
3.1 Stability
Transversality is a stable condition. In other words, if transversality holds, it will
continue to hold for any sufficiently small perturbation (of the submanifolds or
maps involved). Not only is transversality stable, it is actually generic, meaning
that even if it does not hold, it can be made to hold by a small perturbation.
In a sense, stability says that transversal maps form an open set, and genericity
says that this open set is dense in the space of maps. To make this precise, we
would introduce a topology on the space of maps, something which we leave for
another course.

Definition 3.9. We call a smooth map

F : M × [0, 1] → N (60)

a smooth homotopy from f0 to f1, where ft = F ◦ jt and jt : M → M × [0, 1] is
the embedding x 7→ (x, t).

Definition 3.10. A property of a smooth map f : M −→ N is stable under
perturbations when for any smooth homotopy ft with f0 = f , there exists an
ϵ > 0 such that the property holds for all ft with t < ϵ.

Proposition 3.11. If M is compact, then the property of f : M → N being an
immersion (or submersion) is stable under perturbations.

Proof. If ft, t ∈ [0, 1] is a smooth homotopy of the immersion f0, then in any
chart around the point p ∈ M , the derivativeDf0(p) has a m×m submatrix with
nonvanishing determinant, for m = dimM . By continuity, this m×m submatrix
must have nonvanishing determinant in a neighbourhood around (p, 0) ∈ M ×
[0, 1]. We can cover M × {0} by a finite number of such neighbourhoods, since
M is compact. Choose ϵ such that M × [0, ϵ) is contained in the union of these
intervals, giving the result. The proof for submersions is identical.

Corollary 3.12. If K is compact and f : K → M is transverse to the closed
submanifold L ⊂ M (this just means that f is transverse to the embedding
ι : L → M), then the transversality is stable under perturbations of f .

Proof. Let F : K × [0, 1] → M be a homotopy with f0 = f . We show that K
has an open cover by neighbourhoods in which ft is transverse for t in a small
interval; we then use compactness to obtain a uniform interval.

First the points which do not intersect L: F−1(M \ L) is open in K × [0, 1]
and contains (K \ f−1(L)) × {0}. So, for each p ∈ K \ f−1(L), there is a
neighbourhood Up ⊂ K of p and an interval Ip = [0, ϵp) such that F (Up × Ip) ∩
L = ∅.

Now, the points which do intersect L: L is a submanifold, so for each p ∈
f−1(L), we can find a neighbourhood V ⊂ M containing f(p) and a submersion
ψ : V → Rl cutting out L ∩ V . Transversality of f and L is then the statement
that ψf is a submersion at p. This implies there is a neighbourhood Ũp of (p, 0)
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in K × [0, 1] where ψft is a submersion. Choose an open subset (containing
(p, 0)) of the form Up × Ip, for Ip = [0, ϵp).

By compactness of K, choose a finite subcover of {Up}p∈K ; the smallest ϵp in
the resulting subcover gives the required interval in which ft remains transverse
to L.

Remark 3.13. Transversality of two maps f : M → N , g : M ′ → N can be
expressed in terms of the transversality of f × g : M × M ′ → N × N to the
diagonal ∆N ⊂ N × N . So, if M and M ′ are compact, we get stability for
transversality of f, g under perturbations of both f and g.

Remark 3.14. Local diffeomorphism and embedding are also stable properties.

3.2 Genericity of transversality
The fundamental idea which allows us to prove that transversality is a generic
condition is a the theorem of Sard showing that critical values of a smooth map
f : M −→ N (i.e. points q ∈ N for which the map f and the inclusion ι : q ↪→ N
fail to be transverse maps) are rare. The following proof is taken from Milnor,
based on Pontryagin.

The meaning of “rare” will be that the set of critical values is of measure
zero, which means, in Rm, that for any ϵ > 0 we can find a sequence of balls in
Rm, containing f(C) in their union, with total volume less than ϵ. Some easy
facts about sets of measure zero: the countable union of measure zero sets is of
measure zero, the complement of a set of measure zero is dense.

We begin with an elementary lemma describing the behaviour of measure-
zero sets under differentiable maps.

Lemma 3.15. Let Im = [0, 1]m be the unit cube, and f : Im −→ Rn a C1 map.
If m < n then f(Im) has measure zero. If m = n and A ⊂ Im has measure
zero, then f(A) has measure zero.

