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1 Manifolds
A manifold is a space which looks like Rn at small scales (i.e. “locally”), but
which may be very different from this at large scales (i.e. “globally”). In other
words, manifolds are made by gluing pieces of Rn together to make a more
complicated whole. We want to make this precise.

1.1 Topological manifolds
Definition 1.1. A real, n-dimensional topological manifold is a Hausdorff, sec-
ond countable topological space which is locally homeomorphic to Rn.

“Locally homeomorphic to Rn” simply means that each point p has an open
neighbourhood U for which we can find a homeomorphism φ : U −→ V to an
open subset V ∈ Rn. Such a homeomorphism φ is called a coordinate chart
around p. A collection of charts which cover the manifold is called an atlas.

Remark 1.2. Without the Hausdorff assumption, we would have examples
such as the following: take the disjoint union R1 ⊔ R2 of two copies of the real
line, and form the quotient by the equivalence relation

R1 \ {0} ∋ x ∼ φ(x) ∈ R2 \ {0}, (1)

where φ is the identification R1 → R2. The resulting quotient topological
space is locally homeomorphic to R but the points [0 ∈ R1], [0 ∈ R2] cannot be
separated by open neighbourhoods.

Second countability is not as crucial, but will be necessary for the proof of
the Whitney embedding theorem, among other things.

We now give examples of topological manifolds. The simplest is, techni-
cally, the empty set. Then we have a countable set of points (with the discrete
topology), and Rn itself, but there are more:

Example 1.3 (Circle). Define the circle S1 = {z ∈ C : |z| = 1}. Then for
any fixed point z ∈ S1, write it as z = e2πic for a unique real number 0 ≤ c < 1,
and define the map

R ν̃z // S1

t � // e2πit
(2)

Let Ic = (c − 1
2 , c + 1

2 ), and note that νz = ν̃z|Ic is a homeomorphism from Ic
to the neighbourhood of z given by S1\{−z}. Then φz = ν−1

z is a coordinate
chart near z.

By taking products of coordinate charts, we obtain charts for the Cartesian
product of manifolds. Hence the Cartesian product is a manifold.

Example 1.4 (n-torus). S1 × · · · × S1 is a topological manifold (of dimension
given by the number n of factors), with charts {φz1 × · · · × φzn : zi ∈ S1}.
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Example 1.5 (open subsets). Any open subset U ⊂ M of a topological mani-
fold is also a topological manifold, where the charts are simply restrictions φ|U
of charts φ for M . For instance, the real n×n matrices Mat(n,R) form a vector
space isomorphic to Rn2 , and contain an open subset

GL(n,R) = {A ∈ Mat(n,R) : detA ̸= 0}, (3)

known as the general linear group, which is a topological manifold.

Example 1.6 (Spheres). The n-sphere is defined as the subspace of unit vectors
in Rn+1:

Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑

x2
i = 1}.

Let N = (1, 0, . . . , 0) be the north pole and let S = (−1, 0, . . . , 0) be the south
pole in Sn. Then we may write Sn as the union Sn = UN ∪ US , where UN =
Sn\{S} and US = Sn\{N} are equipped with coordinate charts φN , φS into
Rn, given by the “stereographic projections” from the points S,N respectively

φN : (x0, x⃗) 7→ (1 + x0)−1x⃗, (4)
φS : (x0, x⃗) 7→ (1 − x0)−1x⃗. (5)

Remark 1.7. We have endowed the sphere Sn with a certain topology, but is
it possible for another topological manifold S̃n to be homotopy equivalent to Sn
without being homeomorphic to it? The answer is no, and this is known as the
topological Poincaré conjecture, and is usually stated as follows: any homotopy
n-sphere is homeomorphic to the n-sphere. It was proven for n > 4 by Smale,
for n = 4 by Freedman, and for n = 3 is equivalent to the smooth Poincaré
conjecture which was proved by Hamilton-Perelman. In dimensions n = 1, 2 it
is a consequence of the classification of topological 1- and 2-manifolds.

Example 1.8 (Projective spaces). Let K = R or C. Then KPn is defined to be
the space of lines through {0} in Kn+1, and is called the projective space over
K of dimension n.

More precisely, let X = Kn+1\{0} and define an equivalence relation on X
via x ∼ y iff ∃λ ∈ K∗ = K\{0} such that λx = y, i.e. x, y lie on the same line
through the origin. Then

KPn = X/ ∼,
and it is equipped with the quotient topology.

The projection map π : X −→ KPn is an open map, since if U ⊂ X is
open, then tU is also open ∀t ∈ K∗, implying that ∪t∈K∗tU = π−1(π(U)) is
open, implying π(U) is open. This immediately shows, by the way, that KPn
is second countable.

To show KPn is Hausdorff (which we must do, since Hausdorff is preserved
by subspaces and products, but not quotients), we show that the graph of the
equivalence relation is closed in X × X (this, together with the openness of π,
gives us the Hausdorff property for KPn). This graph is simply

Γ∼ = {(x, y) ∈ X ×X : x ∼ y},
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and we notice that Γ∼ is actually the common zero set of the following contin-
uous functions

fij(x, y) = (xiyj − xjyi) i ̸= j.

An atlas for KPn is given by the open sets Ui = π(Ũi), where

Ũi = {(x0, . . . , xn) ∈ X : xi ̸= 0},

and these are equipped with charts to Kn given by

φi([x0, . . . , xn]) = x−1
i (x0, . . . , xi−1, xi+1, . . . , xn), (6)

which are indeed invertible by (y1, . . . , yn) 7→ (y1, . . . , yi, 1, yi+1, . . . , yn).
Sometimes one finds it useful to simply use the “coordinates” (x0, . . . , xn)

for KPn, with the understanding that the xi are well-defined only up to overall
rescaling. This is called using “projective coordinates” and in this case a point
in KPn is denoted by [x0 : · · · : xn].

Example 1.9 (Connected sum). Let p ∈ M and q ∈ N be points in topological
manifolds and let (U,φ) and (V, ψ) be charts around p, q such that φ(p) = 0
and ψ(q) = 0.

Choose ϵ small enough so that B(0, 2ϵ) ⊂ φ(U) and B(0, 2ϵ) ⊂ φ(V ), and
define the map of annuli

B(0, 2ϵ)\B(0, ϵ)
ϕ // B(0, 2ϵ)\B(0, ϵ)

x � // 2ϵ2

|x|2x

(7)

This is a homeomorphism of the annulus to itself, exchanging the boundaries.
Now we define a new topological manifold, called the connected sum M#N , as
the quotient X/ ∼, where

X = (M\φ−1(B(0, ϵ))) ⊔ (N\ψ−1(B(0, ϵ))),

and we define an identification x ∼ ψ−1ϕφ(x) for x ∈ φ−1(B(0, 2ϵ)). If AM and
AN are atlases for M,N respectively, then a new atlas for the connect sum is
simply

AM |
M\φ−1(B(0,ϵ)) ∪ AN |

N\ψ−1(B(0,ϵ))

Remark 1.10. The homeomorphism type of the connected sum of connected
manifolds M,N is independent of the choices of p, q and φ,ψ, except that it may
depend on the two possible orientations of the gluing map ψ−1ϕφ. To prove
this, one must appeal to the so-called annulus theorem.

Remark 1.11. By iterated connect sum of S2 with T 2 and RP 2, we can obtain
all compact 2-dimensional manifolds.
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Example 1.12. Let F be a topological space. A fiber bundle with fiber F is a
triple (E, p,B), where E,B are topological spaces called the “total space” and
“base”, respectively, and p : E −→ B is a continuous surjective map called the
“projection map”, such that, for each point b ∈ B, there is a neighbourhood U
of b and a homeomorphism

Φ : p−1U −→ U × F,

such that pU ◦ Φ = p, where pU : U × F −→ U is the usual projection. The
submanifold p−1(b) ∼= F is called the “fiber over b”.

When B,F are topological manifolds, then clearly E becomes one as well.
We will often encounter such manifolds.

Example 1.13 (General gluing construction). To construct a topological mani-
fold “from scratch”, we glue open subsets of Rn together using homeomorphisms,
as follows.

Begin with a countable collection of open subsets of Rn: A = {Ui}. Then
for each i, we choose finitely many open subsets Uij ⊂ Ui and gluing maps

Uij
φij // Uji , (8)

which we require to satisfy φijφji = IdUji , and such that φij(Uij ∩ Uik) =
Uji ∩ Ujk for all k, and most important of all, φij must be homeomorphisms.

Next, we want the pairwise gluings to be consistent (transitive) and so we
require that φkiφjkφij = IdUij∩Ujk

for all i, j, k. This will ensure that the
equivalence relation in (10) is well-defined.

Second countability of the glued manifold is guaranteed since we started with
a countable collection of opens, but the Hausdorff property is not necessarily
satisfied without a further assumption: we require that the graph of φij , namely

{(x, φij(x)) : x ∈ Uij} (9)

is a closed subset of Ui × Uj .
The final glued topological manifold is then

M =
⊔
Ui

∼
, (10)

for the equivalence relation x ∼ φij(x) for x ∈ Uij , for all i, j. This space has a
distinguished atlas A, whose charts are simply the inclusions of the Ui in Rn.

1.2 Smooth manifolds
Given coordinate charts (Ui, φi) and (Uj , φj) on a topological manifold, we can
compare them along the intersection Uij = Ui ∩ Uj , by forming the map

φj ◦ φ−1
i |φi(Uij) : φi(Uij) −→ φj(Uij). (11)

5



This is a homeomorphism, since it is a composition of homeomorphisms. In this
sense, topological manifolds are glued together by homeomorphisms.

This means that we may be able to differentiate a function in one coordi-
nate chart but not in another – there is no way to make sense of calculus on
topological manifolds. This is why we introduce smooth manifolds, where the
gluing maps are smooth.

