
3.6 Partitions of unity and Whitney embedding
Partitions of unity allow us to go from local to global, i.e. to build a global object
on a manifold by building it on each open set of a cover, smoothly tapering each
local piece so it is compactly supported in each open set, and then taking a
sum over open sets. This is a very flexible operation which uses the properties
of smooth functions—it will not work for complex manifolds, for example. Our
main example of such a passage from local to global is to build a global map
from a manifold to RN which is an embedding, a result first proved by Whitney.

Definition 3.44. A collection of subsets {Uα} of the topological space M is
called locally finite when each point x ∈ M has a neighbourhood V intersecting
only finitely many of the Uα.

Definition 3.45. A covering {Vα} is a refinement of the covering {Uβ} when
each Vα is contained in some Uβ .

Lemma 3.46. Any open covering {Aα} of a topological manifold has a count-
able, locally finite refinement {(Ui, φi)} by coordinate charts such that φi(Ui) =
B(0, 3) and {Vi = φ−1

i (B(0, 1))} is still a covering of M . We will call such a
cover a regular covering. In particular, any topological manifold is paracompact
(i.e. every open cover has a locally finite refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around any point
x ∈ M , we can translate and rescale to find a covering of M by a refinement of
the type desired, and choose a finite subcover, which is obviously locally finite.

For a general manifold, we note that by second countability of M , there is
a countable basis of coordinate neighbourhoods and each of these charts is a
countable union of open sets Pi with Pi compact. Hence M has a countable
basis {Pi} such that Pi is compact.

Using these, we may define an increasing sequence of compact sets which
exhausts M : let K1 = P 1, and

Ki+1 = P1 ∪ · · · ∪ Pr,

where r > 1 is the first integer with Ki ⊂ P1 ∪ · · · ∪ Pr.
Now note that M is the union of ring-shaped sets Ki\K◦

i−1, each of which
is compact. If p ∈ Aα, then p ∈ Ki+1\K◦

i for some i. Now choose a coordinate
neighbourhood (Up,α, φp,α) with Up,α ⊂ Ki+2\K◦

i−1 and φp,α(Up,α) = B(0, 3)
and define Vp,α = φ−1(B(0, 1)).

Letting p, α vary, these neighbourhoods cover the compact set Ki+1\K◦
i

without leaving the band Ki+2\K◦
i−1. Choose a finite subcover Vi,k for each i.

Then (Ui,k, φi,k) is the desired locally finite refinement.

Definition 3.47. A smooth partition of unity is a collection of smooth non-
negative functions {fα : M −→ R} such that

i) {suppfα = f−1
α (R\{0})} is locally finite,
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ii)
∑

α fα(x) = 1 ∀x ∈ M , hence the name.

A partition of unity is subordinate to an open cover {Ui} when ∀α, suppfα ⊂ Ui

for some i.

Theorem 3.48. Given a regular covering {(Ui, φi)} of a manifold, there exists
a partition of unity {fi} subordinate to it with fi > 0 on Vi and suppfi ⊂
φ−1

i (B(0, 2)).

Proof. A bump function is a smooth non-negative real-valued function g̃ on Rn

with g̃(x) = 1 for ||x|| ≤ 1 and g̃(x) = 0 for ||x|| ≥ 2. For instance, take

g̃(x) = h(2 − ||x||)
h(2 − ||x||) + h(||x|| + 1)

,

for h(t) given by e−1/t for t > 0 and 0 for t < 0.
Having this bump function, we can produce non-negative bump functions

on the manifold gi = g̃ ◦ φi which have support suppgi ⊂ φ−1
i (B(0, 2)) and take

the value +1 on Vi. Finally we define our partition of unity via

fi = gi∑
j gj

, i = 1, 2, . . . .

We now investigate the embedding of arbitrary smooth manifolds as regular
submanifolds of Rk. We shall first show by a straightforward argument that
any smooth manifold may be embedded in some RN for some sufficiently large
N . We will then explain how to cut down on N and approach the optimal
N = 2 dim M which Whitney showed (we shall reach 2 dim M + 1 and possibly
at the end of the course, show N = 2 dim M .)

Theorem 3.49 (Compact Whitney embedding in RN ). Any compact manifold
may be embedded in RN for sufficiently large N .

