3.6 Partitions of unity and Whitney embedding

Partitions of unity allow us to go from local to global, i.e. to build a global object
on a manifold by building it on each open set of a cover, smoothly tapering each
local piece so it is compactly supported in each open set, and then taking a
sum over open sets. This is a very flexible operation which uses the properties
of smooth functions—it will not work for complex manifolds, for example. Our
main example of such a passage from local to global is to build a global map
from a manifold to RY which is an embedding, a result first proved by Whitney.

Definition 3.44. A collection of subsets {U,} of the topological space M is
called locally finite when each point x € M has a neighbourhood V' intersecting
only finitely many of the U,.

Definition 3.45. A covering {V,} is a refinement of the covering {Uz} when
each V,, is contained in some Ug.

Lemma 3.46. Any open covering {A.} of a topological manifold has a count-
able, locally finite refinement {(U;, v;)} by coordinate charts such that ¢;(U;) =
B(0,3) and {V; = ¢; }(B(0,1))} is still a covering of M. We will call such a
cover a regular covering. In particular, any topological manifold is paracompact
(i.e. every open cover has a locally finite refinement)

Proof. If M is compact, the proof is easy: choosing coordinates around any point
x € M, we can translate and rescale to find a covering of M by a refinement of
the type desired, and choose a finite subcover, which is obviously locally finite.

For a general manifold, we note that by second countability of M, there is
a countable basis of coordinate neighbourhoods and each of these charts is a
countable union of open sets P; with P; compact. Hence M has a countable
basis {P;} such that P; is compact.

Using these, we may define an increasing sequence of compact sets which
exhausts M: let K; = P, and

KZ'+1ZP1U'-'UPT7

where r > 1 is the first integer with K; C Py U--- U P,.

Now note that M is the union of ring-shaped sets K;\K;_;, each of which
is compact. If p € A,, then p € K; 11\ Ky for some i. Now choose a coordinate
neighbourhood (U, o, ¢p.o) With U, o C Kiyo\K7 | and ¢p o (Up.o) = B(0,3)
and define V,, o, = ¢~ 1(B(0,1)).

Letting p,a vary, these neighbourhoods cover the compact set K;y1\K?
without leaving the band K;;12\K; ;. Choose a finite subcover V; j, for each 1.
Then (U, k, pir) is the desired locally finite refinement. O

Definition 3.47. A smooth partition of unity is a collection of smooth non-
negative functions {f, : M — R} such that

i) {suppfa = fa'(R\{0})} is locally finite,
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ii) Y, fa(z) =1 Va € M, hence the name.

A partition of unity is subordinate to an open cover {U;} when Vo, suppf, C U;
for some 1.

Theorem 3.48. Given a regular covering {(U;, ¢;)} of a manifold, there exists
a partition of unity {f;} subordinate to it with f; > 0 on V; and suppf; C
7 ' (B(0,2)).

Proof. A bump function is a smooth non-negative real-valued function g on R”
with g(z) =1 for ||z]| <1 and g(x) = 0 for ||z|| > 2. For instance, take
h(2 = [|z]]) + h(l|]] + 1)’

for h(t) given by e~/* for t > 0 and 0 for t < 0.

Having this bump function, we can produce non-negative bump functions
on the manifold g; = §o ¢; which have support suppg; C ¢; 1(B(0,2)) and take
the value +1 on V;. Finally we define our partition of unity via

fi=, i=12,...

O

We now investigate the embedding of arbitrary smooth manifolds as regular
submanifolds of R¥. We shall first show by a straightforward argument that
any smooth manifold may be embedded in some RY for some sufficiently large
N. We will then explain how to cut down on N and approach the optimal
N = 2dim M which Whitney showed (we shall reach 2dim M + 1 and possibly
at the end of the course, show N = 2dim M.)

Theorem 3.49 (Compact Whitney embedding in R™V). Any compact manifold
may be embedded in RN for sufficiently large N.

Proof. Let {(U; D Vi, i) }¥_, be a finite regular covering, which exists by com-
pactness. Choose a partition of unity {f1,..., fx} as in Theorem 3.48 and define
the following “zoom-in” maps M —s Rdim M.

~ _ fi(x)¢i<x) z el
Pile) = {0 v ¢ Ul

Then define a map ® : M — R¥(AmM+1) which zooms simultaneously into all
neighbourhoods, with extra information to guarantee injectivity:

O(z) = (P1(2), -, Pr(@), fr(2), ..., fiu(2)).

Note that ®(z) = ®(z’) implies that for some 4, f;(x) = f;(2’) # 0 and hence
z,x’ € U;. This then implies that ¢;(z) = ¢;(2’), implying z = z’. Hence ® is
injective.
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We now check that D® is injective, which will show that it is an injective
immersion. At any point x the differential sends v € T, M to the following
vector in RIMM 5 ... RIMM o R » ... x R.

(D fr(v)pr(@)+fi(2)Der(v),. .. D fr(v)pr(@)+fr(@) Der(v), Dfi(v), ..., Dfir(v)

But this vector cannot be zero. Hence we see that ® is an immersion.