Remark 1.14 (Aside on smooth maps of vector spaces). Let U ⊂ V be an
open set in a finite-dimensional vector space, and let f : U −→ W be a function
with values in another vector space W . We say f is differentiable at p ∈ U if
there is a linear map Df(p) : V −→ W which approximates f near p, meaning
that

lim
x→0
x ̸=0

||f(p+ x) − f(p) −Df(p)(x)||
||x||

= 0. (12)

Notice that Df(p) is uniquely characterized by the above property.
We have implicitly chosen inner products, and hence norms, on V and W

in the above definition, though the differentiability of f is independent of this
choice, since all norms are equivalent in finite dimensions. This is no longer
true for infinite-dimensional vector spaces, where the norm or topology must be
clearly specified and Df(p) is required to be a continuous linear map. Most of
what we do in this course can be developed in the setting of Banach spaces, i.e.
complete normed vector spaces.

A basis for V has a corresponding dual basis (x1, . . . , xn) of linear functions
on V , and we call these “coordinates”. Similarly, let (y1, . . . , ym) be coordinates
on W . Then the vector-valued function f has m scalar components fj = yj ◦ f ,
and then the linear map Df(p) may be written, relative to the chosen bases for
V,W , as an m× n matrix, called the Jacobian matrix of f at p.

Df(p) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm

∂x1
· · · ∂fm

∂xn

 (13)

We say that f is differentiable in U when it is differentiable at all p ∈ U , and
we say it is continuously differentiable when

Df : U −→ Hom(V,W ) (14)

is continuous. The vector space of continuously differentiable functions on U
with values in W is called C1(U,W ).

Notice that the first derivative Df is itself a map from U to a vector space
Hom(V,W ), so if its derivative exists, we obtain a map

D2f : U −→ Hom(V,Hom(V,W )), (15)

and so on. The vector space of k times continuously differentiable functions
on U with values in W is called Ck(U,W ). We are most interested in C∞ or
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“smooth” maps, all of whose derivatives exist; the space of these is denoted
C∞(U,W ), and so we have

C∞(U,W ) =
∩
k

Ck(U,W ). (16)

Note: for a C2 function, D2f actually has values in a smaller subspace of
V ∗ ⊗ V ∗ ⊗W , namely in Sym2(V ∗) ⊗W , since “mixed partials are equal”.

Definition 1.15. A smooth manifold is a topological manifold equipped with
an equivalence class of smooth atlases, as explained next.

Definition 1.16. An atlas A = {(Ui, φi)} for a topological manifold is called
smooth when all gluing maps

φj ◦ φ−1
i |φi(Uij) : φi(Uij) −→ φj(Uij) (17)

are smooth maps, i.e. lie in C∞(φi(Uij),Rn). Two atlases A,A′ are equivalent
if A ∪ A′ is itself a smooth atlas.

Remark 1.17. Instead of requiring an atlas to be smooth, we could ask for
it to be Ck, or real-analytic, or even holomorphic (this makes sense for a 2n-
dimensional topological manifold when we identify R2n ∼= Cn). This is how we
define Ck, real-analytic, and complex manifolds, respectively.

We may now verify that all the examples from §1.1 are actually smooth
manifolds:

Example 1.18 (Circle). For Example 1.3, only two charts, e.g. φ±1, suffice to
define an atlas, and we have

φ−1 ◦ φ−1
1 =

{
t+ 1 − 1

2 < t < 0
t 0 < t < 1

2 ,
(18)

which is clearly C∞. In fact all the charts φz are smoothly compatible. Hence
the circle is a smooth manifold.

The Cartesian product of smooth manifolds inherits a natural smooth struc-
ture from taking the Cartesian product of smooth atlases. Hence the n-torus,
for example, equipped with the atlas we described in Example 1.4, is smooth.
Example 1.5 is clearly defining a smooth manifold, since the restriction of a
smooth map to an open set is always smooth.

Example 1.19 (Spheres). The charts for the n-sphere given in Example 1.6
form a smooth atlas, since

φN ◦ φ−1
S : z⃗ 7→ 1−x0

1+x0
z⃗ = (1−x0)2

|x⃗|2 z⃗ = |z⃗|−2z⃗ (19)

is a smooth map Rn \ {0} → Rn \ {0}, as required.
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Example 1.20 (Projective spaces). The charts for projective spaces given in
Example 1.8 form a smooth atlas, since

φ1 ◦ φ−1
0 (z1, . . . , zn) = (z−1

1 , z−1
1 z2, . . . , z

−1
1 zn), (20)

which is smooth on Rn\{z1 = 0}, as required, and similarly for all φi, φj .

The two remaining examples were constructed by gluing: the connected sum
in Example 1.9 is clearly smooth since ϕ is a smooth map, and any topological
manifold from Example 1.13 will be endowed with a natural smooth atlas as
long as the gluing maps φij are chosen to be C∞.

1.3 Manifolds with boundary
Manifolds with boundary relate manifolds of different dimension. Since man-
ifolds are not defined as subsets of another topological space, the notion of
boundary is not the usual one from point set topology. To introduce bound-
aries, we change the local model for manifolds to

Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, (21)

with the induced topology from Rn.

Definition 1.21. A topological manifold with boundary M is a second count-
able Hausdorff topological space which is locally homeomorphic to Hn. Its
boundary ∂M is the (n− 1) manifold consisting of all points mapped to xn = 0
by a chart, and its interior IntM is the set of points mapped to xn > 0 by some
chart. It follows that M = ∂M ⊔ IntM .

A smooth structure on such a manifold with boundary is an equivalence class
of smooth atlases, with smoothness as defined below.

Definition 1.22. Let V,W be finite-dimensional vector spaces, as before. A
function f : A −→ W from an arbitrary subset A ⊂ V is smooth when it admits
a smooth extension to an open neighbourhood Up ⊂ W of every point p ∈ A.

Example 1.23. The function f(x, y) = y is smooth on H2 but f(x, y) = √
y is

not, since its derivatives do not extend to y ≤ 0.

Remark 1.24. If M is an n-manifold with boundary, then IntM is a usual n-
manifold (without boundary). Also, ∂M is an n−1-manifold without boundary.
This is sometimes phrased as the equation

∂2 = 0. (22)

Example 1.25 (Möbius strip). Consider the quotient of R× [0, 1] by the iden-
tification (x, y) ∼ (x+ 1, 1 − y). The result E is a manifold with boundary. It is
also a fiber bundle over S1, via the map π : [(x, y)] 7→ e2πix. The boundary, ∂E,
is isomorphic to S1, so this provides us with our first example of a non-trivial
fiber bundle, since the trivial fiber bundle S1 × [0, 1] has disconnected boundary.
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1.4 Cobordism
Compact (n+1)-Manifolds with boundary provide us with a natural equivalence
relation on compact n-manifolds, called cobordism.

Definition 1.26. Compact n-manifolds M1,M2 are cobordant when there exists
N , a compact n+ 1-manifold with boundary, such that ∂N is isomorphic to the
disjoint union M1 ⊔ M2. All manifolds cobordant to M form the cobordism
class of M . We say that M is null-cobordant if M = ∂N for N a compact
n+ 1–manifold with boundary.

Remark 1.27. It is important to assume compactness, otherwise all manifolds
are null-cobordant, by taking Cartesian product with the noncompact manifold
with boundary [0, 1).

Let Ωn be the set of cobordism classes of compact n-manifolds, including
the empty set ∅. Using the disjoint union operation [M1] + [M2] = [M1 ⊔M2],
we see that Ωn is an abelian group with identity [∅].

The direct sum Ω• = ⊕n≥0Ωn is then endowed with another operation,

[M1] · [M2] = [M1 ×M2], (23)

rendering Ω• into a commutative ring, called the cobordism ring. It has a
multiplicative unit [∗], the class of the 0-manifold consisting of a single point.
It is also graded by dimension.

Proposition 1.28. The cobordism ring is 2-torsion, i.e. x+ x = 0 ∀x.

Proof. For any manifold M , the manifold with boundary M×[0, 1] has boundary
M ⊔M . Hence [M ] + [M ] = [∅] = 0, as required.

Example 1.29. The n-sphere Sn is null-cobordant (i.e. cobordant to ∅), since
∂Bn+1(0, 1) ∼= Sn, where Bn+1(0, 1) denotes the unit ball in Rn+1.

Example 1.30. Any oriented compact 2-manifold is null-cobordant: we may
embed it in R3 and the “inside” is a 3-manifold with boundary.

We now state an amazing theorem of Thom, which is a complete description
of the cobordism ring of smooth compact n-manifolds.

Theorem 1.31. The cobordism ring is a (countably generated) polynomial ring
over F2 with generators in every dimension n ̸= 2k − 1, i.e.

Ω• = F2[x2, x4, x5, x6, x8, . . .]. (24)

This theorem implies that there are 3 cobordism classes in dimension 4,
namely x2

2, x4, and x2
2 + x4. Can you find 4-manifolds representing these

classes? Can you find connected representatives?
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1.5 Smooth maps
For topological manifolds M,N of dimension m,n, the natural notion of mor-
phism from M to N is that of a continuous map. A continuous map with
continuous inverse is then a homeomorphism from M to N , which is the nat-
ural notion of equivalence for topological manifolds. Since the composition of
continuous maps is continuous, we obtain a “category” of topological manifolds
and continuous maps.

A category is a class of objects C (in our case, topological manifolds) and
a class of arrows A (in our case, continuous maps). Each arrow goes from
an object (the source) to another object (the target), meaning that there are
“source” and “target” maps from A to C:

A
s

((

t

66 C (25)

Also, a category has an identity arrow for each object, given by a map id : C −→
A (in our case, the identity map of any manifold to itself). Furthermore, there
is an associative composition operation on arrows.

Conventionally, we write the set of arrows from X to X as Hom(X,Y ), i.e.

Hom(X,Y ) = {a ∈ A : s(a) = X and t(a) = Y }. (26)

Then the associative composition of arrows mentioned above becomes a map

Hom(X,Y ) × Hom(Y,Z) → Hom(X,Z). (27)

We have described the category of topological manifolds; we now describe the
category of smooth manifolds by defining the notion of a smooth map.

Definition 1.32. A map f : M → N is called smooth when for each chart
(U,φ) for M and each chart (V, ψ) for N , the composition ψ ◦ f ◦ φ−1 is a
smooth map, i.e. ψ ◦ f ◦ φ−1 ∈ C∞(φ(U),Rn).

The set of smooth maps (i.e. morphisms) fromM toN is denoted C∞(M,N).
A smooth map with a smooth inverse is called a diffeomorphism.