Proof. Let {(Ui ⊃ Vi, φi)}k
i=1 be a finite regular covering, which exists by com-

pactness. Choose a partition of unity {f1, . . . , fk} as in Theorem 3.48 and define
the following “zoom-in” maps M −→ Rdim M :

φ̃i(x) =

{
fi(x)φi(x) x ∈ Ui,

0 x /∈ Ui.

Then define a map Φ : M −→ Rk(dim M+1) which zooms simultaneously into all
neighbourhoods, with extra information to guarantee injectivity:

Φ(x) = (φ̃1(x), . . . , φ̃k(x), f1(x), . . . , fk(x)).

Note that Φ(x) = Φ(x′) implies that for some i, fi(x) = fi(x′) ̸= 0 and hence
x, x′ ∈ Ui. This then implies that φi(x) = φi(x′), implying x = x′. Hence Φ is
injective.
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We now check that DΦ is injective, which will show that it is an injective
immersion. At any point x the differential sends v ∈ TxM to the following
vector in Rdim M × · · · × Rdim M × R × · · · × R.

(Df1(v)φ1(x)+f1(x)Dφ1(v), . . . , Dfk(v)φk(x)+fk(x)Dφ1(v), Df1(v), . . . , Dfk(v)

But this vector cannot be zero. Hence we see that Φ is an immersion.
But an injective immersion from a compact space must be an embedding:

view Φ as a bijection onto its image. We must show that Φ−1 is continuous, i.e.
that Φ takes closed sets to closed sets. If K ⊂ M is closed, it is also compact and
hence Φ(K) must be compact, hence closed (since the target is Hausdorff).

Theorem 3.50 (Compact Whitney embedding in R2n+1). Any compact n-
manifold may be embedded in R2n+1.

Proof. Begin with an embedding Φ : M −→ RN and assume N > 2n + 1.
We then show that by projecting onto a hyperplane it is possible to obtain an
embedding to RN−1.

A vector v ∈ SN−1 ⊂ RN defines a hyperplane (the orthogonal complement)
and let Pv : RN −→ RN−1 be the orthogonal projection to this hyperplane.
We show that the set of v for which Φv = Pv ◦ Φ fails to be an embedding is
a set of measure zero, hence that it is possible to choose v for which Φv is an
embedding.

Φv fails to be an embedding exactly when Φv is not injective or DΦv is not
injective at some point. Let us consider the two failures separately:

If v is in the image of the map β1 : (M × M)\∆M −→ SN−1 given by

β1(p1, p2) = Φ(p2) − Φ(p1)
||Φ(p2) − Φ(p1)||

,

then Φv will fail to be injective. Note however that β1 maps a 2n-dimensional
manifold to a N − 1-manifold, and if N > 2n + 1 then baby Sard’s theorem
implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart
(U, φ). Φv will fail to be an immersion in U precisely when v coincides with a
vector in the normalized image of D(Φ ◦ φ−1) where

Φ ◦ φ−1 : φ(U) ⊂ Rn −→ RN .

Hence we have a map (letting N(w) = ||w||)

D(Φ ◦ φ−1)
N ◦ D(Φ ◦ φ−1)

: U × Sn−1 −→ SN−1.

The image has measure zero as long as 2n − 1 < N − 1, which is certainly
true since 2n < N − 1. Taking union over countably many charts, we see that
immersion fails on a set of measure zero in SN−1.

Hence we see that Φv fails to be an embedding for a set of v ∈ SN−1 of
measure zero. Hence we may reduce N all the way to N = 2n + 1.

36



Corollary 3.51. We see from the proof that if we do not require injectivity but
only that the manifold be immersed in RN , then we can take N = 2n instead of
2n + 1.

Theorem 3.52 (noncompact Whitney embedding in R2n+1). Any smooth n-
manifold may be embedded in R2n+1 (or immersed in R2n).

Proof. We saw that any manifold may be written as a countable union of increas-
ing compact sets M = ∪Ki, and that a regular covering {(Ui,k ⊃ Vi,k, φi,k)} of
M can be chosen so that for fixed i, {Vi,k}k is a finite cover of Ki+1\K◦

i and
each Ui,k is contained in Ki+2\K◦

i−1.
This means that we can express M as the union of 3 open sets W0, W1, W2,

where
Wj =

∪
i≡j(mod3)

(∪kUi,k).