But an injective immersion from a compact space must be an embedding:
view ® as a bijection onto its image. We must show that ®~! is continuous, i.e.
that ® takes closed sets to closed sets. If K C M is closed, it is also compact and
hence ®(K) must be compact, hence closed (since the target is Hausdorff). O

Theorem 3.50 (Compact Whitney embedding in R?"*!). Any compact n-
manifold may be embedded in R?"+1,

Proof. Begin with an embedding ® : M — RY and assume N > 2n + 1.
We then show that by projecting onto a hyperplane it is possible to obtain an
embedding to RV 1.

A vector v € S¥~1 C R¥ defines a hyperplane (the orthogonal complement)
and let P, : RY — RM~1 be the orthogonal projection to this hyperplane.
We show that the set of v for which ®, = P, o ® fails to be an embedding is
a set of measure zero, hence that it is possible to choose v for which ®, is an
embedding.

®,, fails to be an embedding exactly when ®,, is not injective or D®,, is not
injective at some point. Let us consider the two failures separately:

If v is in the image of the map 1 : (M x M)\Ay — SN~! given by

_ ‘I’(pz) - ‘I)(P1>
AP = g ()

then &, will fail to be injective. Note however that $; maps a 2n-dimensional
manifold to a N — I-manifold, and if N > 2n + 1 then baby Sard’s theorem
implies the image has measure zero.

The immersion condition is a local one, which we may analyze in a chart
(U, ). @, will fail to be an immersion in U precisely when v coincides with a
vector in the normalized image of D(® o 1) where

Doy t:plU)CR* — RV,
Hence we have a map (letting N(w) = ||w||)

D(®o cp_l)

) n—1 N-1
NoD((bow—l)'UXS — ST

The image has measure zero as long as 2n — 1 < N — 1, which is certainly
true since 2n < N — 1. Taking union over countably many charts, we see that
immersion fails on a set of measure zero in S™V~1.

Hence we see that ®, fails to be an embedding for a set of v € SN—1 of
measure zero. Hence we may reduce N all the way to N = 2n + 1. O
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Corollary 3.51. We see from the proof that if we do not require injectivity but
only that the manifold be immersed in RY, then we can take N = 2n instead of
2n + 1.

Theorem 3.52 (noncompact Whitney embedding in R?"*1). Any smooth n-
manifold may be embedded in R*" 1 (or immersed in R?").

Proof. We saw that any manifold may be written as a countable union of increas-
ing compact sets M = UK, and that a regular covering {(U; ; D Vi, i x)} of
M can be chosen so that for fixed 4, {V; x}x is a finite cover of K;1\K; and
each U,y is contained in K;42\K} ;.

This means that we can express M as the union of 3 open sets Wy, Wy, Ws,
where

Wj = U (UkUi,k)~
i=j(mod3)

Each of the sets R; = UiU;, may be injectively immersed in R?"*! by the
argument for compact manifolds, since they have a finite regular cover. Call
these injective immersions ®; : R; — R?"*1. The image ®;(R;) is bounded
since all the charts are, by some radius r;. The open sets R;, i = j(mod3) for
fixed j are disjoint, and by translating each ®;, i = j(mod3) by an appropriate
constant, we can ensure that their images in R?"*! are disjoint as well.

Let (I)i = ‘I’z + (2(7‘1'_1 + Tri—o + - ) + Ti)?l- Then \I/j = UiEj(modS)(I)Ii :
W; — R*"*! is an embedding.

Now that we have injective immersions ¢, ¥y, Wy of Wy, Wy, W in R2%HL
we may use the original argument for compact manifolds: Take the partition of
unity subordinate to U; ;, and resum it, obtaining a 3-element partition of unity

{f1. f2, f3}, with fj =37, _(1n0as) 2_ fik- Then the map

U = (f1Vy, f2W9, f3Ws, f1, f2, f3)

is an injective immersion of M into R6"+3. To see that it is in fact an embedding,
note that any closed set C' C M may be written as a union of closed sets
C = CyUCyUC3, where Cj = Uj=j(moas) (C' N Ki;1\K7) is a disjoint union of
compact sets. W is injective, hence C; is mapped to a disjoint union of compact
sets, hence a closed set. Then ¥(C') is a union of 3 closed sets, hence closed, as
required.

Using projection to hyperplanes we may again reduce to R2"+1, but if we ex-
clude all hyperplanes perpendicular to Span((eq, 0, 0,0,0,0), (0, e1,0,0,0,0), (0,0, e1,0,0,0)),
we obtain an injective immersion ¥’ which is proper, meaning that inverse im-
ages of compact sets are compact. This space of forbidden planes has measure
zero as long as N — 1 > 3, so that we may reduce to 2n+ 1 for n > 1. We leave
as an exercise the n = 1 case (or see Bredon for a slightly different proof).