Proposition 1.33. If g : L → M and f : M → N are smooth maps, then so is
the composition f ◦ g.

Proof. If charts φ, χ, ψ for L,M,N are chosen near p ∈ L, g(p) ∈ M , and
(fg)(p) ∈ N , then ψ ◦ (f ◦ g) ◦ φ−1 = A ◦ B, for A = ψfχ−1 and B = χgφ−1

both smooth mappings Rn → Rn. By the chain rule, A ◦ B is differentiable at
p, with derivative Dp(A ◦B) = (Dg(p)A)(DpB) (matrix multiplication).

Now we have a new category, the category of smooth manifolds and smooth
maps; two manifolds are considered isomorphic when they are diffeomorphic. In
fact, the definitions above carry over, word for word, to the setting of manifolds
with boundary. Hence we have defined another category, the category of smooth
manifolds with boundary.
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In defining the arrows for the category of manifolds with boundary, we may
choose to consider all smooth maps, or only those smooth maps which send the
boundary to the boundary, i.e. boundary-preserving maps.

The operation ∂ of “taking the boundary” sends a manifold with boundary to
a usual manifold. Furthermore, if ψ : M → N is a boundary-preserving smooth
map, then we can “take its boundary” by restricting it to the boundary, i.e.
∂ψ = ψ|∂M . Since ∂ takes objects to objects and arrows to arrows in a manner
which respects compositions and identity maps, it is called a “functor” from the
category of manifolds with boundary (and boundary-preserving smooth maps)
to the category of smooth manifolds.

Example 1.34. Let φz be a chart for S1, and let j : S1 → C be the inclusion
map of S1. We see that j is smooth since j ◦ φ−1 is the map

t 7→ e2πit = (cos(2πt), sin(2πt)), (28)

which is a smooth map from Ic ⊂ R to R2.

Example 1.35. The complex projective line CP 1 is diffeomorphic to the 2-
sphere S2: consider the maps f+(x0, x1, x2) = [1+x0 : x1+ix2] and f−(x0, x1, x2) =
[x1 − ix2 : 1 − x0]. Since f± is continuous on x0 ̸= ±1, and since f− = f+ on
|x0| < 1, the pair (f−, f+) defines a continuous map f : S2 −→ CP 1. To check
smoothness, we compute the compositions

φ0 ◦ f+ ◦ φ−1
N : (y1, y2) 7→ y1 + iy2, (29)

φ1 ◦ f− ◦ φ−1
S : (y1, y2) 7→ y1 − iy2, (30)

both of which are obviously smooth maps.

Example 1.36. The smooth inclusion j : S1 → C induces a smooth inclusion
j × j of the 2-torus T 2 = S1 × S1 into C2. The image of j × j does not include
zero, so we may compose with the projection π : C2 \ {0} → CP 1 and the
diffeomorphism CP 1 → S2, to obtain a smooth map

π ◦ (j × j) : T 2 → S2. (31)

Remark 1.37 (Exotic smooth structures). The topological Poincaré conjec-
ture, now proven, states that any topological manifold homotopic to the n-
sphere is in fact homeomorphic to it. We have now seen how to put a differ-
entiable structure on this n-sphere. Remarkably, there are other differentiable
structures on the n-sphere which are not diffeomorphic to the standard one we
gave; these are called exotic spheres.

Since the connected sum of spheres is homeomorphic to a sphere, and since
the connected sum operation is well-defined as a smooth manifold, it follows that
the connected sum defines a monoid structure on the set of smooth n-spheres.
In fact, Kervaire and Milnor showed that for n ̸= 4, the set of (oriented) dif-
feomorphism classes of smooth n-spheres forms a finite abelian group under the
connected sum operation. This is not known to be the case in four dimensions.
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Kervaire and Milnor also compute the order of this group, and the first dimen-
sion where there is more than one smooth sphere is n = 7, in which case they
show there are 28 smooth spheres, which we will encounter later on.

The situation for spheres may be contrasted with that for the Euclidean
spaces: any differentiable manifold homeomorphic to Rn for n ̸= 4 must be
diffeomorphic to it. On the other hand, by results of Donaldson, Freedman,
Taubes, and Kirby, we know that there are uncountably many non-diffeomorphic
smooth structures on the topological manifold R4; these are called fake R4s.

Remark 1.38. The maps α : x 7→ x and β : x 7→ x3 are both homeomorphisms
from R to R. Each one defines, by itself, a smooth atlas on R. These two smooth
atlases are not compatible (why?), so they do not define the same smooth struc-
ture on R. Nevertheless, the smooth structures are equivalent, since there is a
diffeomorphism taking one to the other. What is it?

Example 1.39 (Lie groups). A group is a set G with an associative multi-
plication G×G

m // G , an identity element e ∈ G, and an inversion map
ι : G −→ G, usually written ι(g) = g−1.

If we endow G with a topology for which G is a topological manifold and m, ι
are continuous maps, then the resulting structure is called a topological group.
If G is a given a smooth structure and m, ι are smooth maps, the result is a Lie
group.

The real line (where m is given by addition), the circle (where m is given by
complex multiplication), and their Cartesian products give simple but important
examples of Lie groups. We have also seen the general linear group GL(n,R),
which is a Lie group since matrix multiplication and inversion are smooth maps.

Since m : G × G −→ G is a smooth map, we may fix g ∈ G and define
smooth maps Lg : G −→ G and Rg : G −→ G via Lg(h) = gh and Rg(h) = hg.
These are called left multiplication and right multiplication. Note that the group
axioms imply that RgLh = LhRg.

2 The tangent bundle
The tangent bundle of a manifold is an absolutely central topic in differential
geometry. In this section, we describe the tangent bundle intrinsically, with-
out reference to any embedding of the manifold in a vector space. By way of
motivation, however, we briefly discuss this case.

The definition of the tangent bundle is simplest for an open subset U ⊂ V
of a finite-dimensional vector space V . In this case, a tangent vector to a point
p ∈ U is simply a vector in V , and so the tangent bundle, which consists of all
tangent vectors to all points in U , is simply given by

TU = U × V. (32)

The tangent bundle TU of U is then equipped with a projection map π : TU →
U , and a vector field on U is nothing but a section of this projection, i.e.
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a smooth map X : U → TU such that π ◦ X = idU . We now investigate
the problem of generalizing the tangent bundle to other manifolds, where the
convenience of being an open set in a vector space is not available.

2.1 Submanifolds
There are several ways to define the notion of submanifold. We will use a
definition which works for topological and smooth manifolds, based on the local
model of inclusion of a vector subspace. These are sometimes called regular or
embedded submanifolds.

Definition 2.1. A subspace L ⊂ M of an m-manifold is called a submanifold
of codimension k when each point x ∈ L is contained in a chart (U,φ) for M
such that

L ∩ U = f−1(0), (33)

where f is the composition of φ with the projection Rm → Rk to the last
k coordinates (xm−k+1, . . . , xm). A submanifold of codimension 1 is usually
called a hypersurface.

Now suppose that L ⊂ Rm is a submanifold of codimension k, and let φ be
a diffeomorphism which “rectifies” a neighbourhood U ⊂ Rn of a point p ∈ L,
sending U to an open set in Rm in which the image of L∩U is a linear subspace,
given by xm−k+1 = · · · = xm = 0. Then we say that u ∈ Rm is tangent to L at
p when the derivative Dφ(p) takes u to that same linear subspace.

The tangent bundle TL of L is the set of all pairs (p, u), where p ∈ L and
u ∈ Rm is tangent to L at p. It is a subset of TRm = Rm × Rm, and it is itself
a submanifold of R2m of codimension 2k.

2.2 General construction
The tangent bundle of an n-manifold M is a 2n-manifold, called TM , naturally
constructed in terms of M . As a set, it is fairly easy to describe, as simply the
disjoint union of all tangent spaces. However we must explain precisely what
we mean by the tangent space TpM to p ∈ M .

Definition 2.2. Let (U,φ), (V, ψ) be coordinate charts around p ∈ M . Let
u ∈ Tφ(p)φ(U) and v ∈ Tψ(p)ψ(V ). Then the triples (U,φ, u), (V, ψ, v) are
called equivalent when D(ψ ◦φ−1)(φ(p)) : u 7→ v. The chain rule for derivatives
Rn −→ Rn guarantees that this is indeed an equivalence relation.

The set of equivalence classes of such triples is called the tangent space to p
of M , denoted TpM . It is a real vector space of dimension dimM , since both
Tφ(p)φ(U) and Tψ(p)ψ(V ) are, and D(ψ ◦ φ−1) is a linear isomorphism.

As a set, the tangent bundle is defined by

TM =
⊔
p∈M

TpM, (34)
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and it is equipped with a natural surjective map π : TM −→ M , which is simply
π(X) = x for X ∈ TxM .

We now give it a manifold structure in a natural way.

Proposition 2.3. For an n-manifold M , the set TM has a natural topology
and smooth structure which make it a 2n-manifold, and make π : TM −→ M a
smooth map.

Proof. Any chart (U,φ) for M defines a bijection

Tφ(U) ∼= U × Rn −→ π−1(U) (35)

via (p, v) 7→ (U,φ, v). Using this, we induce a smooth manifold structure on
π−1(U), and view the inverse of this map as a chart (π−1(U),Φ) to φ(U) ×Rn.

given another chart (V, ψ), we obtain another chart (π−1(V ),Ψ) and we may
compare them via

Ψ ◦ Φ−1 : φ(U ∩ V ) × Rn −→ ψ(U ∩ V ) × Rn, (36)

which is given by (p, u) 7→ ((ψ ◦ φ−1)(p), D(ψ ◦ φ−1)pu), which is smooth.
Therefore we obtain a topology and smooth structure on all of TM (by defining
W to be open when W ∩ π−1(U) is open for every U in an atlas for M ; all that
remains is to verify the Hausdorff property, which holds since points x, y are
either in the same chart (in which case it is obvious) or they can be separated
by the given type of charts.