Proof. If f ∈ C1, its derivative is bounded on Im, so for all x, y ∈ Im we have

||f(y) − f(x)|| ≤ M ||y − x||, (61)

for a constant3 M > 0 depending only on f . So, the image of a ball of radius r
in Im is contained in a ball of radius Mr, which has volume proportional to rn.

If A ⊂ Im has measure zero, then for each ϵ we have a countable covering of
A by balls of radius rk with total volume cm

∑
k r

m
k < ϵ. We deduce that f(Ai)

is covered by balls of radius Mrk with total volume Mncn

∑
k r

n
k ; since n ≥ m

this goes to zero as ϵ → 0. We conclude that f(A) is of measure zero.
If m < n then f defines a C1 map Im ×In−m −→ Rn by pre-composing with

the projection map to Im. Since Im × {0} ⊂ Im × In−m clearly has measure
zero, its image must also.

3This is called a Lipschitz constant.
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Remark 3.16. If we considered the case n < m, the resulting sum of volumes
may be larger in Rn. For example, the projection map R2 −→ R given by
(x, y) 7→ x clearly takes the set of measure zero y = 0 to one of positive measure.

A subset A ⊂ M of a manifold is said to have measure zero when its image
in each chart of an atlas has measure zero. Lemma 3.15, together with the fact
that a manifold is second countable, implies that the property is independent
of the choice of atlas, and that it is preserved under equidimensional maps:
Corollary 3.17. Let f : M → N be a C1 map of manifolds where dimM =
dimN . Then the image f(A) of a set A ⊂ M of measure zero also has measure
zero.
Corollary 3.18 (Baby Sard). Let f : M → N be a C1 of manifolds where
dimM < dimN . Then f(M) (i.e. the set of critical values) has measure zero
in N .
Remark 3.19. Note that this implies that space-filling curves are not C1.

Now we investigate the measure of the critical values of a map f : M → N
where dimM = dimN . The set of critical points need not have measure zero,
but we shall see that

The variation of f is constrained along its critical locus since
this is where Df drops rank. In fact, the set of critical
values has measure zero.

Theorem 3.20 (Equidimensional Sard). Let f : M → N be a C1 map of n-
manifolds, and let C ⊂ M be the set of critical points. Then f(C) has measure
zero.
Proof. It suffices to show result for the unit cube mapping to Euclidean space.
Let f : In −→ Rn a C1 map, and let M be the Lipschitz constant for f on In,
i.e.

||f(x) − f(y)|| ≤ M ||x− y||, ∀x, y ∈ In. (62)
Let c be a critical point, so that the image of Df(c) is a proper subspace of Rn.
Choose a hyperplane containing this subspace, translate it to f(c), and call it
H. Then

d(f(x),H) ≤ ||f(x) − (f(c) +Df(c)(x− c))||, (63)
but by Taylor’s theorem, this is bounded by C||x − c||2, for a constant C, for
all x in the compact set In.

If ||x − c|| ≤ ϵ, then f(x) is within a distance Cϵ2 from H and within a
distance Mϵ of f(c), so lies within a paralellepiped of volume

(2Cϵ2)(2Mϵ)n−1. (64)

Now subdivide In into hn cubes of edge length h−1 and apply the argument for
each small cube, in which ||x− c|| ≤ h−1√

n. This gives a total volume for the
image less than

(2nCMn−1n(n+1)/2h−n−1)(hn), (65)
which is arbitrarily small as h → ∞.
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The argument above will not work for dimN < dimM ; we need more control
on the function f . In particular, one can find a C1 function I2 −→ R which fails
to have critical values of measure zero. (Hint: find a C1 function f : R → R
with critical values containing the Cantor set C ⊂ [0, 1]. Compose f × f with
the sum R × R → R and note that C +C = [0, 2].) As a result, Sard’s theorem
in general requires more differentiability of f .

Theorem 3.21 (Big Sard’s theorem). Let f : M −→ N be a Ck map of
manifolds of dimension m, n, respectively. Let C be the set of critical points.
Then f(C) has measure zero if k > m

n − 1.

Proof. As before, it suffices to show for f : Im −→ Rn. We do an induction on
m – note that the theorem holds for m = 0.

Define C1 ⊂ C to be the set of points x for which Df(x) = 0. Define
Ci ⊂ Ci−1 to be the set of points x for which Djf(x) = 0 for all j ≤ i. So we
have a descending sequence of closed sets:

C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck. (66)

We will show that f(C) has measure zero by showing

1. f(Ck) has measure zero,
2. each successive difference f(Ci\Ci+1) has measure zero for i ≥ 1,
3. f(C\C1) has measure zero.