The fact that the resulting injective immersion ¥’ is proper implies that it
is an embedding, by the closed map lemma, as follows. O

Lemma 3.53 (Closed map lemma for proper maps). Let f : X — Y be a
proper continuous map of topological manifolds. Then f is a closed map.
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Proof. Let K C X be closed; we show that f(K) contains all its limit points
and hence is closed. Let y € Y be a limit point for f(K). Choose a precompact
neighbourhood U of ¥, so that y is also a limit point of f(K)NU. Since f is
proper, f~1(U) is compact, and hence KN f~1(U) is compact as well. But then
by continuity, f(K N f~1(U)) = f(K)NU is compact, implying it is closed.
Hence y € f(K)NU C f(K), as required. O

We now use Whitney embedding to prove the existence of tubular neighbour-
hoods for submanifolds of RV, a key point in proving genericity of transversal-
ity. Tubular neighbourhoods also exist for submanifolds of any manifold, but
we leave this corollary for the reader.

IfY ¢ RY is an embedded submanifold, the normal space at y € Y is defined
by N,Y = {v € RY vLT,Y}. The collection of all normal spaces of all points
in Y is called the normal bundle:

NY ={(y,v) €Y xRY : ve N,Y}.

Proposition 3.54. NY C RY x R" is an embedded submanifold of dimension

N.
Proof. Giveny € Y, choose coordinates (u!,...u") in a neighbourhood U ¢ R¥
of y so that YNU = {u"*! = ... = uN = 0}. Define ® : U xRY — RN -7 xR"
via

O(z,v) = (" (z),...,uN(x), (v, %\z% oy, % 2))s

so that ®71(0) is precisely NY N (U x RY). We then show that 0 is a regular
value: observe that, writing v in terms of its components v7 % in the standard
basis for RY,

N
(v, gz la) = (V7 25, o (u(2)) g o) = D v o (u(a))
j=1
Therefore the Jacobian of ® is the (N —n) +n) x (N + N) matrix

dul

The N rows of this matrix are linearly independent, proving ® is a submersion.
O

The normal bundle NY contains Y 2 Y x {0} as a regular submanifold, and
is equipped with a smooth map 7= : NY — Y sending (y,v) — y. The map
7 is a surjective submersion and is the bundle projection. The vector spaces
7~ 1(y) for y € Y are called the fibers of the bundle and NY is an example of a
vector bundle.

We may take advantage of the embedding in RY to define a smooth map
E:NY — RY via

E(z,v) =z +wv.
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Definition 3.55. A tubular neighbourhood of the embedded submanifold ¥ C
RY is a neighbourhood U of Y in RY that is the diffeomorphic image under E
of an open subset V' C NY of the form

V ={(y,v) € NY : |v| <d(v)},
for some positive continuous function § : M — R.

If U ¢ RY is such a tubular neighbourhood of Y, then there does exist a
positive continuous function € : ¥ — R such that U, = {x € RN : 3Jy €
Y with |z — y| < e(y)} is contained in U. This is simply

e(y) =sup{r : Bly,r) CU},

which is continuous since Ve > 0,3z € U for which €(y) < |z — y| + €. For any
other ¥/ € Y, this is < |y — ¢/| + | — ¢/| + €. Since |z — ¢/| < €(y’), we have
le(y) — e < |y —y'| +e

Theorem 3.56 (Tubular neighbourhood theorem). Every regular submanifold
of RN has a tubular neighbourhood.

Proof. First we show that F is a local diffeomorphism near y € Y C NY. if
¢ is the embedding of Y in RV, and +/ : Y — NY is the embedding in the
normal bundle, then E o/ =+, hence we have DE o D// = D, showing that
the image of DE(y) contains T,Y. Now if ¢ is the embedding of N,Y in RY,
and ¢/ : N,Y — NY is the embedding in the normal bundle, then E o/ = ¢.
Hence we see that the image of DE(y) contains N,Y, and hence the image is
all of TyRN . Hence F is a diffeomorphism on some neighbourhood

Vs(y) ={(y,v') € NY : |y —y| <4, || <8}, 6>0.

Now for y € Y let r(y) = sup{d : Ely;(y) is a diffeomorphism} if this is < 1 and
let (y) = 1 otherwise. The function r(y) is continuous, since if |y — y'| < r(y),
then V5(y') C Vi (y) for 6 = r(y) — |y — ¢'|. This means that r(y") > 0,
ie. r(y) —r@) < |y —¢'|. Switching y and y’, this remains true, hence
[r(y) — r(y)| < |y — ¢'|, yielding continuity.

Finally, let V = {(y,v) € NY : |v| < ir(y)}. We show that E is injective
on V. Suppose (y,v), (y',v") € V are such that E(y,v) = E(y’,v"), and suppose
wlog r(y’) < r(y). Then since y + v =y’ +v', we have

ly—y'| == <ol + '] < 5r(y) + 37() < r(y).

Hence y, y" are in V() (y), on which E is a diffeomorphism. The required tubular
neighbourhood is then U = E(V). O
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