Remark 2.4. This is a more constructive way of looking at the tangent bundle:
We choose a countable, locally finite atlas {(Ui, φi)} for M and glue together
Ui × Rn to Uj × Rn via an equivalence

(x, u) ∼ (y, v) ⇔ y = φj ◦ φ−1
i (x) and v = D(φj ◦ φ−1

i )xu, (37)

and verify the conditions of the general gluing construction 1.13. The choice of
a different atlas yields a canonically diffeomorphic manifold.

2.3 The derivative
A description of the tangent bundle is not complete without defining the deriva-
tive of a general smooth map of manifolds f : M −→ N . Such a map may be
defined locally in charts (Ui, φi) for M and (Vα, ψα) for N as a collection of
vector-valued functions ψα ◦ f ◦ φ−1

i = fiα : φi(Ui) −→ ψα(Vα) which satisfy

(ψβ ◦ ψ−1
α ) ◦ fiα = fjβ ◦ (φj ◦ φ−1

i ). (38)

Differentiating, we obtain

D(ψβ ◦ ψ−1
α ) ◦Dfiα = Dfjβ ◦D(φj ◦ φ−1

i ). (39)

Equation 39 shows that Dfiα and Dfjβ glue together to define a map TM −→
TN . This map is called the derivative of f and is denoted Df : TM −→ TN .
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Sometimes it is called the “push-forward” of vectors and is denoted f∗. The
map fits into the commutative diagram

TM
Df //

π

��

TN

π

��
M

f
// N

(40)

Each fiber π−1(x) = TxM ⊂ TM is a vector space, and the map Df : TxM −→
Tf(x)N is a linear map. In fact, (f,Df) defines a homomorphism of vector
bundles from TM to TN .

The usual chain rule for derivatives then implies that if f ◦ g = h as maps of
manifolds, then Df ◦Dg = Dh. As a result, we obtain the following category-
theoretic statement.

Proposition 2.5. The mapping T which assigns to a manifold M its tangent
bundle TM , and which assigns to a map f : M −→ N its derivative Df :
TM −→ TN , is a functor from the category of manifolds and smooth maps to
itself1.

For this reason, the derivative map Df is sometimes called the “tangent
mapping” Tf .

2.4 Vector fields
A vector field on an open subset U ⊂ V of a vector space V is what we usually
call a vector-valued function, i.e. a function X : U → V . If (x1, . . . , xn) is a
basis for V ∗, hence a coordinate system for V , then the constant vector fields
dual to this basis are usually denoted in the following way:(

∂

∂x1
, . . . ,

∂

∂xn

)
. (41)

The reason for this notation is that we may identify a vector v with the operator
of directional derivative in the direction v. We will see later that vector fields
may be viewed as derivations on functions. A derivation is a linear map D from
smooth functions to R satisfying the Leibniz rule D(fg) = fDg + gDf .

The tangent bundle allows us to make sense of the notion of vector field in
a global way. Locally, in a chart (Ui, φi), we would say that a vector field Xi

is simply a vector-valued function on Ui, i.e. a function Xi : φ(Ui) −→ Rn. Of
course if we had another vector field Xj on (Uj , φj), then the two would agree
as vector fields on the overlap Ui ∩ Uj when D(φj ◦ φ−1

i ) : Xi 7→ Xj . So, if
we specify a collection {Xi ∈ C∞(Ui,Rn)} which glue together on overlaps, it
defines a global vector field.

1We can also say that it is a functor from manifolds to the category of smooth vector
bundles.
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Definition 2.6. A smooth vector field on the manifold M is a smooth map
X : M −→ TM such that π ◦X = idM . In words, it is a smooth assignment of
a unique tangent vector to each point in M .

Such maps X are also called cross-sections or simply sections of the tangent
bundle TM , and the set of all such sections is denoted C∞(M,TM) or, better,
Γ∞(M,TM), to distinguish them from all smooth maps M −→ TM . The space
vector fields is also sometimes denoted by X(M).

Example 2.7. From a computational point of view, given an atlas (Ũi, φi) for
M , let Ui = φi(Ũi) ⊂ Rn and let φij = φj ◦ φ−1

i . Then a global vector field
X ∈ Γ∞(M,TM) is specified by a collection of vector-valued functions

Xi : Ui −→ Rn, (42)

such that
Dφij(Xi(x)) = Xj(φij(x)) (43)

for all x ∈ φi(Ũi ∩ Ũj). For example, if S1 = U0 ⊔ U1/ ∼, with U0 = R and
U1 = R, with x ∈ U0\{0} ∼ y ∈ U1\{0} whenever y = x−1, then φ01 : x 7→ x−1

and Dφ01(x) : v 7→ −x−2v. Then if we define (letting x be the standard
coordinate along R)

X0 = ∂

∂x

X1 = −y2 ∂

∂y
,

we see that this defines a global vector field, which does not vanish in U0 but
vanishes to order 2 at a single point in U1. Find the local expression in these
charts for the rotational vector field on S1 given in polar coordinates by ∂

∂θ .

Remark 2.8. While a vector v ∈ TpM is mapped to a vector (Df)p(v) ∈
Tf(p)N by the derivative of a map f ∈ C∞(M,N), there is no way, in general,
to transport a vector field X on M to a vector field on N . If f is invertible,
then of course Df ◦X ◦ f−1 : N → TN defines a vector field on N , which can
be called f∗X, but if f is not invertible this approach fails.

Definition 2.9. We say that X ∈ X(M) and Y ∈ X(N) are f–related, for
f ∈ C∞(M,N), when the following diagram commutes

TM
Df // TN

M

X

OO

f
// N

Y

OO .

(44)
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2.5 Local structure of smooth maps
In some ways, smooth manifolds are easier to produce or find than general topo-
logical manifolds, because of the fact that smooth maps have linear approxima-
tions. Therefore smooth maps often behave like linear maps of vector spaces,
and we may gain inspiration from vector space constructions (e.g. subspace,
kernel, image, cokernel) to produce new examples of manifolds.

In charts (U,φ), (V, ψ) for the smooth manifolds M,N , a smooth map f :
M −→ N is represented by a smooth map ψ ◦ f ◦ φ−1 ∈ C∞(φ(U),Rn). We
shall give a general local classification of such maps, based on the behaviour of
the derivative. The fundamental result which provides information about the
map based on its derivative is the inverse function theorem.

Theorem 2.10 (Inverse function theorem). Let U ⊂ Rm an open set and f :
U −→ Rm a smooth map such that Df(p) is an invertible linear operator. Then
there is a neighbourhood V ⊂ U of p such that f(V ) is open and f : V −→ f(V )
is a diffeomorphism. furthermore, D(f−1)(f(p)) = (Df(p))−1.

Proof. Without loss of generality, assume that U contains the origin, that f(0) =
0 and that Df(p) = Id (for this, replace f by (Df(0))−1 ◦ f . We are trying
to invert f , so solve the equation y = f(x) uniquely for x. Define g so that
f(x) = x+ g(x). Hence g(x) is the nonlinear part of f .

The claim is that if y is in a sufficiently small neighbourhood of the origin,
then the map hy : x 7→ y − g(x) is a contraction mapping on some closed ball;
it then has a unique fixed point ϕ(y), and so y − g(ϕ(y)) = ϕ(y), i.e. ϕ is an
inverse for f .

Why is hy a contraction mapping? Note that Dhy(0) = 0 and hence there is
a ball B(0, r) where ||Dhy|| ≤ 1

2 . This then implies (mean value theorem) that
for x, x′ ∈ B(0, r),

||hy(x) − hy(x′)|| ≤ 1
2 ||x− x′||.

Therefore hy does look like a contraction, we just have to make sure it’s oper-
ating on a complete metric space. Let’s estimate the size of hy(x):

||hy(x)|| ≤ ||hy(x) − hy(0)|| + ||hy(0)|| ≤ 1
2 ||x|| + ||y||.

Therefore by taking y ∈ B(0, r2 ), the map hy is a contraction mapping on B(0, r).
Let ϕ(y) be the unique fixed point of hy guaranteed by the contraction mapping
theorem.

To see that ϕ is continuous (and hence f is a homeomorphism), we compute

||ϕ(y) − ϕ(y′)|| = ||hy(ϕ(y)) − hy′(ϕ(y′))||
≤ ||g(ϕ(y)) − g(ϕ(y′))|| + ||y − y′||
≤ 1

2 ||ϕ(y) − ϕ(y′)|| + ||y − y′||,

so that we have ||ϕ(y) − ϕ(y′)|| ≤ 2||y − y′||, as required.
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To see that ϕ is differentiable, we guess the derivative (Df)−1 and compute.
Let x = ϕ(y) and x′ = ϕ(y′). For this to make sense we must have chosen r
small enough so that Df is nonsingular on B(0, r), which is not a problem.

||ϕ(y) − ϕ(y′) − (Df(x))−1(y − y′)|| = ||x− x′ − (Df(x))−1(f(x) − f(x′))||
≤ ||(Df(x))−1||||(Df(x))(x− x′) − (f(x) − f(x′))||.

Now note that ||(Df(x))−1|| is bounded and ||x − x′|| ≤ 2||y − y′|| as shown
before. Dividing by ||y − y′||, taking the limit y → y′, and using the differen-
tiability of f , we get that ϕ is differentiable, and with derivative (Df)−1. That
is,

Dϕ = (Df)−1. (45)

Since inversion is C∞, ϕ has as many derivatives as f , hence ϕ is C∞.

This theorem provides us with a local normal form for a smooth map with
Df(p) invertible: we may choose coordinates on sufficiently small neighbour-
hoods of p, f(p) so that f is represented by the identity map Rn −→ Rn.

In fact, the inverse function theorem leads to a normal form theorem for a
more general class of maps:

Theorem 2.11 (Constant rank theorem). Let f : Mm → Nn be a smooth map
such that Df has constant rank k in a neighbourhood of p ∈ M . Then there are
charts (U,φ) and (V, ψ) containing p, f(p) such that

ψ ◦ f ◦ φ−1 : (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0). (46)

Proof. Begin by choosing charts so that without loss of generality M is an open
set in Rm and N is Rn.

Since rk Df = k at p, there is a k × k minor of Df(p) with nonzero
determinant. Reorder the coordinates on Rm and Rn so that this minor is
top left, and translate coordinates so that f(0) = 0. label the coordinates
(x1, . . . , xk, y1, . . . ym−k) on the domain and (u1, . . . uk, v1, . . . , vn−k) on the codomain.

