
2.6 Smooth maps between manifolds with boundary
We may also use the constant rank theorem to study manifolds with boundary.

Proposition 2.19. Let M be a smooth n-manifold and f : M −→ R a smooth
and proper real-valued function, and let a, b, with a < b, be regular values of f .
Then f−1([a, b]) is a cobordism between the closed n − 1-manifolds f−1(a) and
f−1(b).

Proof. The pre-image f−1((a, b)) is an open subset of M and hence a subman-
ifold. Since p is regular for all p ∈ f−1(a), we may (by the constant rank
theorem) find charts such that f is given near p by the linear map

(x1, . . . , xm) 7→ xm. (51)

Possibly replacing xm by −xm, we therefore obtain a chart near p for f−1([a, b])
into Hm, as required. Proceed similarly for p ∈ f−1(b).

Example 2.20. Using f : Rn −→ R given by (x1, . . . , xn) 7→
∑
x2

i , this gives
a simple proof for the fact that the closed unit ball B(0, 1) = f−1([−1, 1]) is a
manifold with boundary.

Example 2.21. Consider the C∞ function f : R3 −→ R given by (x, y, z) 7→
x2 + y2 − z2. Both +1 and −1 are regular values for this map, with pre-images
given by 1- and 2-sheeted hyperboloids, respectively. Hence f−1([−1, 1]) is a
cobordism between hyperboloids of 1 and 2 sheets. In other words, it defines a
cobordism between the disjoint union of two closed disks and the closed cylinder
(each of which has boundary S1 ⊔ S1). Does this cobordism tell us something
about the cobordism class of a connected sum?

Proposition 2.22. Let f : M −→ N be a smooth map from a manifold with
boundary to the manifold N . Suppose that q ∈ N is a regular value of f and
also of f |∂M . Then the pre-image f−1(q) is a submanifold with boundary2.
Furthermore, the boundary of f−1(q) is simply its intersection with ∂M .

Proof. If p ∈ f−1(q) is not in ∂M , then as before f−1(q) is a submanifold in a
neighbourhood of p. Therefore suppose p ∈ ∂M ∩ f−1(q). Pick charts φ,ψ so
that φ(p) = 0 and ψ(q) = 0, and ψfφ−1 is a map U ⊂ Hm −→ Rn. Extend this
to a smooth function f̃ defined in an open set Ũ ⊂ Rm containing U . Shrinking
Ũ if necessary, we may assume f̃ is regular on Ũ . Hence f̃−1(0) is a submanifold
of Rm of codimension n.

Now consider the real-valued function π : f̃−1(0) −→ R given by the restric-
tion of (x1, . . . , xm) 7→ xm. 0 ∈ R must be a regular value of π, since if not,
then the tangent space to f̃−1(0) at 0 would lie completely in xm = 0, which
contradicts the fact that q is a regular point for f |∂M .

Hence, by Proposition 2.19, we have expressed f−1(q), in a neighbour-
hood of p, as a regular submanifold with boundary given by {φ−1(x) : x ∈
f̃−1(0) and π(x) ≥ 0}, as required.

2i.e. locally modeled on the inclusion Hk ⊂ Hn given by (x1, . . . xk) 7→ (0, . . . , 0, x1, . . . xk).
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3 Transversality
We continue to use the constant rank theorem to produce more manifolds, except
now these will be cut out only locally by functions. Globally, they are cut out by
intersecting with another submanifold. You should think that intersecting with
a submanifold locally imposes a number of constraints equal to its codimension.

The problem is that the intersection of submanifolds need not be a subman-
ifold; this is why the condition of transversality is so important - it guarantees
that intersections are smooth.

Two subspaces K,L ⊂ V of a vector space V are transverse when K + L =
V , i.e. every vector in V may be written as a (possibly non-unique) linear
combination of vectors in K and L. In this situation one can easily see that
dimV = dimK + dimL− dimK ∩ L, or equivalently

codimV = codimK + codimL. (52)

We may apply this to submanifolds as follows:

Definition 3.1. Let K,L ⊂ M be regular submanifolds such that every point
p ∈ K ∩ L satisfies

TpK + TpL = TpM. (53)

Then K,L are said to be transverse submanifolds and we write K ∩| L.

Proposition 3.2. If K,L ⊂ M are transverse submanifolds, then K ∩ L is
either empty, or a submanifold of codimension codimK + codimL.

Proof. Let p ∈ K ∩L. Then there is a neighbourhood U of p for which K ∩U =
f−1(0) for 0 a regular value of a function f : U −→ RcodimK and L∩U = g−1(0)
for 0 a regular value of a function g : L ∩ U −→ RcodimL.

Then p must be a regular point for (f, g) : L ∩M ∩ U −→ RcodimK+codimL,
since the kernel of its derivative is the intersection kerDf(p) ∩ kerDg(p), which
is exactly TpK∩TpL, which has codimension codimK+codimL by the transver-
sality assumption, implying D(f, g)(p) is surjective. Therefore (f, g)|−1

Ũ
(0, 0) =

f−1(0) ∩ g−1(0) = K ∩ L ∩ Ũ is a submanifold.