Step 1: For x ∈ Ck, Taylor’s theorem gives the estimate

||f(x+ t) − f(x)|| ≤ c||t||k+1, (67)

where c depends only on Im and f .
Subdivide Im into hm small cubes with edge h−1; then any point in in the

small cube I0 containing x may be written as x + t with ||t|| ≤ h−1√
m. As

a result, f(I0) is contained by a cube of edge ah−(k+1), with a = 2cm(k+1)/2

independent of the small cube size. At most hm cubes are necessary to cover
Ck, and their images have total volume less than

hm(ah−(k+1))n = anhm−(k+1)n. (68)

Assuming that k > m
n − 1, this tends to 0 as we increase the number of cubes.

Step 2: For each x ∈ Ci\Ci+1, i ≥ 1, there is a i + 1th partial, say wlog
∂i+1f1/∂x1 · · · ∂xi+1, which is nonzero at x. Therefore the function

w(x) = ∂if1/∂x2 · · · ∂xi+1 (69)

vanishes on Ci but its partial derivative ∂w/∂x1 is nonvanishing near x. Then

(w(x), x2, . . . , xm) (70)

forms an alternate coordinate system in a neighbourhood V around x by the
inverse function theorem (the change of coordinates is of class Ck), and we have
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trapped Ci inside a hyperplane. The restriction of f to w = 0 in V is clearly
critical on Ci ∩V and so by induction on m we have that f(Ci ∩V ) has measure
zero. Cover Ci \ Ci+1 by countably many such neighbourhoods V .
Step 3: Let x ∈ C\C1. Note that we won’t necessarily be able to trap C in a
hypersurface. But, since there is some partial derivative, wlog ∂f1/∂x1, which
is nonzero at x, so defining w = f1, we have that

(w(x), x2, . . . , xm) (71)

is an alternative coordinate system in some neighbourhood V of x (the coordi-
nate change is a diffeomorphism of class Ck). In these coordinates, the hyper-
planes w = t in the domain are sent into hyperplanes y1 = t in the codomain,
and so f can be described as a family of maps ft whose domain and codomain
has dimension reduced by 1. Since w = f1, the derivative of f in these coordi-
nates can be written

Df =
(

1 0
∗ Dft

)
, (72)

and so a point x′ = (t, p) in V is critical for f if and only if p is critical for
ft. Therefore, the critical values of f consist of the union of the critical values
of ft on each hyperplane y1 = t in the codomain. Since the domain of ft has
dimension reduced by one, by induction it has critical values of measure zero.
So the critical values of f intersect each hyperplane in a set of measure zero,
and by Fubini’s theorem this means they have measure zero. Cover C \ C1 by
countably many such neighbourhoods.

Remark 3.22. Note that f(C) is measurable, since it is the countable union
of compact subsets (the set of critical values is not necessarily closed, but the
set of critical points is closed and hence a countable union of compact subsets,
which implies the same of the critical values.)

To show the consequence of Fubini’s theorem directly, we can use the fol-
lowing argument. First note that for any covering of [a, b] by intervals, we may
extract a finite subcovering of intervals whose total length is ≤ 2|b − a|. To
see this, first choose a minimal subcovering {I1, . . . , Ip}, numbered according
to their left endpoints. Then the total overlap is at most the length of [a, b].
Therefore the total length is at most 2|b− a|.

Now let B ⊂ Rn be compact, so that we may assume B ⊂ Rn−1 × [a, b]. We
prove that if B ∩Pc has measure zero in the hyperplane Pc = {xn = c}, for any
constant c ∈ [a, b], then it has measure zero in Rn.

If B∩Pc has measure zero, we can find a covering by open sets Ri
c ⊂ Pc with

total volume < ϵ. For sufficiently small αc, the sets Ri
c × [c − αc, c + αc] cover

B∩
∪

z∈[c−αc,c+αc] Pz (since B is compact). As we vary c, the sets [c−αc, c+αc]
form a covering of [a, b], and we extract a finite subcover {Ij} of total length
≤ 2|b− a|.

Let Ri
j be the set Ri

c for Ij = [c− αc, c+ αc]. Then the sets Ri
j × Ij form a

cover of B with total volume ≤ 2ϵ|b − a|. We can make this arbitrarily small,
so that B has measure zero.
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