Then we may write f(x, y) = (Q(x, y), R(x, y)), where Q is the projection
to u = (u1, . . . , uk) and R is the projection to v. with ∂Q

∂x nonsingular. First
we wish to put Q into normal form. Consider the map ϕ(x, y) = (Q(x, y), y),
which has derivative

Dϕ =
( ∂Q

∂x
∂Q
∂y

0 1

)
(47)

As a result we see Dϕ(0) is nonsingular and hence there exists a local in-
verse ϕ−1(x, y) = (A(x, y), B(x, y)). Since it’s an inverse this means (x, y) =
ϕ(ϕ−1(x, y)) = (Q(A,B), B), which implies that B(x, y) = y.

Then f ◦ ϕ−1 : (x, y) 7→ (x, R̃ = R(A, y)), and must still be of rank k. Since
its derivative is

D(f ◦ ϕ−1) =

(
Ik×k 0
∂R̃
∂x

∂R̃
∂y

)
(48)
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we conclude that ∂R̃
∂y = 0, meaning that

f ◦ ϕ−1 : (x, y) 7→ (x, S(x)). (49)

We now postcompose by the diffeomorphism σ : (u, v) 7→ (u, v−S(u)), to obtain

σ ◦ f ◦ ϕ−1 : (x, y) 7→ (x, 0), (50)

as required.

As we shall see, these theorems have many uses. One of the most straight-
forward uses is for defining submanifolds.

Proposition 2.12. If f : M −→ N is a smooth map of manifolds, and if Df(p)
has constant rank on M , then for any q ∈ f(M), the inverse image f−1(q) ⊂ M
is a regular submanifold.

Proof. Let x ∈ f−1(q). Then there exist charts ψ,φ such that ψ ◦ f ◦ φ−1 :
(x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0) and f−1(q) ∩ U = {x1 = · · · = xk = 0}.
Hence we obtain that f−1(q) is a codimension k submanifold.

Example 2.13. Let f : Rn −→ R be given by (x1, . . . , xn) 7→
∑
x2
i . Then

Df(x) = (2x1, . . . , 2xn), which has rank 1 at all points in Rn\{0}. Hence since
f−1(q) contains {0} iff q = 0, we see that f−1(q) is a regular submanifold for
all q ̸= 0. Exercise: show that this manifold structure is compatible with that
obtained in Example 1.19.

The previous example leads to the following special case.

Proposition 2.14. If f : M −→ N is a smooth map of manifolds and Df(p)
has rank equal to dimN along f−1(q), then this subset f−1(q) is an embedded
submanifold of M .

Proof. Since the rank is maximal along f−1(q), it must be maximal in an open
neighbourhood U ⊂ M containing f−1(q), and hence f : U −→ N is of constant
rank.

Definition 2.15. If f : M −→ N is a smooth map such that Df(p) is surjective,
then p is called a regular point. Otherwise p is called a critical point. If all
points in the level set f−1(q) are regular points, then q is called a regular value,
otherwise q is called a critical value. In particular, if f−1(q) = ∅, then q is
regular.

It is often useful to highlight two classes of smooth maps; those for which
Df is everywhere injective, or, on the other hand surjective.

Definition 2.16. A smooth map f : M −→ N is called a submersion when
Df(p) is surjective at all points p ∈ M , and is called an immersion when
Df(p) is injective at all points p ∈ M . If f is an injective immersion which is
a homeomorphism onto its image (when the image is equipped with subspace
topology), then we call f an embedding.
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Proposition 2.17. If f : M −→ N is an embedding, then f(M) is a regular
submanifold.

Proof. Let f : M −→ N be an embedding. Then for all m ∈ M , we have
charts (U,φ), (V, ψ) where ψ ◦ f ◦ φ−1 : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).
If f(U) = f(M) ∩ V , we’re done. To make sure that some other piece of M
doesn’t get sent into the neighbourhood, use the fact that F (U) is open in the
subspace topology. This means we can find a smaller open set V ′ ⊂ V such that
V ′ ∩ f(M) = f(U). Restricting the coordinates to V ′, we see that f(M) is cut
out by (xm+1, . . . , xn), where n = dimN .

Example 2.18. If ι : M −→ N is an embedding of M into N , then Dι :
TM −→ TN is also an embedding (hence so are Dkι : T kM −→ T kN), showing
that TM is a submanifold of TN .

2.6 Smooth maps between manifolds with boundary
We may also use the constant rank theorem to study manifolds with boundary.

Proposition 2.19. Let M be a smooth n-manifold and f : M −→ R a smooth
and proper real-valued function, and let a, b, with a < b, be regular values of f .
Then f−1([a, b]) is a cobordism between the closed n − 1-manifolds f−1(a) and
f−1(b).

Proof. The pre-image f−1((a, b)) is an open subset of M and hence a subman-
ifold. Since p is regular for all p ∈ f−1(a), we may (by the constant rank
theorem) find charts such that f is given near p by the linear map

(x1, . . . , xm) 7→ xm. (51)

Possibly replacing xm by −xm, we therefore obtain a chart near p for f−1([a, b])
into Hm, as required. Proceed similarly for p ∈ f−1(b).

Example 2.20. Using f : Rn −→ R given by (x1, . . . , xn) 7→
∑
x2
i , this gives

a simple proof for the fact that the closed unit ball B(0, 1) = f−1([−1, 1]) is a
manifold with boundary.

Example 2.21. Consider the C∞ function f : R3 −→ R given by (x, y, z) 7→
x2 + y2 − z2. Both +1 and −1 are regular values for this map, with pre-images
given by 1- and 2-sheeted hyperboloids, respectively. Hence f−1([−1, 1]) is a
cobordism between hyperboloids of 1 and 2 sheets. In other words, it defines a
cobordism between the disjoint union of two closed disks and the closed cylinder
(each of which has boundary S1 ⊔ S1). Does this cobordism tell us something
about the cobordism class of a connected sum?

Proposition 2.22. Let f : M −→ N be a smooth map from a manifold with
boundary to the manifold N . Suppose that q ∈ N is a regular value of f and
also of f |∂M . Then the pre-image f−1(q) is a submanifold with boundary2.
Furthermore, the boundary of f−1(q) is simply its intersection with ∂M .

2i.e. locally modeled on the inclusion Hk ⊂ Hn given by (x1, . . . xk) 7→ (0, . . . , 0, x1, . . . xk).
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Proof. If p ∈ f−1(q) is not in ∂M , then as before f−1(q) is a submanifold in a
neighbourhood of p. Therefore suppose p ∈ ∂M ∩ f−1(q). Pick charts φ,ψ so
that φ(p) = 0 and ψ(q) = 0, and ψfφ−1 is a map U ⊂ Hm −→ Rn. Extend this
to a smooth function f̃ defined in an open set Ũ ⊂ Rm containing U . Shrinking
Ũ if necessary, we may assume f̃ is regular on Ũ . Hence f̃−1(0) is a submanifold
of Rm of codimension n.

Now consider the real-valued function π : f̃−1(0) −→ R given by the restric-
tion of (x1, . . . , xm) 7→ xm. 0 ∈ R must be a regular value of π, since if not,
then the tangent space to f̃−1(0) at 0 would lie completely in xm = 0, which
contradicts the fact that q is a regular point for f |∂M .

Hence, by Proposition 2.19, we have expressed f−1(q), in a neighbour-
hood of p, as a regular submanifold with boundary given by {φ−1(x) : x ∈
f̃−1(0) and π(x) ≥ 0}, as required.

3 Transversality
We continue to use the constant rank theorem to produce more manifolds, except
now these will be cut out only locally by functions. Globally, they are cut out by
intersecting with another submanifold. You should think that intersecting with
a submanifold locally imposes a number of constraints equal to its codimension.

The problem is that the intersection of submanifolds need not be a subman-
ifold; this is why the condition of transversality is so important - it guarantees
that intersections are smooth.

Two subspaces K,L ⊂ V of a vector space V are transverse when K + L =
V , i.e. every vector in V may be written as a (possibly non-unique) linear
combination of vectors in K and L. In this situation one can easily see that
dimV = dimK + dimL− dimK ∩ L, or equivalently

codim(K ∩ L) = codimK + codimL. (52)

We may apply this to submanifolds as follows:

Definition 3.1. Let K,L ⊂ M be regular submanifolds such that every point
p ∈ K ∩ L satisfies

TpK + TpL = TpM. (53)

Then K,L are said to be transverse submanifolds and we write K ∩| L.

Proposition 3.2. If K,L ⊂ M are transverse submanifolds, then K ∩ L is
either empty, or a submanifold of codimension codimK + codimL.

Proof. Let p ∈ K ∩L. Then there is a neighbourhood U of p for which K ∩U =
f−1(0) for 0 a regular value of a function f : U −→ RcodimK and L∩U = g−1(0)
for 0 a regular value of a function g : L ∩ U −→ RcodimL.

Then p must be a regular point for (f, g) : L ∩M ∩ U −→ RcodimK+codimL,
since the kernel of its derivative is the intersection kerDf(p) ∩ kerDg(p), which
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is exactly TpK∩TpL, which has codimension codimK+codimL by the transver-
sality assumption, implying D(f, g)(p) is surjective. Therefore (f, g)|−1

Ũ
(0, 0) =

f−1(0) ∩ g−1(0) = K ∩ L ∩ Ũ is a submanifold.

Example 3.3 (Exotic spheres). Consider the following intersections in C5\0:

S7
k = {z2

1 +z2
2 +z2

3 +z3
4 +z6k−1

5 = 0}∩{|z1|2+|z2|2+|z3|2+|z4|2+|z5|2 = 1}. (54)

This is a transverse intersection, and for k = 1, . . . , 28 the intersection is a
smooth manifold homeomorphic to S7. These exotic 7-spheres were constructed
by Brieskorn and represent each of the 28 diffeomorphism classes on S7.

We may choose to phrase the previous transversality result in a slightly
different way, in terms of the embedding maps k, l for K,L in M . Specifically,
we say the maps k, l are transverse in the sense that ∀a ∈ K, b ∈ L such that
k(a) = l(b) = p, we have im(Dk(a)) + im(Dl(b)) = TpM . The advantage of this
approach is that it makes sense for any maps, not necessarily embeddings.