Each of the sets Ri = ∪kUi,k may be injectively immersed in R2n+1 by the
argument for compact manifolds, since they have a finite regular cover. Call
these injective immersions Φi : Ri −→ R2n+1. The image Φi(Ri) is bounded
since all the charts are, by some radius ri. The open sets Ri, i ≡ j(mod3) for
fixed j are disjoint, and by translating each Φi, i ≡ j(mod3) by an appropriate
constant, we can ensure that their images in R2n+1 are disjoint as well.

Let Φ′
i = Φi + (2(ri−1 + ri−2 + · · · ) + ri)−→e 1. Then Ψj = ∪i≡j(mod3)Φ′

i :
Wj −→ R2n+1 is an embedding.

Now that we have injective immersions Ψ0, Ψ1, Ψ2 of W0, W1, W2 in R2n+1,
we may use the original argument for compact manifolds: Take the partition of
unity subordinate to Ui,k and resum it, obtaining a 3-element partition of unity
{f1, f2, f3}, with fj =

∑
i≡j(mod3)

∑
k fi,k. Then the map

Ψ = (f1Ψ1, f2Ψ2, f3Ψ3, f1, f2, f3)

is an injective immersion of M into R6n+3. To see that it is in fact an embedding,
note that any closed set C ⊂ M may be written as a union of closed sets
C = C1 ∪ C2 ∪ C3, where Cj = ∪i≡j(mod3)(C ∩ Ki+1\K◦

i ) is a disjoint union of
compact sets. Ψ is injective, hence Cj is mapped to a disjoint union of compact
sets, hence a closed set. Then Ψ(C) is a union of 3 closed sets, hence closed, as
required.

Using projection to hyperplanes we may again reduce to R2n+1, but if we ex-
clude all hyperplanes perpendicular to Span((e1, 0, 0, 0, 0, 0), (0, e1, 0, 0, 0, 0), (0, 0, e1, 0, 0, 0)),
we obtain an injective immersion Ψ′ which is proper, meaning that inverse im-
ages of compact sets are compact. This space of forbidden planes has measure
zero as long as N − 1 > 3, so that we may reduce to 2n + 1 for n > 1. We leave
as an exercise the n = 1 case (or see Bredon for a slightly different proof).

The fact that the resulting injective immersion Ψ′ is proper implies that it
is an embedding, by the closed map lemma, as follows.

Lemma 3.53 (Closed map lemma for proper maps). Let f : X −→ Y be a
proper continuous map of topological manifolds. Then f is a closed map.
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Proof. Let K ⊂ X be closed; we show that f(K) contains all its limit points
and hence is closed. Let y ∈ Y be a limit point for f(K). Choose a precompact
neighbourhood U of y, so that y is also a limit point of f(K) ∩ U . Since f is
proper, f−1(U) is compact, and hence K ∩f−1(U) is compact as well. But then
by continuity, f(K ∩ f−1(U)) = f(K) ∩ U is compact, implying it is closed.
Hence y ∈ f(K) ∩ U ⊂ f(K), as required.

We now use Whitney embedding to prove the existence of tubular neighbour-
hoods for submanifolds of RN , a key point in proving genericity of transversal-
ity. Tubular neighbourhoods also exist for submanifolds of any manifold, but
we leave this corollary for the reader.

If Y ⊂ RN is an embedded submanifold, the normal space at y ∈ Y is defined
by NyY = {v ∈ RN : v⊥TyY }. The collection of all normal spaces of all points
in Y is called the normal bundle:

NY = {(y, v) ∈ Y × RN : v ∈ NyY }.

Proposition 3.54. NY ⊂ RN ×RN is an embedded submanifold of dimension
N .

