x))(x− x′) − (f(x) − f(x′))||.

Now note that ||(Df(x))−1|| is bounded and ||x − x′|| ≤ 2||y − y′|| as shown
before. Dividing by ||y − y′||, taking the limit y → y′, and using the differen-
tiability of f , we get that ϕ is differentiable, and with derivative (Df)−1. That
is,

Dϕ = (Df)−1. (45)

Since inversion is C∞, ϕ has as many derivatives as f , hence ϕ is C∞.

This theorem provides us with a local normal form for a smooth map with
Df(p) invertible: we may choose coordinates on sufficiently small neighbour-
hoods of p, f(p) so that f is represented by the identity map Rn −→ Rn.

In fact, the inverse function theorem leads to a normal form theorem for a
more general class of maps:

Theorem 2.11 (Constant rank theorem). Let f : Mm → Nn be a smooth map
such that Df has constant rank k in a neighbourhood of p ∈ M . Then there are
charts (U,φ) and (V, ψ) containing p, f(p) such that

ψ ◦ f ◦ φ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0). (46)

Proof. Begin by choosing charts so that without loss of generality M is an open
set in Rm and N is Rn.

Since rk Df = k at p, there is a k × k minor of Df(p) with nonzero
determinant. Reorder the coordinates on Rm and Rn so that this minor is
top left, and translate coordinates so that f(0) = 0. label the coordinates
(x1, . . . , xk, y1, . . . ym−k) on the domain and (u1, . . . uk, v1, . . . , vn−k) on the codomain.

Then we may write f(x, y) = (Q(x, y), R(x, y)), where Q is the projection
to u = (u1, . . . , uk) and R is the projection to v. with ∂Q

∂x nonsingular. First
we wish to put Q into normal form. Consider the map ϕ(x, y) = (Q(x, y), y),
which has derivative

Dϕ =
( ∂Q

∂x
∂Q
∂y

0 1

)
(47)
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As a result we see Dϕ(0) is nonsingular and hence there exists a local in-
verse ϕ−1(x, y) = (A(x, y), B(x, y)). Since it’s an inverse this means (x, y) =
ϕ(ϕ−1(x, y)) = (Q(A,B), B), which implies that B(x, y) = y.

Then f ◦ ϕ−1 : (x, y) 7→ (x, R̃ = R(A, y)), and must still be of rank k. Since
its derivative is

D(f ◦ ϕ−1) =

(
Ik×k 0

∂R̃
∂x

∂R̃
∂y

)
(48)

we conclude that ∂R̃
∂y = 0, meaning that

f ◦ ϕ−1 : (x, y) 7→ (x, S(x)). (49)

We now postcompose by the diffeomorphism σ : (u, v) 7→ (u, v−S(u)), to obtain

σ ◦ f ◦ ϕ−1 : (x, y) 7→ (x, 0), (50)

as required.

As we shall see, these theorems have many uses. One of the most straight-
forward uses is for defining submanifolds.

Proposition 2.12. If f : M −→ N is a smooth map of manifolds, and if Df(p)
has constant rank on M , then for any q ∈ f(M), the inverse image f−1(q) ⊂ M
is a regular submanifold.

Proof. Let x ∈ f−1(q). Then there exist charts ψ,φ such that ψ ◦ f ◦ φ−1 :
(x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0) and f−1(q) ∩ U = {x1 = · · · = xk = 0}.
Hence we obtain that f−1(q) is a codimension k submanifold.

Example 2.13. Let f : Rn −→ R be given by (x1, . . . , xn) 7→
∑
x2

i . Then
Df(x) = (2x1, . . . , 2xn), which has rank 1 at all points in Rn\{0}. Hence since
f−1(q) contains {0} iff q = 0, we see that f−1(q) is a regular submanifold for
all q ̸= 0. Exercise: show that this manifold structure is compatible with that
obtained in Example 1.19.

The previous example leads to the following special case.

Proposition 2.14. If f : M −→ N is a smooth map of manifolds and Df(p)
has rank equal to dimN along f−1(q), then this subset f−1(q) is an embedded
submanifold of M .

Proof. Since the rank is maximal along f−1(q), it must be maximal in an open
neighbourhood U ⊂ M containing f−1(q), and hence f : U −→ N is of constant
rank.

Definition 2.15. If f : M −→ N is a smooth map such that Df(p) is surjective,
then p is called a regular point. Otherwise p is called a critical point. If all
points in the level set f−1(q) are regular points, then q is called a regular value,
otherwise q is called a critical value. In particular, if f−1(q) = ∅, then q is
regular.
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It is often useful to highlight two classes of smooth maps; those for which
Df is everywhere injective, or, on the other hand surjective.

Definition 2.16. A smooth map f : M −→ N is called a submersion when
Df(p) is surjective at all points p ∈ M , and is called an immersion when
Df(p) is injective at all points p ∈ M . If f is an injective immersion which is
a homeomorphism onto its image (when the image is equipped with subspace
topology), then we call f an embedding.

Proposition 2.17. If f : M −→ N is an embedding, then f(M) is a regular
submanifold.

Proof. Let f : M −→ N be an embedding. Then for all m ∈ M , we have
charts (U,φ), (V, ψ) where ψ ◦ f ◦ φ−1 : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).
If f(U) = f(M) ∩ V , we’re done. To make sure that some other piece of M
doesn’t get sent into the neighbourhood, use the fact that F (U) is open in
the subspace topology. This means we can find a smaller open set V ′ ⊂ V
such that V ′ ∩ f(M) = f(U). Then we can restrict the charts (V ′, ψ|V ′),
(U ′ = f−1(V ′), φU ′) so that we see the embedding.

Example 2.18. If ι : M −→ N is an embedding of M into N , then Dι :
TM −→ TN is also an embedding, and hence Dkι : T kM −→ T kN are all
embeddings.
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