Definition 3.4. Two maps f : K −→ M , g : L −→ M of manifolds are
called transverse when im(Df(a)) + im(Dg(b)) = TpM for all a, b, p such that
f(a) = g(b) = p.

Proposition 3.5. If f : K −→ M , g : L −→ M are transverse smooth maps,
then Kf×gL = {(a, b) ∈ K × L : f(a) = g(b)} is naturally a smooth manifold
equipped with commuting maps

K × L
p2

**
p1

��

Kf×gL

i

ee

��

//

f∩g

##

L

g

��
K

f
// M

(55)

where i is the inclusion and f ∩ g : (a, b) 7→ f(a) = g(b).

The manifold Kf×gL of the previous proposition is called the fiber product
of K with L over M , and is a generalization of the intersection product. It is
often denoted simply by K ×M L, when the maps to M are clear.

Proof. Consider the graphs Γf ⊂ K ×M and Γg ⊂ L×M . To impose f(k) =
g(l), we can take an intersection with the diagonal submanifold

∆ = {(k,m, l,m) ∈ K ×M × L×M}. (56)

Step 1. We show that the intersection Γ = (Γf × Γg) ∩ ∆ is transverse. Let
f(k) = g(l) = m so that x = (k,m, l,m) ∈ Γ, and note that

Tx(Γf × Γg) = {((v,Df(v)), (w,Dg(w))), v ∈ TkK, w ∈ TlL} (57)
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whereas we also have

Tx(∆) = {((v,m), (w,m)) : v ∈ TkK, w ∈ TlL, m ∈ TpM} (58)

By transversality of f, g, any tangent vector mi ∈ TpM may be written as
Df(vi) +Dg(wi) for some (vi, wi), i = 1, 2. In particular, we may decompose a
general tangent vector to M ×M as

(m1,m2) = (Df(v2), Df(v2))+(Dg(w1), Dg(w1))+(Df(v1 −v2), Dg(w2 −w1)),
(59)

leading directly to the transversality of the spaces (57), (58). This shows that
Γ is a submanifold of K ×M × L×M .
Step 2. The projection map π : K ×M × L×M → K × L takes Γ bijectively
to Kf×gL. Since (57) is a graph, it follows that π|Γ : Γ → K×L is an injective
immersion. Since the projection π is an open map, it also follows that π|Γ is
a homeomorphism onto its image, hence is an embedding. This shows that
Kf×gL is a submanifold of K × L.

Example 3.6. If K1 = M × Z1 and K2 = M × Z2, we may view both Ki as
“fibering” over M with fibers Zi. If pi are the projections to M , then K1 ×M

K2 = M × Z1 × Z2, hence the name “fiber product”.

Example 3.7. Consider the Hopf map p : S3 −→ S2 given by composing the
embedding S3 ⊂ C2\{0} with the projection π : C2\{0} −→ CP 1 ∼= S2. Then
for any point q ∈ S2, p−1(q) ∼= S1. Since p is a submersion, it is obviously
transverse to itself, hence we may form the fiber product

S3 ×S2 S3,

which is a smooth 4-manifold equipped with a map p ∩ p to S2 with fibers
(p ∩ p)−1(q) ∼= S1 × S1.

These are our first examples of nontrivial fiber bundles, which we shall ex-
plore later.

The following result is an exercise: just as we may take the product of a
manifold with boundary K with a manifold without boundary L to obtain a
manifold with boundary K × L, we have a similar result for fiber products.

Proposition 3.8. Let K be a manifold with boundary where L,M are without
boundary. Assume that f : K −→ M and g : L −→ M are smooth maps such
that both f and ∂f are transverse to g. Then the fiber product K ×M L is a
manifold with boundary equal to ∂K ×M L.

3.1 Stability
Transversality is a stable condition. In other words, if transversality holds, it will
continue to hold for any sufficiently small perturbation (of the submanifolds or
maps involved). Not only is transversality stable, it is actually generic, meaning
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that even if it does not hold, it can be made to hold by a small perturbation.
In a sense, stability says that transversal maps form an open set, and genericity
says that this open set is dense in the space of maps. To make this precise, we
would introduce a topology on the space of maps, something which we leave for
another course.

Definition 3.9. We call a smooth map

F : M × [0, 1] → N (60)

a smooth homotopy from f0 to f1, where ft = F ◦ jt and jt : M → M × [0, 1] is
the embedding x 7→ (x, t).

Definition 3.10. A property of a smooth map f : M −→ N is stable under
perturbations when for any smooth homotopy ft with f0 = f , there exists an
ϵ > 0 such that the property holds for all ft with t < ϵ.

Proposition 3.11. If M is compact, then the property of f : M → N being an
immersion (or submersion) is stable under perturbations.

Proof. If ft, t ∈ [0, 1] is a smooth homotopy of the immersion f0, then in any
chart around the point p ∈ M , the derivativeDf0(p) has a m×m submatrix with
nonvanishing determinant, for m = dimM . By continuity, this m×m submatrix
must have nonvanishing determinant in a neighbourhood around (p, 0) ∈ M ×
[0, 1]. We can cover M × {0} by a finite number of such neighbourhoods, since
M is compact. Choose ϵ such that M × [0, ϵ) is contained in the union of these
intervals, giving the result. The proof for submersions is identical.

Corollary 3.12. If K is compact and f : K → M is transverse to the closed
submanifold L ⊂ M (this just means that f is transverse to the embedding
ι : L → M), then the transversality is stable under perturbations of f .

Proof. Let F : K × [0, 1] → M be a homotopy with f0 = f . We show that K
has an open cover by neighbourhoods in which ft is transverse for t in a small
interval; we then use compactness to obtain a uniform interval.

First the points which do not intersect L: F−1(M \ L) is open in K × [0, 1]
and contains (K \ f−1(L)) × {0}. So, for each p ∈ K \ f−1(L), there is a
neighbourhood Up ⊂ K of p and an interval Ip = [0, ϵp) such that F (Up × Ip) ∩
L = ∅.

Now, the points which do intersect L: L is a submanifold, so for each p ∈
f−1(L), we can find a neighbourhood V ⊂ M containing f(p) and a submersion
ψ : V → Rl cutting out L ∩ V . Transversality of f and L is then the statement
that ψf is a submersion at p. This implies there is a neighbourhood Ũp of (p, 0)
in K × [0, 1] where ψft is a submersion. Choose an open subset (containing
(p, 0)) of the form Up × Ip, for Ip = [0, ϵp).

By compactness of K, choose a finite subcover of {Up}p∈K ; the smallest ϵp in
the resulting subcover gives the required interval in which ft remains transverse
to L.
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Remark 3.13. Transversality of two maps f : M → N , g : M ′ → N can be
expressed in terms of the transversality of f × g : M × M ′ → N × N to the
diagonal ∆N ⊂ N × N . So, if M and M ′ are compact, we get stability for
transversality of f, g under perturbations of both f and g.

Remark 3.14. Local diffeomorphism and embedding are also stable properties.

3.2 Sard’s theorem
The fundamental idea which allows us to prove that transversality is a generic
condition is a the theorem of Sard showing that critical values of a smooth map
f : M −→ N (i.e. points q ∈ N for which the map f and the inclusion ι : q ↪→ N
fail to be transverse maps) are rare. The following proof is taken from Milnor,
based on Pontryagin.

The meaning of “rare” will be that the set of critical values is of measure
zero, which means, in Rm, that for any ϵ > 0 we can find a sequence of balls in
Rm, containing f(C) in their union, with total volume less than ϵ. Some easy
facts about sets of measure zero: the countable union of measure zero sets is of
measure zero, the complement of a set of measure zero is dense.

We begin with an elementary lemma describing the behaviour of measure-
zero sets under differentiable maps.

Lemma 3.15. Let Im = [0, 1]m be the unit cube, and f : Im −→ Rn a C1 map.
If m < n then f(Im) has measure zero. If m = n and A ⊂ Im has measure
zero, then f(A) has measure zero.

Proof. If f ∈ C1, its derivative is bounded on Im, so for all x, y ∈ Im we have

||f(y) − f(x)|| ≤ M ||y − x||, (61)

for a constant3 M > 0 depending only on f . So, the image of a ball of radius r
in Im is contained in a ball of radius Mr, which has volume proportional to rn.

If A ⊂ Im has measure zero, then for each ϵ we have a countable covering of
A by balls of radius rk with total volume cm

∑
k r

m
k < ϵ. We deduce that f(Ai)

is covered by balls of radius Mrk with total volume Mncn
∑
k r

n
k ; since n ≥ m

this goes to zero as ϵ → 0. We conclude that f(A) is of measure zero.
If m < n then f defines a C1 map Im×In−m −→ Rn by pre-composing with

the projection map to Im. Since Im × {0} ⊂ Im × In−m clearly has measure
zero, its image must also.

Remark 3.16. If we considered the case n < m, the resulting sum of volumes
may be larger in Rn. For example, the projection map R2 −→ R given by
(x, y) 7→ x clearly takes the set of measure zero y = 0 to one of positive measure.

A subset A ⊂ M of a manifold is said to have measure zero when its image
in each chart of an atlas has measure zero. Lemma 3.15, together with the fact
that a manifold is second countable, implies that the property is independent
of the choice of atlas, and that it is preserved under equidimensional maps:

3This is called a Lipschitz constant.
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Corollary 3.17. Let f : M → N be a C1 map of manifolds where dimM =
dimN . Then the image f(A) of a set A ⊂ M of measure zero also has measure
zero.

Corollary 3.18 (Baby Sard). Let f : M → N be a C1 of manifolds where
dimM < dimN . Then f(M) (i.e. the set of critical values) has measure zero
in N .

Remark 3.19. Note that this implies that space-filling curves are not C1.

Now we investigate the measure of the critical values of a map f : M → N
where dimM = dimN . The set of critical points need not have measure zero,
but we shall see that

The variation of f is constrained along its critical locus since
this is where Df drops rank. In fact, the set of critical
values has measure zero.