Proof. Given y ∈ Y , choose coordinates (u1, . . . uN ) in a neighbourhood U ⊂ RN

of y so that Y ∩U = {un+1 = · · · = uN = 0}. Define Φ : U ×RN −→ RN−n ×Rn

via
Φ(x, v) = (un+1(x), . . . , uN (x), ⟨v, ∂

∂u1 |x⟩, . . . , ⟨v, ∂
∂un |x⟩),

so that Φ−1(0) is precisely NY ∩ (U × RN ). We then show that 0 is a regular
value: observe that, writing v in terms of its components vj ∂

∂xj in the standard
basis for RN ,

⟨v, ∂
∂ui |x⟩ = ⟨vj ∂

∂xj , ∂xk

∂ui (u(x)) ∂
∂xk |x⟩ =

N∑
j=1

vj ∂xj

∂ui (u(x))

Therefore the Jacobian of Φ is the ((N − n) + n) × (N + N) matrix

DΦ(x) =

(
∂uj

∂xi (x) 0
∗ ∂xj

∂ui (u(x))

)
The N rows of this matrix are linearly independent, proving Φ is a submersion.

The normal bundle NY contains Y ∼= Y ×{0} as a regular submanifold, and
is equipped with a smooth map π : NY −→ Y sending (y, v) 7→ y. The map
π is a surjective submersion and is the bundle projection. The vector spaces
π−1(y) for y ∈ Y are called the fibers of the bundle and NY is an example of a
vector bundle.

We may take advantage of the embedding in RN to define a smooth map
E : NY −→ RN via

E(x, v) = x + v.
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Definition 3.55. A tubular neighbourhood of the embedded submanifold Y ⊂
RN is a neighbourhood U of Y in RN that is the diffeomorphic image under E
of an open subset V ⊂ NY of the form

V = {(y, v) ∈ NY : |v| < δ(y)},

for some positive continuous function δ : M −→ R.

If U ⊂ RN is such a tubular neighbourhood of Y , then there does exist a
positive continuous function ϵ : Y −→ R such that Uϵ = {x ∈ RN : ∃y ∈
Y with |x − y| < ϵ(y)} is contained in U . This is simply

ϵ(y) = sup{r : B(y, r) ⊂ U},

which is continuous since ∀ϵ > 0, ∃x ∈ U for which ϵ(y) ≤ |x − y| + ϵ. For any
other y′ ∈ Y , this is ≤ |y − y′| + |x − y′| + ϵ. Since |x − y′| ≤ ϵ(y′), we have
|ϵ(y) − ϵ(y′)| ≤ |y − y′| + ϵ.

Theorem 3.56 (Tubular neighbourhood theorem). Every regular submanifold
of RN has a tubular neighbourhood.

Proof. First we show that E is a local diffeomorphism near y ∈ Y ⊂ NY . if
ι is the embedding of Y in RN , and ι′ : Y −→ NY is the embedding in the
normal bundle, then E ◦ ι′ = ι, hence we have DE ◦ Dι′ = Dι, showing that
the image of DE(y) contains TyY . Now if ι is the embedding of NyY in RN ,
and ι′ : NyY −→ NY is the embedding in the normal bundle, then E ◦ ι′ = ι.
Hence we see that the image of DE(y) contains NyY , and hence the image is
all of TyRN . Hence E is a diffeomorphism on some neighbourhood

Vδ(y) = {(y′, v′) ∈ NY : |y′ − y| < δ, |v′| < δ}, δ > 0.

Now for y ∈ Y let r(y) = sup{δ : E|Vδ(y) is a diffeomorphism} if this is ≤ 1 and
let r(y) = 1 otherwise. The function r(y) is continuous, since if |y − y′| < r(y),
then Vδ(y′) ⊂ Vr(y)(y) for δ = r(y) − |y − y′|. This means that r(y′) ≥ δ,
i.e. r(y) − r(y′) ≤ |y − y′|. Switching y and y′, this remains true, hence
|r(y) − r(y′)| ≤ |y − y′|, yielding continuity.

Finally, let V = {(y, v) ∈ NY : |v| < 1
2 r(y)}. We show that E is injective

on V . Suppose (y, v), (y′, v′) ∈ V are such that E(y, v) = E(y′, v′), and suppose
wlog r(y′) ≤ r(y). Then since y + v = y′ + v′, we have

|y − y′| = |v − v′| ≤ |v| + |v′| ≤ 1
2 r(y) + 1

2 r(y′) ≤ r(y).

Hence y, y′ are in Vr(y)(y), on which E is a diffeomorphism. The required tubular
neighbourhood is then U = E(V ).
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