Example 3.3 (Exotic spheres). Consider the following intersections in C5\0:

S7
k = {z2

1 +z2
2 +z2

3 +z3
4 +z6k−1

5 = 0}∩{|z1|2+|z2|2+|z3|2+|z4|2+|z5|2 = 1}. (54)

This is a transverse intersection, and for k = 1, . . . , 28 the intersection is a
smooth manifold homeomorphic to S7. These exotic 7-spheres were constructed
by Brieskorn and represent each of the 28 diffeomorphism classes on S7.

We may choose to phrase the previous transversality result in a slightly
different way, in terms of the embedding maps k, l for K,L in M . Specifically,
we say the maps k, l are transverse in the sense that ∀a ∈ K, b ∈ L such that
k(a) = l(b) = p, we have im(Dk(a)) + im(Dl(b)) = TpM . The advantage of this
approach is that it makes sense for any maps, not necessarily embeddings.
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Definition 3.4. Two maps f : K −→ M , g : L −→ M of manifolds are
called transverse when im(Df(a)) + im(Dg(b)) = TpM for all a, b, p such that
f(a) = g(b) = p.

Proposition 3.5. If f : K −→ M , g : L −→ M are transverse smooth maps,
then Kf ×gL = {(a, b) ∈ K × L : f(a) = g(b)} is naturally a smooth manifold
equipped with commuting maps

K × L
p2

**
p1

��

Kf ×gL

i

ee

��

//

f∩g

##

L

g

��
K

f
// M

(55)

where i is the inclusion and f ∩ g : (a, b) 7→ f(a) = g(b).

The manifold Kf ×gL of the previous proposition is called the fiber product
of K with L over M , and is a generalization of the intersection product. It is
often denoted simply by K ×M L, when the maps to M are clear.

Proof. Consider the graphs Γf ⊂ K ×M and Γg ⊂ L×M . To impose f(k) =
g(l), we can take an intersection with the diagonal submanifold

∆ = {(k,m, l,m) ∈ K ×M × L×M}. (56)

Step 1. We show that the intersection Γ = (Γf × Γg) ∩ ∆ is transverse. Let
f(k) = g(l) = m so that x = (k,m, l,m) ∈ Γ, and note that

Tx(Γf × Γg) = {((v,Df(v)), (w,Dg(w))), v ∈ TkK, w ∈ TlL} (57)

whereas we also have

Tx(∆) = {((v,m), (w,m)) : v ∈ TkK, w ∈ TlL, m ∈ TpM} (58)

By transversality of f, g, any tangent vector mi ∈ TpM may be written as
Df(vi) +Dg(wi) for some (vi, wi), i = 1, 2. In particular, we may decompose a
general tangent vector to M ×M as

(m1,m2) = (Df(v2), Df(v2))+(Dg(w1), Dg(w1))+(Df(v1 −v2), Dg(w2 −w1)),
(59)

leading directly to the transversality of the spaces (57), (58). This shows that
Γ is a submanifold of K ×M × L×M .
Step 2. The projection map π : K ×M × L×M → K × L takes Γ bijectively
to Kf ×gL. Since (57) is a graph, it follows that π|Γ : Γ → K×L is an injective
immersion. Since the projection π is an open map, it also follows that π|Γ is
a homeomorphism onto its image, hence is an embedding. This shows that
Kf ×gL is a submanifold of K × L.
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Example 3.6. If K1 = M × Z1 and K2 = M × Z2, we may view both Ki as
“fibering” over M with fibers Zi. If pi are the projections to M , then K1 ×M

K2 = M × Z1 × Z2, hence the name “fiber product”.

Example 3.7. Consider the Hopf map p : S3 −→ S2 given by composing the
embedding S3 ⊂ C2\{0} with the projection π : C2\{0} −→ CP 1 ∼= S2. Then
for any point q ∈ S2, p−1(q) ∼= S1. Since p is a submersion, it is obviously
transverse to itself, hence we may form the fiber product

S3 ×S2 S3,

which is a smooth 4-manifold equipped with a map p ∩ p to S2 with fibers
(p ∩ p)−1(q) ∼= S1 × S1.

These are our first examples of nontrivial fiber bundles, which we shall ex-
plore later.

The following result is an exercise: just as we may take the product of a
manifold with boundary K with a manifold without boundary L to obtain a
manifold with boundary K × L, we have a similar result for fiber products.

Proposition 3.8. Let K be a manifold with boundary where L,M are without
boundary. Assume that f : K −→ M and g : L −→ M are smooth maps such
that both f and ∂f are transverse to g. Then the fiber product K ×M L is a
manifold with boundary equal to ∂K ×M L.
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