Theorem 3.20 (Equidimensional Sard). Let f : M → N be a C1 map of n-
manifolds, and let C ⊂ M be the set of critical points. Then f(C) has measure
zero.

Proof. It suffices to show result for the unit cube mapping to Euclidean space.
Let f : In −→ Rn a C1 map, and let M be the Lipschitz constant for f on In,
i.e.

||f(x) − f(y)|| ≤ M ||x− y||, ∀x, y ∈ In. (62)
Let c be a critical point, so that the image of Df(c) is a proper subspace of Rn.
Choose a hyperplane containing this subspace, translate it to f(c), and call it
H. Then

d(f(x),H) ≤ ||f(x) − (f(c) +Df(c)(x− c))||, (63)
but by Taylor’s theorem, this is bounded by C||x − c||2, for a constant C, for
all x in the compact set In.

If ||x − c|| ≤ ϵ, then f(x) is within a distance Cϵ2 from H and within a
distance Mϵ of f(c), so lies within a paralellepiped of volume

(2Cϵ2)(2Mϵ)n−1. (64)

Now subdivide In into hn cubes of edge length h−1 and apply the argument for
each small cube, in which ||x− c|| ≤ h−1√

n. This gives a total volume for the
image less than

(2nCMn−1n(n+1)/2h−n−1)(hn), (65)
which is arbitrarily small as h → ∞.

The argument above will not work for dimN < dimM ; we need more control
on the function f . In particular, one can find a C1 function I2 −→ R which fails
to have critical values of measure zero. (Hint: find a C1 function f : R → R
with critical values containing the Cantor set C ⊂ [0, 1]. Compose f × f with
the sum R × R → R and note that C +C = [0, 2].) As a result, Sard’s theorem
in general requires more differentiability of f .

26



Theorem 3.21 (Big Sard’s theorem). Let f : M −→ N be a Ck map of
manifolds of dimension m, n, respectively. Let C be the set of critical points.
Then f(C) has measure zero if k > m

n − 1.

Proof. As before, it suffices to show for f : Im −→ Rn. We do an induction on
m – note that the theorem holds for m = 0.

Define C1 ⊂ C to be the set of points x for which Df(x) = 0. Define
Ci ⊂ Ci−1 to be the set of points x for which Djf(x) = 0 for all j ≤ i. So we
have a descending sequence of closed sets:

C ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck. (66)

We will show that f(C) has measure zero by showing

1. f(Ck) has measure zero,
2. each successive difference f(Ci\Ci+1) has measure zero for i ≥ 1,
3. f(C\C1) has measure zero.

Step 1: For x ∈ Ck, Taylor’s theorem gives the estimate

||f(x+ t) − f(x)|| ≤ c||t||k+1, (67)

where c depends only on Im and f .
Subdivide Im into hm small cubes with edge h−1; then any point in in the

small cube I0 containing x may be written as x + t with ||t|| ≤ h−1√
m. As

a result, f(I0) is contained by a cube of edge ah−(k+1), with a = 2cm(k+1)/2

independent of the small cube size. At most hm cubes are necessary to cover
Ck, and their images have total volume less than

hm(ah−(k+1))n = anhm−(k+1)n. (68)

Assuming that k > m
n − 1, this tends to 0 as we increase the number of cubes.

Step 2: For each x ∈ Ci\Ci+1, i ≥ 1, there is a i + 1th partial, say wlog
∂i+1f1/∂x1 · · · ∂xi+1, which is nonzero at x. Therefore the function

w(x) = ∂if1/∂x2 · · · ∂xi+1 (69)

vanishes on Ci but its partial derivative ∂w/∂x1 is nonvanishing near x. Then

(w(x), x2, . . . , xm) (70)

forms an alternate coordinate system in a neighbourhood V around x by the
inverse function theorem (the change of coordinates is of class Ck), and we have
trapped Ci inside a hyperplane. The restriction of f to w = 0 in V is clearly
critical on Ci∩V and so by induction on m we have that f(Ci∩V ) has measure
zero. Cover Ci \ Ci+1 by countably many such neighbourhoods V .
Step 3: Let x ∈ C\C1. Note that we won’t necessarily be able to trap C in a
hypersurface. But, since there is some partial derivative, wlog ∂f1/∂x1, which
is nonzero at x, so defining w = f1, we have that

(w(x), x2, . . . , xm) (71)
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is an alternative coordinate system in some neighbourhood V of x (the coordi-
nate change is a diffeomorphism of class Ck). In these coordinates, the hyper-
planes w = t in the domain are sent into hyperplanes y1 = t in the codomain,
and so f can be described as a family of maps ft whose domain and codomain
has dimension reduced by 1. Since w = f1, the derivative of f in these coordi-
nates can be written

Df =
(

1 0
∗ Dft

)
, (72)

and so a point x′ = (t, p) in V is critical for f if and only if p is critical for
ft. Therefore, the critical values of f consist of the union of the critical values
of ft on each hyperplane y1 = t in the codomain. Since the domain of ft has
dimension reduced by one, by induction it has critical values of measure zero.
So the critical values of f intersect each hyperplane in a set of measure zero,
and by Fubini’s theorem this means they have measure zero. Cover C \ C1 by
countably many such neighbourhoods.

Remark 3.22. Note that f(C) is measurable, since it is the countable union
of compact subsets (the set of critical values is not necessarily closed, but the
set of critical points is closed and hence a countable union of compact subsets,
which implies the same of the critical values.)

To show the consequence of Fubini’s theorem directly, we can use the fol-
lowing argument. First note that for any covering of [a, b] by intervals, we may
extract a finite subcovering of intervals whose total length is ≤ 2|b − a|. To
see this, first choose a minimal subcovering {I1, . . . , Ip}, numbered according
to their left endpoints. Then the total overlap is at most the length of [a, b].
Therefore the total length is at most 2|b− a|.

Now let B ⊂ Rn be compact, so that we may assume B ⊂ Rn−1 × [a, b]. We
prove that if B ∩Pc has measure zero in the hyperplane Pc = {xn = c}, for any
constant c ∈ [a, b], then it has measure zero in Rn.

If B∩Pc has measure zero, we can find a covering by open sets Ric ⊂ Pc with
total volume < ϵ. For sufficiently small αc, the sets Ric × [c − αc, c + αc] cover
B∩

∪
z∈[c−αc,c+αc] Pz (since B is compact). As we vary c, the sets [c−αc, c+αc]

form a covering of [a, b], and we extract a finite subcover {Ij} of total length
≤ 2|b− a|.

Let Rij be the set Ric for Ij = [c− αc, c+ αc]. Then the sets Rij × Ij form a
cover of B with total volume ≤ 2ϵ|b − a|. We can make this arbitrarily small,
so that B has measure zero.

3.3 Brouwer’s fixed point theorem
Corollary 3.23. Let M be a compact manifold with boundary. There is no
smooth map f : M −→ ∂M leaving ∂M pointwise fixed. Such a map is called a
smooth retraction of M onto its boundary.

Proof. Such a map f must have a regular value by Sard’s theorem, let this value
be y ∈ ∂M . Then y is obviously a regular value for f |∂M = Id as well, so that
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f−1(y) must be a compact 1-manifold with boundary given by f−1(y) ∩ ∂M ,
which is simply the point y itself. Since there is no compact 1-manifold with a
single boundary point, we have a contradiction.

For example, this shows that the identity map Sn → Sn may not be extended
to a smooth map f : B(0, 1) → Sn.

Lemma 3.24. Every smooth map of the closed n-ball to itself has a fixed point.

Proof. Let Dn = B(0, 1). If g : Dn → Dn had no fixed points, then define the
function f : Dn → Sn−1 as follows: let f(x) be the point in Sn−1 nearer to x
on the line joining x and g(x).

This map is smooth, since f(x) = x+ tu, where

u = ||x− g(x)||−1(x− g(x)), (73)

and t is the positive solution to the quadratic equation (x + tu) · (x + tu) = 1,
which has positive discriminant b2 − 4ac = 4(1 − |x|2 + (x · u)2). Such a smooth
map is therefore impossible by the previous corollary.

Theorem 3.25 (Brouwer fixed point theorem). Any continuous self-map of Dn

has a fixed point.

Proof. The Weierstrass approximation theorem says that any continuous func-
tion on [0, 1] can be uniformly approximated by a polynomial function in the
supremum norm ||f ||∞ = supx∈[0,1] |f(x)|. In other words, the polynomials
are dense in the continuous functions with respect to the supremum norm.
The Stone-Weierstrass is a generalization, stating that for any compact Haus-
dorff space X, if A is a subalgebra of C0(X,R) such that A separates points
(∀x, y, ∃f ∈ A : f(x) ̸= f(y)) and contains a nonzero constant function, then
A is dense in C0.

Given this result, approximate a given continuous self-map g of Dn by a
polynomial function p′ so that ||p′ − g||∞ < ϵ on Dn. To ensure p′ sends Dn

into itself, rescale it via
p = (1 + ϵ)−1p′. (74)

Then clearly p is a Dn self-map while ||p − g||∞ < 2ϵ. If g had no fixed point,
then |g(x) − x| must have a minimum value µ on Dn, and by choosing 2ϵ = µ
we guarantee that for each x,

|p(x) − x| ≥ |g(x) − x| − |g(x) − p(x)| > µ− µ = 0. (75)

Hence p has no fixed point. Such a smooth function can’t exist and hence we
obtain the result.

3.4 Genericity
Theorem 3.26 (Transversality theorem). Let F : X×S −→ Y and g : Z −→ Y
be smooth maps of manifolds where only X has boundary. Suppose that F and
∂F are transverse to g. Then for almost every s ∈ S, fs = F (·, s) and ∂fs are
transverse to g.
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Proof. Due to the transversality, the fiber product W = (X × S) ×Y Z is a
submanifold (with boundary) of X × S × Z and projects to S via the usual
projection map π. We show that any s ∈ S which is a regular value for both
the projection map π : W −→ S and its boundary map ∂π gives rise to a fs
which is transverse to g. Then by Sard’s theorem the s which fail to be regular
in this way form a set of measure zero.

Suppose that s ∈ S is a regular value for π. Suppose that fs(x) = g(z) = y
and we now show that fs is transverse to g there. Since F (x, s) = g(z) and F
is transverse to g, we know that

imDF(x,s) + imDgz = TyY.

Therefore, for any a ∈ TyY , there exists b = (w, e) ∈ T (X ×S) with DF(x,s)b−
a in the image of Dgz. But since Dπ is surjective, there exists (w′, e, c′) ∈
T(x,y,z)W . Hence we observe that

(Dfs)(w−w′)−a = DF(x,s)[(w, e)−(w′, e)]−a = (DF(x,s)b−a)−DF(x,s)(w′, e),

where both terms on the right hand side lie in imDgz, since (w′, e, c′) ∈ T(x,y,z)W
means Dgz(c′) = DF(x,y)(w′, e).

Precisely the same argument (with X replaced with ∂X and F replaced with
∂F ) shows that if s is regular for ∂π then ∂fs is transverse to g. This gives the
result.

The previous result immediately shows that transversal maps to Rn are
generic, since for any smooth map f : M −→ Rn we may produce a family of
maps

F : M × Rn −→ Rn (76)
via F (x, s) = f(x) + s. This new map F is clearly a submersion and hence is
transverse to any smooth map g : Z −→ Rn. For arbitrary target manifolds, we
will imitate this argument, but we will require a (weak) version of Whitney’s
embedding theorem for manifolds into Rn.

In the next section we will show that any manifold Y can be embedded via
ι : Y → RN in some large Euclidean space, and in such a way that the image
has a “tubular neighbourhood” U ⊂ RN of radius ϵ(y) (for a positive real-valued
function ϵ : Y → R) equipped with a projection π : U → Y such that πι = idY .

Corollary 3.27. Let X be a manifold with boundary and f : X −→ Y be a
smooth map to a manifold Y . Then there is an open ball S = B(0, 1) ⊂ RN and
a smooth map F : X × S −→ Y such that F (x, 0) = f(x) and for fixed x, the
map fx : s 7→ F (x, s) is a submersion S −→ Y .

In particular, F and ∂F are submersions, so are transverse to any g : Z →
Y .

Proof. Use the embedding of ι : Y → RN and the tubular neighbourhood
π : U → Y to define

F (x, s) = π(ι(f(x)) + ϵ(y)s). (77)
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The transversality theorem then guarantees that given any smooth g : Z −→
Y , for almost all s ∈ S the maps fs, ∂fs are transverse to g. We improve this
slightly to show that fs may be chosen to be homotopic to f .

Corollary 3.28 (Transversality homotopy theorem). Given any smooth maps
f0 : X −→ Y , g : Z −→ Y , where only X has boundary, there exists a smooth
map f1 : X −→ Y homotopic to f0 with f1, ∂f1 both transverse to g.

Proof. Let S, F be as in the previous corollary. Away from a set of measure zero
in S, the functions fs, ∂fs are transverse to g, by the transversality theorem.
But these fs are all homotopic to f via the homotopy X × [0, 1] −→ Y given by

(x, t) 7→ F (x, ts). (78)

The last theorem we shall prove concerning transversality is a very useful
extension result which is essential for intersection theory:

Theorem 3.29 (Homotopic transverse extension of boundary map). Let X be
a manifold with boundary and f0 : X −→ Y a smooth map to a manifold Y .
Suppose that ∂f0 is transverse to the closed map g : Z −→ Y . Then there exists
a map f1 : X −→ Y , homotopic to f and with ∂f1 = ∂f0, such that f1 is
transverse to g.

Proof. First observe that since ∂f0 is transverse to g on ∂X, f0 is also trans-
verse to g there, and furthermore since g is closed, f0 is transverse to g in a
neighbourhood U of ∂X. (for example, if x ∈ ∂X but x not in f−1

0 (g(Z)) then
since the latter set is closed, we obtain a neighbourhood of x for which f0 is
transverse to g.)

Now choose a smooth function γ : X −→ [0, 1] which is 1 outside U but 0
on a neighbourhood of ∂X. (why does γ exist? exercise.) Then set τ = γ2, so
that dτ(x) = 0 wherever τ(x) = 0. Recall the map F : X × S −→ Y we used in
proving the transversality homotopy theorem and modify it via

G(x, s) = F (x, τ(x)s). (79)

The claim is that G and ∂G are transverse to g. This is clear for x such that
τ(x) ̸= 0. But if τ(x) = 0,

TG(x,s)(v, w) = TF(x,0)(v, 0) = T (f0)x(v), (80)

but τ(x) = 0 means that x ∈ U , in which f is transverse to g.
Since transversality holds, there exists s such that f1 : x 7→ G(x, s) and

∂f1 are transverse to g (and homotopic to f0, as before). Finally, if x is in the
neighbourhood of ∂X for which τ = 0, then f1(x) = F (x, 0) = f0(x).

Corollary 3.30. If f0 : X −→ Y and f1 : X −→ Y are homotopic smooth
maps of manifolds, each transverse to the closed map g : Z −→ Y , then the fiber
products W0 = Xf0×gZ and W1 = Xf1×gZ are cobordant.
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Proof. if F : X × [0, 1] −→ Y is the homotopy between f0, f1, then by the
previous theorem, we may find a (homotopic) homotopy G : X × [0, 1] −→ Y
which is transverse to g, without changing F on the boundary. Hence the fiber
product U = (X × [0, 1])G×gZ is a cobordism with boundary W ⊔W ′.

3.5 Intersection theory
The previous corollary allows us to make the following definition:

Definition 3.31. Let f : X −→ Y and g : Z −→ Y be smooth maps with X
compact, g closed, and dimX + dimZ = dim Y . Then we define the (mod 2)
intersection number of f and g to be

I2(f, g) = #(Xf ′ ×g Z) (mod 2),

where f ′ : X −→ Y is any smooth map smoothly homotopic to f but transverse
to g, and where we assume the fiber product to consist of a finite number
of points (this is always guaranteed, e.g. if g is proper, or if g is a closed
embedding).

Example 3.32. If C1, C2 are two distinct great circles on S2 then they have
two transverse intersection points, so I2(C1, C2) = 0 in Z2. Of course we can
shrink one of the circles to get a homotopic one which does not intersect the
other at all. This corresponds to the standard cobordism from two points to
the empty set.

Example 3.33. If (e1, e2, e3) is a basis for R3 we can consider the following two
embeddings of S1 = R/2πZ into RP 2: ι1 : θ 7→ ⟨cos(θ/2)e1 + sin(θ/2)e2⟩ and
ι2 : θ 7→ ⟨cos(θ/2)e2 + sin(θ/2)e3⟩. These two embedded submanifolds intersect
transversally in a single point ⟨e2⟩, and hence I2(ι1, ι2) = 1 in Z2. As a result,
there is no way to deform ιi so that they intersect transversally in zero points.

Example 3.34. Given a smooth map f : X −→ Y for X compact and dim Y =
2 dimX, we may consider the self-intersection I2(f, f). In the previous examples
we may check I2(C1, C1) = 0 and I2(ι1, ι1) = 1. Any embedded S1 in an
oriented surface has no self-intersection. If the surface is nonorientable, the
self-intersection may be nonzero.

Example 3.35. Let p ∈ S1. Then the identity map Id : S1 −→ S1 is transverse
to the inclusion ι : p −→ S1 with one point of intersection. Hence the identity
map is not (smoothly) homotopic to a constant map, which would be transverse
to ι with zero intersection. Using smooth approximation, get that Id is not
continuously homotopic to a constant map, and also that S1 is not contractible.

Example 3.36. By the previous argument, any compact manifold is not con-
tractible.

Example 3.37. Consider SO(3) ∼= RP 3 and let ℓ ⊂ RP 3 be a line, diffeo-
morphic to S1. This line corresponds to a path of rotations about an axis by
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θ ∈ [0, π] radians. Let P ⊂ RP 3 be a plane intersecting ℓ in one point. Since
this is a transverse intersection in a single point, ℓ cannot be deformed to a
point (which would have zero intersection with P. This shows that the path of
rotations is not homotopic to a constant path.

If ι : θ 7→ ι(θ) is the embedding of S1, then traversing the path twice via
ι′ : θ 7→ ι(2θ), we obtain a map ι′ which is transverse to P but with two
intersection points. Hence it is possible that ι′ may be deformed so as not to
intersect P. Can it be done?

Example 3.38. Consider RP 4 and two transverse hyperplanes P1, P2 each an
embedded copy of RP 3. These then intersect in P1 ∩P2 = RP 2, and since RP 2

is not null-homotopic, we cannot deform the planes to remove all intersection.

Intersection theory also allows us to define the degree of a map modulo 2.
The degree measures how many generic preimages there are of a local diffeo-
morphism.

Definition 3.39. Let f : M −→ N be a smooth map of manifolds of the same
dimension, and suppose M is compact and N connected. Let p ∈ N be any
point. Then we define deg2(f) = I2(f, p).

Example 3.40. Let f : S1 −→ S1 be given by z 7→ zk. Then deg2(f) = k
(mod 2).

Example 3.41. If p : C∪{∞} −→ C∪{∞} is a polynomial of degree k, then as
a map S2 −→ S2 we have deg2(p) = k (mod 2), and hence any odd polynomial
has at least one root. To get the fundamental theorem of algebra, we must
consider oriented cobordism

Even if submanifolds C,C ′ do not intersect, it may be that there are more
sophisticated geometrical invariants which cause them to be “intertwined” in
some way. One example of this is linking number.

Definition 3.42. Suppose that M,N ⊂ Rk+1 are compact embedded subman-
ifolds with dimM + dimN = k, and let us assume they are transverse, meaning
they do not intersect at all.

Then define λ : M ×N −→ Sk via

(x, y) 7→ x− y

|x− y|
.

Then we define the (mod 2) linking number of M,N to be deg2(λ).

Example 3.43. Consider the standard Hopf link in R3. Then it is easy to
calculate that deg2(λ) = 1. On the other hand, the standard embedding of
disjoint circles (differing by a translation, say) has deg2(λ) = 0. Hence it is
impossible to deform the circles through embeddings of S1 ⊔S1 −→ R3, so that
they are unlinked. Why must we stay within the space of embeddings, and not
allow the circles to intersect?
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